International Journal of RF and Microwave Computer-Aided Engineering
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate29%
Submission to final decision107 days
Acceptance to publication18 days
CiteScore3.800
Journal Citation Indicator0.380
Impact Factor1.7

Submit your research today

International Journal of RF and Microwave Computer-Aided Engineering is now an open access journal, and articles will be immediately available to read and reuse upon publication.

Read our author guidelines

 Journal profile

International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas.

 Editor spotlight

International Journal of RF and Microwave Computer-Aided Engineering maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study. 

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Design of Hybrid Bandpass Filter Chips with High Selectivity and Wideband Using IPD and FBAR Technology

A novel hybrid bandpass filter (BPF) with wideband and high selectivity is proposed in this paper. The hybrid BPF is composed of two film bulk acoustic resonator (FBAR) cells and three lumped component resonators realized by the integrated passive device (IPD) technology. The ABCD matrix to -parameters matrix method is used to calculate the frequency response of the BPF. Moreover, the expressions of transmission zeros (TZs) have been extracted. In the design process, an iterative design approach is proposed to improve the circuit and layout of the hybrid filter based on the packaged acoustic-electric hybrid simulation effect. Finally, two parts of the filter are packaged based on the flip-chip method, and two prototypes for the BPF are measured. The measured results of two chips with 3 dB fractional bandwidth of 13.7% and 15.8% are designed and fabricated, which verifies the validity of the proposed design principle.

Research Article

Stub Asymmetry-Enabled Self-Phase-Shift Circularly Polarized Antenna under Dual-Mode Resonance

In this article, a novel design approach to wideband dual-mode resonant circularly polarized (CP) antenna is advanced. An analytical design approach with low complexity as supported by a set of closed-form formulas is presented. Thus, the wideband dual-mode CP characteristics can be forward predicted and simply realized by incorporating stub asymmetry-enabled self-phase-shift dipoles and unequal feeding branches. At first, stubs are employed to broaden the impedance bandwidth by simultaneously exciting dual resonant modes. Then, the phase quadrature and equal magnitude conditions for wideband CP can be automatically realized by incorporating unequal Y-shaped microstrip branches and asymmetric slotline stubs. Finally, the coincidence between the simulated and measured results of the fabricated prototype antenna further confirms the feasibility of the design approach. It is shown that the presented antenna can exhibit an impedance bandwidth of 20.1% and a 3 dB axial ratio bandwidth of 16.3% in the boresight direction.

Research Article

Frequency-Tunable SIW Band-Reject Filter with Increased Fundamental Mode Bandwidth for Spectrum Underlay Cognitive Radio

This paper presents the design of a frequency-tunable substrate-integrated waveguide (SIW) band-reject filter, specifically for spectrum underlay cognitive radio operation. The proposed filter has a simple tuning circuit but provides a wide frequency tuning range from 2.9 to 4.4 GHz (41%). The second resonant mode has been suppressed using a simple quadrature coupling; hence, the fundamental mode bandwidth of the filter has been increased from 2.08 GHz to 3.36 GHz. Due to its wide tuning range, simple tuning circuit, and increased fundamental mode bandwidth, the proposed filter is greatly important in underlay cognitive radio construction. The second-order filter has also been developed, and its performance is analyzed with both simulation and measurement. It gives a tunable bandwidth of 41%, an insertion loss of more than 10 dB, and a fundamental mode bandwidth of 3.36 GHz. The filter performance is also analyzed after connecting it to the standard horn antenna. Finally, from the total efficiency plots, it has been concluded that the proposed filter achieves all the above advantages with a low-lossy nature.

Research Article

Design and Tensor Impedance Analysis of Isotropic Homogeneous Metasurface-Backed Slotted Dual-Layered Bio-Superstrate-Loaded MPA

A Isotropic Homogeneous Metasurface (IHM) backed, rectangular slotted dual-layered triband microstrip patch antenna (MPA) is proposed in this article. A detailed mathematical way to analyze the tensor surface impedance matrix (TSIM) of the proposed IHM and slotted patch is demonstrated. The proposed IHM-backed MPA has a triband even-mode resonance at  GHz,  GHz, and  GHz. A better and more accurate estimation of bio-superstrate loading effect for triband resonance is employed using the human skin (, ) and blood (, ) layer on the top of dual-layered metasurface-backed slotted MPA. TSIM characterization is observed for both blood- and skin layer-loaded dual-layered metasurface-backed slotted MPA. Chicken breast (, , and ) with blood (, , and ) is loaded onto fabricated dual-layered structure to verify numerically modeled estimation. A closed form triband, even-order resonance mode (i.e., , , and ) estimation based on dielectric superstrate thickness () is numerically established using MATLAB solver. Complete measurement setup with simulated vs. measured results is compared in this article.

Research Article

Thermal Characteristic Investigation for a Multichip Module Based on APDL

Aiming at the failure problems of integrated circuit (IC) caused by higher package density, thinner package, and more heat sources, taking a multichip module (MCM) for receiver front end as an example, the 3-D model is established based on ANSYS Parametric Design Language (APDL). Then, the steady-state thermal analysis is achieved to complete the automatic calculation of thermal characteristic. As a result, the temperature, stress, and deformation are investigated in details, and its temperature distribution, stress distribution, deformation distribution, and reliability variations of this MCM under different powers and temperatures can be obtained. This can provide important theoretical reference for the chip package optimization. Different from other studies which only focus on temperature or stress, it is more comprehensive and systematic for the thermal characteristic analysis of MCM. Meanwhile, this MCM is also representative for wireless communication system. It is of great significance to optimize the layout design and improve the thermal characteristic for IC.

Research Article

Design of Cross-Coupled Bandpass Filters with Flexible Coupling via Half-Mode Substrate-Integrated Waveguide

In this article, a simple approach for achievement of flexible coupling is presented based on the half-mode substrate-integrated waveguide (HMSIW). Since both electric and magnetic fields vary along the magnetic wall of the HMSIW, there exists mixed coupling between two adjacent HMSIWs. In this context, only by adjusting the width of the coupling slot at specific regions, both coupling property and strength can be conveniently controlled. Besides, as the coupling slot possesses the merits of simple structure and high flexibility, it is also expected to achieve desired couplings between multimode resonators. For demonstration, three cross-coupled bandpass filters (BPFs) with different kinds of frequency responses are constructed based on the typical cascaded trisection coupling topology by mixing one SIW and two HMSIWs, including two single-band and one dual-band designs. All measured results are highly consistent with the simulated ones, validating that the HMSIW not only has the inherent advantage of smaller size than the conventional SIW counterparts but also possesses unique feature in providing flexible coupling without extra circuit.

International Journal of RF and Microwave Computer-Aided Engineering
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate29%
Submission to final decision107 days
Acceptance to publication18 days
CiteScore3.800
Journal Citation Indicator0.380
Impact Factor1.7
 Submit Evaluate your manuscript with the free Manuscript Language Checker

We have begun to integrate the 200+ Hindawi journals into Wiley’s journal portfolio. You can find out more about how this benefits our journal communities on our FAQ.