Abstract

The crystallite orientation distribution function (CODF) is reviewed in terms of classical spherical function representation and more recent coordinate free tensorial representation (CFTR). A CFTR is a Fourier expansion wherein the coefficients are tensors in the three-dimensional space. The equivalence between homogeneous harmonic polynomials of degree k and symmetric and traceless tensors of rank k allows a realization of these tensors by the method of harmonic polynomials. Such a method provides for the rapid assembly of a tensorial representation from microstructural orientation measurement data. The coefficients are determined to twenty-first order and expanded in the form of a crystallite orientation distribution function, and compared with previous calculations.