Abstract

A multidisciplinary-multiobjective optimization of aerocapture maneuvers is presented. The proposed approach allows a detailed analysis of the coupling among vehicle's shape, trajectory control, and thermal protection system design. A set of simplified models are developed to address this analysis and a multiobjective particle swarm optimizer is adopted to obtain the set of Pareto optimal solutions. In order to deal with an unconstrained multiobjective optimization, a two-point boundary value problem is formulated to implicitly satisfy the constraints on the atmospheric exit conditions. The trajectories of the most promising solutions are further optimized in a more refined dynamical system by solving an optimal control problem using a direct multiple shooting transcription method. Furthermore, a more complete vehicle control is considered. All the simulations presented consider an aerocapture at Mars with a polar orbit of 200 km of altitude as target orbit.