About this Journal Submit a Manuscript Table of Contents
Veterinary Medicine International
Volume 2013 (2013), Article ID 874521, 10 pages
http://dx.doi.org/10.1155/2013/874521
Research Article

Comparison of the Infectivity and Transmission of Contemporary Canine and Equine H3N8 Influenza Viruses in Dogs

1Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biological Sciences, Colorado State University, 300 West Drake Road, Campus Delivery 1678, Fort Collins, CO 80523, USA
2Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 300 West Drake Road, Campus Delivery 1678, Fort Collins, CO 80523, USA

Received 3 June 2013; Revised 18 August 2013; Accepted 26 August 2013

Academic Editor: Timm C. Harder

Copyright © 2013 Heidi L. Pecoraro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. M. Tumpey, C. F. Basler, P. V. Aguilar et al., “Characterization of the reconstructed 1918 Spanish influenza pandemic virus,” Science, vol. 310, no. 5745, pp. 77–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. R. Castrucci and Y. Kawaoka, “Biologic importance of neuraminidase stalk length in influenza A virus,” Journal of Virology, vol. 67, no. 2, pp. 759–764, 1993. View at Scopus
  3. M. Hatta, P. Halfmann, K. Wells, and Y. Kawaoka, “Human influenza a viral genes responsible for the restriction of its replication in duck intestine,” Virology, vol. 295, no. 2, pp. 250–255, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. R. M. Dalton, A. E. Mullin, M. J. Amorim, E. Medcalf, L. S. Tiley, and P. Digard, “Temperature sensitive influenza a virus genome replication results from low thermal stability of polymerase-cRNA complexes,” Virology Journal, vol. 3, article 58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Hiromoto, Y. Yamazaki, T. Fukushima et al., “Evolutionary characterization of the six internal genes of H5N1 human influenza A virus,” Journal of General Virology, vol. 81, no. 5, pp. 1293–1303, 2000. View at Scopus
  6. B. R. Murphy, A. J. Buckler-White, W. T. London, and M. H. Snyder, “Characterization of the M protein and nucleoprotein genes of an avian influenza A virus which are involved in host range restriction in monkeys,” Vaccine, vol. 7, no. 6, pp. 557–561, 1989. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Scholtissek, H. Burger, O. Kistner, and K. F. Shortridge, “The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses,” Virology, vol. 147, no. 2, pp. 287–294, 1985. View at Scopus
  8. M. H. Snyder, W. T. London, H. F. Maassab, R. M. Chanock, and B. R. Murphy, “A 36 nucleotide deletion mutation in the coding region of the NS1 gene of an influenza A virus RNA segment 8 specifies a temperature-dependent host range phenotype,” Virus Research, vol. 15, no. 1, pp. 69–84, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. E. K. Subbarao, W. London, and B. R. Murphy, “A single amino acid in the PB2 gene of influenza A virus is a determinant of host range,” Journal of Virology, vol. 67, no. 4, pp. 1761–1764, 1993. View at Scopus
  10. S. F. Tian, A. J. Buckler-White, and W. T. London, “Nucleoprotein and membrane protein genes are associated with restriction of replication of influenza A/mallard/NY/78 virus and its reassortants in squirrel monkey respiratory tract,” Journal of Virology, vol. 53, no. 3, pp. 771–775, 1985. View at Scopus
  11. C. Bender, H. Hall, J. Huang et al., “Characterization of the surface proteins of influenza A (H5N1) viruses isolated from humans in 1997-1998,” Virology, vol. 254, no. 1, pp. 115–123, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. D. L. Suarez, M. L. Perdue, N. Cox et al., “Comparisons of highly virulent H5N1 influenza A viruses isolated from humans and chickens from Hong Kong,” Journal of Virology, vol. 72, no. 8, pp. 6678–6688, 1998. View at Scopus
  13. N. N. Zhou, K. F. Shortridge, E. C. J. Claas, S. L. Krauss, and R. G. Webster, “Rapid evolution of H5N1 influenza viruses in chickens in Hong Kong,” Journal of Virology, vol. 73, no. 4, pp. 3366–3374, 1999. View at Scopus
  14. R. Fang, W. M. Jou, and D. Huylebroeck, “Complete structure of A/duck/Ukraine/63 influenza hemagglutinin gene: animal virus as progenitor of human H3 Hong Kong 1968 influenza hemagglutinin,” Cell, vol. 25, no. 2, pp. 315–323, 1981. View at Scopus
  15. M. J. Gething, J. Bye, J. Skehel, and M. Waterfield, “Cloning and DNA sequence of double-stranded copies of haemagglutinin genes from H2 and H3 strains elucidates antigenic shift and drift in human influenza virus,” Nature, vol. 287, no. 5780, pp. 301–306, 1980. View at Scopus
  16. Y. Kawaoka, S. Krauss, and R. G. Webster, “Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics,” Journal of Virology, vol. 63, no. 11, pp. 4603–4608, 1989. View at Scopus
  17. C. P. Chang, A. E. New, J. F. Taylor, and H. S. Chiang, “Influenza virus isolations from dogs during a human epidemic in Taiwan,” International Journal of Zoonoses, vol. 3, no. 1, pp. 61–64, 1976. View at Scopus
  18. T. V. Pysina and N. G. Surin, “Isolation from dogs of an influenza virus similar to A2 (Hong Kong)68,” Voprosy Virusologii, vol. 17, no. 2, pp. 245–248, 1972. View at Scopus
  19. D. Song, B. Kang, C. Lee et al., “Transmission of avian influenza virus (H3N2) to dogs,” Emerging Infectious Diseases, vol. 14, no. 5, pp. 741–746, 2008. View at Scopus
  20. R. Newton, A. Cooke, D. Elton et al., “Canine influenza virus: cross-species transmission from horses,” Veterinary Record, vol. 161, no. 4, pp. 142–143, 2007. View at Scopus
  21. J. M. Daly, A. S. Blunden, S. MacRae et al., “Transmission of equine influenza virus to english foxhounds,” Emerging Infectious Diseases, vol. 14, no. 3, pp. 461–464, 2008. View at Scopus
  22. P. C. Crawford, E. J. Dubovi, W. L. Castleman et al., “Epidemiology: transmission of equine influenza virus to dogs,” Science, vol. 310, no. 5747, pp. 482–485, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Payungporn, P. C. Crawford, T. S. Kouo et al., “Influenza A virus (H3N8) in dogs with respiratory disease, Florida,” Emerging Infectious Diseases, vol. 14, no. 6, pp. 902–908, 2008. View at Scopus
  24. S. Dillion, M. E. Spindel, and G. A. Landolt, “Genetic characterization of canine and equine H3N8 influenza viruses isolated in Colorado and Wyoming between 2006 and 2007,” in Proceedings of the 27th Annual Meeting of American Society for Virology, Ithaca, NY, USA, July 2008.
  25. T. Yamanaka, K. Tsujimura, T. Kondo et al., “Infectivity and pathogenicity of canine H3N8 influenza A virus in horses,” Influenza and other Respiratory Viruses, vol. 4, no. 6, pp. 345–351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. Quintana, S. B. Hussey, E. C. Burr et al., “Evaluation of infectivity of a canine lineage H3N8 influenza a virus in ponies and in primary equine respiratory epithelial cells,” American Journal of Veterinary Research, vol. 72, no. 8, pp. 1071–1078, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. G. A. Landolt, A. I. Karasin, L. Phillips, and C. W. Olsen, “Comparison of the pathogenesis of two genetically different H3N2 influenza a viruses in pigs,” Journal of Clinical Microbiology, vol. 41, no. 5, pp. 1936–1941, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. D. P. Lunn, G. Soboll, B. R. Schram et al., “Antibody responses to DNA vaccination of horses using the influenza virus hemagglutinin gene,” Vaccine, vol. 17, no. 18, pp. 2245–2258, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. A. I. Karasin, I. H. Brown, S. Carman, and C. W. Olsen, “Isolation and characterization of H4N6 avian influenza viruses from pigs with pneumonia in Canada,” Journal of Virology, vol. 74, no. 19, pp. 9322–9327, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. G. A. Landolt, A. I. Karasin, C. Hofer, J. Mahaney, J. Svaren, and C. W. Olsen, “Use of real-time reverse transcriptase polymerase chain reaction assay and cell culture methods for detection of swine influenza A viruses,” American Journal of Veterinary Research, vol. 66, no. 1, pp. 119–124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. S. Gambarayan and M. N. Matrosovich, “A solid-phase enzyme-linked assay for influenza virus receptor-binding activity,” Journal of Virological Methods, vol. 39, no. 1-2, pp. 111–123, 1992. View at Scopus
  32. M. Matrosovich, A. Tuzikov, N. Bovin et al., “Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals,” Journal of Virology, vol. 74, no. 18, pp. 8502–8512, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. M. F. Spindel, S. Dillon, K. F. Lunn, and G. A. Landolt, “Detection and quantification of canine influenza virus by one-step real-time reverse transcription PCR,” Journal of Veterinary Internal Medicine, vol. 21, no. 3, p. 576, 2007.
  34. A. C. Bateman, M. G. Busch, A. I. Karasin, N. Bovin, and C. W. Olsen, “Amino acid 226 in the hemagglutinin of H4N6 influenza virus determines binding affinity for α2,6-linked sialic acid and infectivity levels in primary swine and human respiratory epithelial cells,” Journal of Virology, vol. 82, no. 16, pp. 8204–8209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. S. Hall, K. T. Bentler, G. Landolt et al., “Influenza infection in wild raccoons,” Emerging Infectious Diseases, vol. 14, no. 12, pp. 1842–1848, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Shinya, M. Ebina, S. Yamada, M. Ono, N. Kasai, and Y. Kawaoka, “Influenza virus receptors in the human airway,” Nature, vol. 440, no. 7083, pp. 435–436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Suzuki, T. Ito, T. Suzuki et al., “Sialic acid species as a determinant of the host range of influenza A viruses,” Journal of Virology, vol. 74, no. 24, pp. 11825–11831, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. M. B. Eisen, S. Sabesan, J. J. Skehel, and D. C. Wiley, “Binding of the influenza A virus to cell-surface receptors: structures of five hemagglutinin-sialyloligosaccharide complexes determined by X-ray crystallography,” Virology, vol. 232, no. 1, pp. 19–31, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Weis, J. H. Brown, S. Cusack, J. C. Paulson, J. J. Skehel, and D. C. Wiley, “Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid,” Nature, vol. 333, no. 6172, pp. 426–431, 1988. View at Scopus
  40. Q. Wang, X. Tian, X. Chen, and J. Ma, “Structural basis for receptor specificity of influenza B virus hemagglutinin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 43, pp. 16874–16879, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Yamanaka, M. Nemoto, K. Tsujimura, T. Kondo, and T. Matsumura, “Interspecies transmission of equine influenza virus (H3N8) to dogs by close contact with experimentally infected horses,” Veterinary Microbiology, vol. 139, no. 3-4, pp. 351–355, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. P. F. Wright, G. Neumann, and Y. Kawaoka, “Orthomyxoviruses,” in Fields Virology, D. M. Knipe and P. M. Howley, Eds., Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 5th edition, 2007.
  43. J. J. Skehel and D. C. Wiley, “Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin,” Annual Review of Biochemistry, vol. 69, pp. 531–569, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Masunaga, K. Mizumoto, H. Kato, A. Ishihama, and T. Toyoda, “Molecular mapping of influenza virus RNA polymerase by site-specific antibodies,” Virology, vol. 256, no. 1, pp. 130–141, 1999. View at Publisher · View at Google Scholar · View at Scopus