Abstract

For a (formally) real field ๐พ, the vanishing of a certain power of the fundamental ideal in the Witt ring of โˆš๐พ(โˆ’1) implies that the same power of the fundamental ideal in the Witt ring of ๐พ is torsion free. The proof of this statement involves a fact on the structure of the torsion part of powers of the fundamental ideal in the Witt ring of ๐พ. This fact is very difficult to prove in general, but has an elementary proof under an assumption on the stability index of ๐พ. We present an exposition of these results.

1. Introduction

In the study of sums of squares and quadratic forms over fields, it has often been fruitful to consider the quadratic extension obtained by adjoining โˆšโˆ’1. Consider, for example, an extension ๐พ/๐‘… of transcendence degree ๐‘› of a real closed field ๐‘…. Tsen-Lang theory yields that quadratic forms over โˆš๐พ(โˆ’1) of dimension greater than 2๐‘› are isotropic. From this, one can derive that in ๐พ any totally positive element is a sum of 2๐‘› squares and that torsion quadratic forms over ๐พ of dimension greater than 2๐‘›+2 are isotropic. The proof of the statement on sums of squares in ๐พ uses the observation that a certain field property (๐ด๐‘›+1) goes down a quadratic extension.

We assume that the reader is familiar with the classical theory of quadratic forms over fields as presented in [1]. We use standard notation and terminology. When we speak about quadratic forms we always assume them to be regular, and we often just call them forms.

Let ๐พ be a field of characteristic different from 2. We denote by ๐พร— the multiplicative group of ๐พ and by โˆ‘๐พ2 the subgroup of the nonzero sums of squares in ๐พ. By the Artin-Schreier Theorem, ๐พ admits a field ordering if and only if โˆ‘๐พโˆ’1โˆ‰2; in this case, we say that ๐พ is real, otherwise nonreal.

Let ๐‘Š๐พ denote the Witt ring of ๐พ and ๐ผ๐พ its fundamental ideal. Let ๐‘Š๐‘ก๐พ be the torsion part of ๐‘Š๐พ. If ๐พ is real, then ๐‘Š๐‘ก๐พโŠ†๐ผ๐พ, otherwise ๐‘Š๐‘ก๐พ=๐‘Š๐พ.

Let ๐‘› be a positive integer. We put ๐ผ๐‘›๐พ=(๐ผ๐พ)๐‘› and ๐ผ๐‘›๐‘ก๐พ=๐‘Š๐‘ก๐พโˆฉ๐ผ๐‘›๐พ. Following [2] and [1, Chapter XI, Section 4], we denote by (๐ด๐‘›) the condition that every torsion ๐‘›-fold Pfister form over a given field is hyperbolic. Recall that ๐ผ๐‘›๐พ is generated (as a group) by the ๐‘›-fold Pfister forms over ๐พ. Hence, if ๐พ is a nonreal field, then ๐พ satisfies (๐ด๐‘›) if and only if ๐ผ๐‘›๐พ=0. It was conjectured in [2] that, without assuming that ๐พ is nonreal, the following holds.

Conjecture 1.1. The field ๐พ satisfies (๐ด๐‘›) if and only if ๐ผ๐‘›๐‘ก๐พ=0.

This is obviously implied by the following stronger conjecture, which was proved in [3, (2.8)] as a consequence of Voevodsky's proof of the Milnor Conjecture and the deep results in [4].

Conjecture 1.2. One has ๐ผ๐‘›๐‘ก๐พ=๐ผ๐‘ก๐พโ‹…๐ผ๐‘›โˆ’1๐พ.

Nevertheless, one may wish to have more elementary proofs of these conjectures, even for special cases. For ๐‘›โ‰ค3, such a proof for Conjecture 1.1 can be found in [1, Chapter XI, (4.1) and Chapter XII, (3.1)]. For an elementary proof of Conjecture 1.2 for ๐‘›=2, see [1, Chapter XI, (4.2)] or Proposition 3.2 below. For arbitrary ๐‘›, Krรผskemper showed in [5, Theorem 3] by elementary arguments that a sum of up to three scaled ๐‘›-fold Pfister forms lies in ๐ผ๐‘›๐‘ก๐พ if and only if it lies in ๐ผ๐‘ก๐พโ‹…๐ผ๐‘›โˆ’1๐พ; in Theorem 3.8, we give a self-contained exposition of this result.

There is another situation where an elementary proof of Conjecture 1.2 is possible, depending on the stability index of the field ๐พ. Following [6], the (reduced) stability index of ๐พ is defined as ๎€ฝst(๐พ)=min๐‘Ÿโˆˆโ„•โˆฃ๐ผ๐‘Ÿ+1๐พ=2๐ผ๐‘Ÿ๐พ+๐ผ๐‘ก๐‘Ÿ+1๐พ๎€พโˆˆโ„•โˆช{โˆž}.(1.1) Note that st(๐พ)=0 if and only if ๐พ is either nonreal or uniquely ordered.

In [7], Krรผskemper outlined an elementary proof of Conjecture 1.2 for the case where ๐‘›โ‰ฅst(๐พ), using several facts stated in [8] without a detailed proof.

Our efforts to understand the mentioned results from [5, 7] led us to a more detailed and structured exposition, which we want to make available to a wider audience, though we do not claim any originality of the ideas. Shortly after completing this note, we learned that another exposition of Krรผskemper's proof that Conjectures 1.2 and 1.1 hold for ๐‘›โ‰ฅst(๐พ) appeared in [9, Section 35.B]. Here, following [7], we work within the more general framework of preorderings and the reduced theory of quadratic forms.

Let us point out that having Conjecture 1.2 for ๐‘›>st(๐พ) leads to a proof of the following statement, as observed in [5, Proposition 1].

Theorem 1.3 (Elman-Lam-Krรผskemper). For ๐‘›โ‰ฅ1, the following statements are equivalent:
(i)๐ผ๐‘›โˆš๐พ(โˆ’1)=0.
(ii)๐ผ๐‘›๐‘ก๐พ=0 and ๐ผ๐‘›๐พ=2๐ผ๐‘›โˆ’1๐พ.
(iii)๐ผ๐‘›๐‘ก๐พ=0 and st(๐พ)<๐‘›.

Assuming that ๐ผ๐‘›๐‘ก๐พ=0, it is clear that ๐ผ๐‘›๐พ=2๐ผ๐‘›โˆ’1๐พ holds if and only if st(๐พ)<๐‘›. Therefore, (ii) and (iii) are equivalent. Elman and Lam showed in [2, (4.4), (4.5), (4.7)] that ๐ผ๐‘›โˆš๐พ(โˆ’1)=0 if and only if ๐พ satisfies (๐ด๐‘›) and ๐ผ๐‘›๐พ=2๐ผ๐‘›โˆ’1๐พ (see also [1, Chapter XI, (4.7), (4.14), (4.18)]); this fact was rediscovered by Elman and Prestel in [10, (3.3)]. Hence, to complete the proof of Theorem 1.3, it is sufficient to know that Conjecture 1.1 holds when ๐‘›>st(๐พ).

Finally, note that the equivalent conditions in Theorem 1.3 hold in the case where ๐พ is an extension of a real closed field of transcendence degree strictly smaller than ๐‘›. In fact, since any quadratic form over โˆš๐พ(โˆ’1) of dimension exceeding 2๐‘›โˆ’1 is isotropic, it is clear that ๐ผ๐‘›โˆš๐พ(โˆ’1)=0, and [2, (6.1)] gives a more direct way to show that ๐ผ๐‘›๐‘ก๐พ=0 in this case.

2. Preorderings

We recall some facts from real algebra and the reduced theory of quadratic forms modulo a preordering. For details, we refer to [11]. Let ๐‘‹(๐พ) denote the set of all field orderings of ๐พ. For a quadratic form ๐œ‘ over ๐พ and ๐‘ƒโˆˆ๐‘‹(๐พ), we denote by sign๐‘ƒ(๐œ‘) the signature of ๐œ‘ at ๐‘ƒ.

A preordering of ๐พ is a proper subset ๐‘‡โŠŠ๐พ that contains the squares in ๐พ and that is closed under addition and multiplication in ๐พ. Note that these conditions entail that โˆ‘๐พ{0}โˆช2โŠ†๐‘‡ and โˆ’1โˆ‰๐‘‡, in particular ๐พ is real. Conversely, if ๐พ is real, then ๐พ has preorderings and the smallest one is โˆ‘๐พ2โˆช{0}.

Let ๐‘‡ be a fixed preordering of ๐พ. We denote ๐‘‡ร—=๐‘‡โˆฉ๐พร—=๐‘‡โงต{0}. We denote by ๐‘‹๐‘‡(๐พ) the set of field orderings of ๐พ that contain ๐‘‡. By [1, Chapter VIII, (9.6)], we have โ‹‚๐‘‡=๐‘ƒโˆˆ๐‘‹๐‘‡(๐พ)๐‘ƒ. The set ๐‘‹๐‘‡(๐พ) is considered as a topological space with the Harrison topology, which is generated by the sets ๐ป(๐‘Ž)={๐‘ƒโˆˆ๐‘‹๐‘‡(๐พ)โˆฃ๐‘Žโˆˆ๐‘ƒ} where ๐‘Žโˆˆ๐พร—. For ๐‘Ÿโˆˆโ„• and ๐‘Ž1,โ€ฆ,๐‘Ž๐‘Ÿโˆˆ๐พร—, we put ๐ป๎€ท๐‘Ž1,โ€ฆ,๐‘Ž๐‘Ÿ๎€ธ๎€ท๐‘Ž=๐ป1๎€ธ๎€ท๐‘Žโˆฉโ‹ฏโˆฉ๐ป๐‘Ÿ๎€ธ=๎€ฝ๐‘ƒโˆˆ๐‘‹(๐พ)โˆฃ๐‘Ž1,โ€ฆ,๐‘Ž๐‘Ÿ๎€พโˆˆ๐‘ƒ;(2.1) the sets of this shape are called Harrison sets, and they form a base of the Harrison topology on ๐‘‹๐‘‡(๐พ). For a nontrivial Harrison set ๐ป of ๐‘‹๐‘‡(๐พ), the smallest ๐‘Ÿโˆˆโ„• such that ๐ป=๐ป(๐‘Ž1,โ€ฆ,๐‘Ž๐‘Ÿ) with ๐‘Ž1,โ€ฆ,๐‘Ž๐‘Ÿโˆˆ๐พร— is called the degree of ๐ป; the trivial Harrison sets โˆ… and ๐‘‹๐‘‡(๐พ) are given the degree 0.

We write sign๐‘‡โˆถ๐‘Š๐พโŸถโ„ค๐‘‹๐‘‡(๐พ),[๐œ‘]โŸผ๎€ทsign๐‘ƒ๎€ธ(๐œ‘)๐‘ƒโˆˆ๐‘‹๐‘‡(๐พ)(2.2) and denote the kernel of this homomorphism by ๐ผ๐‘‡๐พ. (Note that in [11] this notation is used for what is ๐ผ๐พ/๐ผ๐‘‡๐พ in our notation: the fundamental ideal in the reduced Witt ring ๐‘Š๐‘‡๐พ=๐‘Š๐พ/๐ผ๐‘‡๐พ.) For ๐‘›โˆˆโ„•, let ๐ผ๐‘›๐‘‡๐พ=๐ผ๐‘›๐พโˆฉ๐ผ๐‘‡๐พ.

Let ๐œ‘ be a quadratic form over ๐พ. We say that ๐œ‘ is ๐‘‡-positive if ๐ท๐พ(๐œ‘)โŠ†๐‘‡. We say that ๐œ‘ is ๐‘‡-isotropic if ๐œ—โŠ—๐œ‘ is isotropic for some ๐‘‡-positive form ๐œ— over ๐พ; by [11, (1.20)], this is equivalent to having sign๐‘‡(๐œ‘)=sign๐‘‡(๐œ“) for some form ๐œ“ over ๐พ with dim(๐œ“)<dim(๐œ‘). We write ๐ท๐‘‡(๐œ‘) for the set of elements ๐‘Žโˆˆ๐พร— such that ๐‘Žโˆˆ๐ท๐พ(๐œ—โŠ—๐œ‘) for some ๐‘‡-positive form ๐œ— over ๐พ. By [11, (1.16)], sign๐‘‡(๐œ‘)=0 if and only if there is a ๐‘‡-positive Pfister form ๐œ— over ๐พ such that ๐œ—โŠ—๐œ‘ is hyperbolic. Moreover, the ideal ๐ผ๐‘‡๐พ is generated by the binary forms โŸจ1,โˆ’๐‘กโŸฉ with ๐‘กโˆˆ๐‘‡ร—, by [11, (1.26)]. A form ๐œ“ over ๐พ with dim(๐œ“)=dim(๐œ‘) and sign๐‘‡(๐œ“)=sign๐‘‡(๐œ‘) is said to be ๐‘‡-isometric to ๐œ‘; by [11, (1.19)] this implies that ๐ท๐‘‡(๐œ“)=๐ท๐‘‡(๐œ‘). These facts will be used in the next section.

The stability index of ๐‘‡ is defined as ๎€ฝst(๐‘‡)=supdeg(๐ป)โˆฃ๐ปisaHarrisonsetof๐‘‹๐‘‡๎€พ(๐พ)โˆˆโ„•โˆช{โˆž}.(2.3) This is reconcilable with the above definition of the stability index of a field. In fact, if ๐พ is real then for the preordering โˆ‘๐พ๐‘†=2โˆช{0}, we have st(๐พ)=st(๐‘†) by [11, (13.1)], and furthermore ๐ผ๐‘†๐พ=๐‘Š๐‘ก๐พ and ๐ผ๐‘›๐‘†๐พ=๐ผ๐‘›๐‘ก๐พ for ๐‘›โ‰ฅ1.

3. Krรผskemper's Theorem

Let ๐‘‡ be a preordering on ๐พ and ๐‘›โˆˆโ„•. A more general version of Conjecture 1.2 is the following conjecture.

Conjecture 3.1. One has ๐ผ๐‘›๐‘‡๐พ=๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ.

This conjecture is proved in [3, (2.7)], but the proof of the nontrivial inclusion ๐ผ๐‘›๐‘‡๐พโŠ†๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ uses the deep results in [4]. In [7], Krรผskemper sketches an elementary proof of Conjecture 3.1 for ๐‘›โ‰ฅst(๐‘‡). We want to provide a complete exposition of Krรผskemper's result, which we achieve with Theorem 3.10. On the way, we shall obtain with Theorem 3.8 that, for any ๐‘›, a sum of up to three scaled ๐‘›-fold Pfister forms over ๐พ belongs to ๐ผ๐‘›๐‘‡๐พ if and only if it belongs to ๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ.

We begin with the elementary proof of Conjecture 3.1 for ๐‘›=2, adapted from [1, Chapter XI, (4.1)].

Proposition 3.2. One has ๐ผ2๐‘‡๐พ=๐ผ๐‘‡๐พโ‹…๐ผ๐พ.

Proof. For ๐‘Žโˆˆ๐พร— and ๐‘กโˆˆ๐‘‡ร—, one has โŸจ๐‘Ž,โˆ’๐‘Ž๐‘กโŸฉโ‰กโŸจ1,โˆ’๐‘กโŸฉmod๐ผ๐‘‡๐พโ‹…๐ผ๐พ. For ๐‘ก,๐‘ก๎…žโˆˆ๐‘‡ร—, one has โŸจ1,โˆ’๐‘กโŸฉโŸ‚โŸจ1,โˆ’๐‘กโ€ฒโŸฉโ‰กโŸจ1,โˆ’๐‘ก๐‘กโ€ฒโŸฉmod๐ผ๐‘‡๐พโ‹…๐ผ๐พ. As the ideal ๐ผ๐‘‡๐พ is generated by the forms โŸจ1,โˆ’๐‘กโŸฉ with ๐‘กโˆˆ๐‘‡ร—, any element of ๐ผ2๐‘‡๐พ is given by a form ๐œ‘=โŸจ๐‘Ž1,โˆ’๐‘Ž1๐‘ก1โŸฉโŸ‚โ‹ฏโŸ‚โŸจ๐‘Ž๐‘Ÿ,โˆ’๐‘Ž๐‘Ÿ๐‘ก๐‘ŸโŸฉ, where ๐‘Ÿโˆˆโ„•, ๐‘Ž1,โ€ฆ,๐‘Ž๐‘Ÿโˆˆ๐พร—, and ๐‘ก1,โ€ฆ,๐‘ก๐‘Ÿโˆˆ๐‘‡ร— with ๐‘ก1โ‹ฏ๐‘ก๐‘Ÿโˆˆ๐พร—2. Using induction on ๐‘Ÿ and the above congruences shows that ๐œ‘โˆˆ๐ผ๐‘‡๐พโ‹…๐ผ๐พ.

Lemma 3.3. Let ๐œ“ and ๐œŒ be Pfister forms over ๐พ, and let ๐œŒโ€ฒ be the form over ๐พ such that ๐œŒ=โŸจ1โŸฉโŸ‚๐œŒโ€ฒ. Then, for ๐‘โˆˆ๐ท๐‘‡(๐œ“โŠ—๐œŒ๎…ž), there exists a Pfister form ๐œ‡ over ๐พ with signT(๐œ“โŠ—๐œŒ)=signT(๐œ“โŠ—โŸจ1,๐‘โŸฉโŠ—๐œ‡).

Proof. There exists a ๐‘‡-positive Pfister form ๐œ such that ๐‘โˆˆ๐ท๐พ(๐œโŠ—๐œ“โŠ—๐œŒโ€ฒ). By [1, Chapter X, (1.10)], we have ๐œโŠ—๐œ“โŠ—๐œŒ=๐œโŠ—๐œ“โŠ—โŸจ1,๐‘โŸฉโŠ—๐œ‡ for a Pfister form ๐œ‡, and then sign๐‘‡(๐œ“โŠ—๐œŒ)=sign๐‘‡(๐œ“โŠ—โŸจ1,๐‘โŸฉโŠ—๐œ‡) holds.

The next two statements are contained without proof in [8, Section 5].

Lemma 3.4 (Marshall). Let ๐œ‹ be an ๐‘›-fold Pfister form over ๐พ where ๐‘›โ‰ฅ1. If ๐‘Žโˆˆ๐ท๐‘‡(๐œ‹โ€ฒ), then there is an (๐‘›โˆ’1)-fold Pfister form ๐œŒ over ๐พ such that ๐œ‹โ‰กโŸจ1,๐‘ŽโŸฉโŠ—๐œŒmod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ. If ๐‘โˆˆ๐ท๐‘‡(๐œ‹), then ๐‘๐œ‹โ‰ก๐œ‹mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›๐พ.

Proof. We use induction on ๐‘›. For ๐‘›=1, the first part is trivial. In the induction step, we will use both parts of the statement for ๐‘›โˆ’1 to prove the first part for ๐‘›. Before we do so, we explain how, for given ๐œ‹, the second part of the statement follows from the first part. This together will give the proof.
Let ๐‘โˆˆ๐ท๐‘‡(๐œ‹). Then, ๐‘โˆˆ๐ท๐‘‡(โŸจ1,๐‘ŽโŸฉ) for some ๐‘Žโˆˆ๐ท๐‘‡(๐œ‹โ€ฒ). By Proposition 3.2, we have โŸจ1,โˆ’๐‘โŸฉโŠ—โŸจ1,๐‘ŽโŸฉโˆˆ๐ผ๐‘‡๐พโ‹…๐ผ๐พ. If now ๐œ‹โ‰กโŸจ1,๐‘ŽโŸฉโŠ—๐œŒmod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ for an (๐‘›โˆ’1)-fold Pfister form ๐œŒ, then โŸจ1,โˆ’๐‘โŸฉโŠ—๐œ‹โ‰กโŸจ1,โˆ’๐‘โŸฉโŠ—โŸจ1,๐‘ŽโŸฉโŠ—๐œŒโ‰ก0mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›๐พ and thus ๐‘๐œ‹โ‰ก๐œ‹mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›๐พ.
For the induction step, assume now that ๐‘›>1 and write ๐œ‹=โŸจ1,๐‘โŸฉโŠ—๐œŽ with ๐‘โˆˆ๐พร— and an (๐‘›โˆ’1)-fold Pfister form ๐œŽ. Let ๐‘Žโˆˆ๐ท๐‘‡(๐œ‹โ€ฒ). Since ๐œ‹โ€ฒ=๐œŽโ€ฒโŸ‚๐‘๐œŽ, there exist ๐‘ขโˆˆ๐ท๐‘‡(๐œŽโ€ฒ) and ๐‘ฃโˆˆ๐ท๐‘‡(๐œŽ) such that ๐‘Žโˆˆ๐ท๐พ(โŸจ๐‘ข,๐‘๐‘ฃโŸฉ) and thus โŸจ๐‘ข,๐‘๐‘ฃโŸฉ=โŸจ๐‘Ž,๐‘Ž๐‘๐‘ข๐‘ฃโŸฉ. By the induction hypothesis, we then have ๐œŽโ‰กโŸจ1,๐‘ขโŸฉโŠ—๐œmod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’2๐พ for some (๐‘›โˆ’2)-fold Pfister form ๐œ, and ๐œŽโ‰ก๐‘ฃ๐œŽmod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ. We obtain ๐œ‹โ‰กโŸจ1,๐‘๐‘ฃโŸฉโŠ—๐œŽโ‰กโŸจ1,๐‘ข,๐‘๐‘ฃ,๐‘๐‘ข๐‘ฃโŸฉโŠ—๐œโ‰กโŸจ1,๐‘Ž,๐‘Ž๐‘๐‘ข๐‘ฃ,๐‘๐‘ข๐‘ฃโŸฉโŠ—๐œmod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ(3.1) and then choose ๐œŒ=โŸจ1,๐‘๐‘ข๐‘ฃโŸฉโŠ—๐œ.

Lemma 3.5 (Marshall). Assume that ๐‘›โ‰ฅ1, and let ๐œ‹1 and ๐œ‹2 be two ๐‘›-fold Pfister forms over ๐พ. If signT(๐œ‹1)=signT(๐œ‹2), then ๐œ‹1โ‰ก๐œ‹2mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ.

Proof. The proof is by induction on ๐‘›. The claim is trivial for ๐‘›=1. Write ๐œ‹1=โŸจ1,๐‘ŽโŸฉโŠ—๐œŽ1 with ๐‘Žโˆˆ๐พร— and an (๐‘›โˆ’1)-fold Pfister form ๐œŽ1. As ๐œ‹๎…ž1 and ๐œ‹๎…ž2 are ๐‘‡-isometric, we have ๐‘Žโˆˆ๐ท๐‘‡(๐œ‹๎…ž1)=๐ท๐‘‡(๐œ‹๎…ž2), and thus Lemma 3.4 yields that ๐œ‹2โ‰กโŸจ1,๐‘ŽโŸฉโŠ—๐œŽ2mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ for some (๐‘›โˆ’1)-fold Pfister form ๐œŽ2. If ๐‘Žโˆˆโˆ’๐‘‡, then ๐œ‹๐‘–โ‰กโŸจ1,๐‘ŽโŸฉโŠ—๐œŽ๐‘–โ‰ก0mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ for ๐‘–=1,2. Assume now that ๐‘Žโˆ‰โˆ’๐‘‡. Then ๐‘‡๎…ž=๐‘‡+๐‘Ž๐‘‡ is a preordering. For any ๐‘Ÿโˆˆ๐‘‡๎…žร—, there are ๐‘ ,๐‘กโˆˆ๐‘‡ร— with ๐‘Ÿโˆˆ๐ท๐พ(โŸจ๐‘ ,๐‘Ž๐‘กโŸฉ), and then โŸจ1,๐‘ŽโŸฉโŠ—โŸจ1,โˆ’๐‘ŸโŸฉโ‰กโŸจ1,๐‘Ž๐‘ก,โˆ’๐‘Ÿ,โˆ’๐‘Ž๐‘Ÿ๐‘กโŸฉโ‰กโŸจ1,โˆ’๐‘ ,๐‘Ž๐‘Ÿ๐‘ ๐‘ก,โˆ’๐‘Ž๐‘Ÿ๐‘กโŸฉโ‰ก0mod๐ผ๐‘‡๐พโ‹…๐ผ๐พ.(3.2) This shows that โŸจ1,๐‘ŽโŸฉโ‹…๐ผ๐‘‡๎…ž๐พโŠ†๐ผ๐‘‡๐พโ‹…๐ผ๐พ. Since sign๐‘‡๎…ž(๐œŽ1)=sign๐‘‡๎…ž(๐œŽ2), we have ๐œŽ1โ‰ก๐œŽ2mod๐ผ๐‘‡๎…ž๐พโ‹…๐ผ๐‘›โˆ’2๐พ by the induction hypothesis. Multiplying with โŸจ1,๐‘ŽโŸฉ, we now obtain that ๐œ‹1โ‰ก๐œ‹2mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ.

Corollary 3.6. Let ๐œ‹ be an ๐‘›-fold Pfister form over ๐พ, and ๐œ“ a form over ๐พ of even dimension. Then, ๐œ“โŠ—๐œ‹โˆˆ๐ผ๐‘‡๐‘›+1๐พ if and only if ๐œ“โŠ—๐œ‹โˆˆ๐ผ๐‘‡๐พโ‹…๐ผ๐‘›๐พ.

Proof. One implication is clear as trivially ๐ผ๐‘‡๐พโ‹…๐ผ๐‘›๐พโŠ†๐ผ๐‘‡๐‘›+1๐พ. Assume that ๐œ“โŠ—๐œ‹โˆˆ๐ผ๐‘‡๐‘›+1๐พ. Then, there exists a ๐‘‡-positive Pfister form ๐œ such that ๐œ“โŠ—๐œโŠ—๐œ‹ is hyperbolic. For ๐‘ โˆˆ๐ท๐พ(๐œโŠ—๐œ‹), the (๐‘›+1)-fold Pfister form โŸจ1,โˆ’๐‘ โŸฉโŠ—๐œ‹ lies in the annihilator of ๐œ, thus sign๐‘‡(โŸจ1,โˆ’๐‘ โŸฉโŠ—๐œ‹)=0, and by Lemma 3.5 then โŸจ1,โˆ’๐‘ โŸฉโŠ—๐œ‹โˆˆ๐ผ๐‘‡๐พโ‹…๐ผ๐‘›๐พ. By [1, Chapter XI, (3.1)], the binary forms โŸจ1,โˆ’๐‘ โŸฉ with ๐‘ โˆˆ๐ท๐พ(๐œโŠ—๐œ‹) generate the subideal of ๐ผ๐พ annihilated by ๐œโŠ—๐œ‹, and since ๐œ“ belongs to this ideal, we conclude that ๐œ“โŠ—๐œ‹โˆˆ๐ผ๐‘‡๐พโ‹…๐ผ๐‘›๐พ.

Lemma 3.7. Assume that ๐‘›โ‰ฅ1, and let ๐œ‹1,๐œ‹2,๐œ‹3 be ๐‘›-fold Pfister forms over ๐พ and ๐‘โˆˆ๐พร— such that signT(๐œ‹1)=signT(๐œ‹2)+signT(๐‘๐œ‹3). Then, there exists an (๐‘›โˆ’1)-fold Pfister form ๐œ“ over ๐พ and ๐‘1,๐‘2,๐‘3โˆˆ๐พร— with ๐‘3=๐‘1๐‘2 such that ๐œ‹๐‘–โ‰กโŸจ1,โˆ’๐‘๐‘–โŸฉโŠ—๐œ“mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ for ๐‘–=1,2,3.

Proof. Choose an ๐‘š-fold Pfister form ๐œ“ and (๐‘›โˆ’๐‘š)-fold Pfister forms ๐œŒ1,๐œŒ2 such that sign๐‘‡(๐œ‹๐‘–)=sign๐‘‡(๐œ“โŠ—๐œŒ๐‘–) for ๐‘–=1,2, where 0โ‰ค๐‘šโ‰ค๐‘›โˆ’1 and where ๐‘š is as large as possible in this range.
We claim that ๐‘š=๐‘›โˆ’1. Suppose on the contrary that ๐‘š<๐‘›โˆ’1. Then, the form ๐œ—=๐œ“โŠ—(๐œŒ๎…ž1โŸ‚โˆ’๐œŒ๎…ž2) is ๐‘‡-isotropic, given that sign๐‘‡(๐œ—)=sign๐‘‡(๐‘๐œ‹3) and dim(๐œ—)=2๐‘›+1โˆ’2๐‘š+1>2๐‘›=dim(๐‘๐œ‹3). So, there exists an element ๐‘โˆˆ๐ท๐‘‡(๐œ“โŠ—๐œŒ๎…ž1)โˆฉ๐ท๐‘‡(๐œ“โŠ—๐œŒ๎…ž2), and Lemma 3.3 now gives a contradiction to the maximality of ๐‘š. Hence, ๐œŒ1 and ๐œŒ2 are 1-fold Pfister forms.
We choose ๐‘1,๐‘2โˆˆ๐พร— such that ๐œŒ๐‘–=โŸจ1,โˆ’๐‘๐‘–โŸฉ for ๐‘–=1,2. Then, we have sign๐‘‡(๐œ‹๐‘–)=sign๐‘‡(โŸจ1,โˆ’๐‘๐‘–โŸฉโŠ—๐œ“) for ๐‘–=1,2. Let ๐‘3=๐‘1๐‘2. It follows that sign๐‘‡๎€ท๐œ‹3๎€ธ=sign๐‘‡๎€ท๐‘๐œ‹1โŸ‚โˆ’๐‘๐œ‹2๎€ธ=sign๐‘‡๎€ท๐‘๐‘2โŸจ1,โˆ’๐‘3๎€ธโŸฉโŠ—๐œ“.(3.3) Since the signatures of the Pfister forms ๐œ‹3 and โŸจ1,โˆ’๐‘3โŸฉโŠ—๐œ“ lie in {0,2๐‘›}, we thus have sign๐‘‡(๐œ‹๐‘–)=sign๐‘‡(โŸจ1,โˆ’๐‘๐‘–โŸฉโŠ—๐œ“) for ๐‘–=1,2,3. Now, Lemma 3.5 yields that ๐œ‹๐‘–โ‰กโŸจ1,โˆ’๐‘๐‘–โŸฉโŠ—๐œ“mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ for ๐‘–=1,2,3.

The following result appears in [5, Theoremโ€‰3].

Theorem 3.8 (Krรผskemper). Let ๐‘›โ‰ฅ1. Let ๐œ‘=๐‘Ž1๐œ‹1โŸ‚๐‘Ž2๐œ‹2โŸ‚๐‘Ž3๐œ‹3 for ๐‘›-fold Pfister forms ๐œ‹1,๐œ‹2,๐œ‹3 over ๐พ and ๐‘Ž1,๐‘Ž2,๐‘Ž3โˆˆ๐พร—. Then, signT(๐œ‘)=0 if and only if ๐œ‘โˆˆ๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ.

Proof. If ๐œ‘โˆˆ๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ, then obviously sign๐‘‡(๐œ‘)=0. Assume now that sign๐‘‡(๐œ‘)=0. Then, sign๐‘‡(๐‘Ž1๐œ‹1โŸ‚๐‘Ž2๐œ‹2)=sign๐‘‡(โˆ’๐‘Ž3๐œ‹3), and comparing dimensions we conclude that ๐‘Ž1๐œ‹1โŸ‚๐‘Ž2๐œ‹2 is ๐‘‡-isotropic, so there is an element ๐‘Žโˆˆ๐ท๐‘‡(๐‘Ž1๐œ‹1)โˆฉ๐ท๐‘‡(โˆ’๐‘Ž2๐œ‹2). Using Lemma 3.4, we obtain that (โˆ’1)๐‘–โˆ’1๐‘Ž๐‘Ž๐‘–๐œ‹๐‘–โ‰ก๐œ‹๐‘–mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›๐พ for ๐‘–=1,2. Hence, with ๐‘‘=๐‘Ž3, we have ๐œ‘โ‰ก๐‘Ž๐œ‹1โŸ‚โˆ’๐‘Ž๐œ‹2โŸ‚๐‘‘๐œ‹3mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ.(3.4) By Lemma 3.7 applied with ๐‘=โˆ’๐‘Ž๐‘‘, there is an (๐‘›โˆ’1)-fold Pfister form ๐œ“ over ๐พ and ๐‘1,๐‘2,๐‘3โˆˆ๐พร— with ๐‘3=๐‘1๐‘2 such that ๐œ‹๐‘–โ‰กโŸจ1,โˆ’๐‘๐‘–โŸฉโŠ—๐œ“mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ for ๐‘–=1,2,3. It follows that ๐œ‘โ‰ก๐‘‘โŸจ1,โˆ’๐‘1๐‘2,โˆ’๐‘Ž๐‘‘๐‘1,๐‘Ž๐‘‘๐‘2โŸฉโŠ—๐œ“mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ.(3.5) As sign๐‘‡(๐œ‘)=0, we obtain that sign๐‘‡(โŸจ1,โˆ’๐‘1๐‘2,โˆ’๐‘Ž๐‘‘๐‘1,๐‘Ž๐‘‘๐‘2โŸฉโŠ—๐œ“)=0. By Lemma 3.5, then โŸจ1,โˆ’๐‘1๐‘2,โˆ’๐‘Ž๐‘‘๐‘1,๐‘Ž๐‘‘๐‘2โŸฉโŠ—๐œ“โˆˆ๐ผ๐‘‡๐พโ‹…๐ผ๐‘›๐พ, so ๐œ‘โˆˆ๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ.

Given a Pfister form ๐œ‹ over ๐พ, we put ๐ป(๐œ‹)={๐‘ƒโˆˆ๐‘‹๐‘‡(๐พ)โˆฃ๐œ‹is๐‘ƒ-positive}. Hence, for ๐‘Ÿโ‰ฅ1 and ๐‘Ž1,โ€ฆ,๐‘Ž๐‘Ÿโˆˆ๐พร—, we have ๐ป(๐‘Ž1,โ€ฆ,๐‘Ž๐‘Ÿ)=๐ป(๐œ‹) with ๐œ‹=โŸจ1,๐‘Ž1โŸฉโŠ—โ‹ฏโŠ—โŸจ1,๐‘Ž๐‘ŸโŸฉ.

Proposition 3.9. Assume that ๐‘›โ‰ฅst(๐‘‡). Every class of ๐ผ๐‘›๐พ/๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ is given by a form ๐œ“1โŠ—๐œ‹1โŸ‚โ‹ฏโŸ‚๐œ“๐‘ŸโŠ—๐œ‹๐‘Ÿ where ๐‘Ÿโˆˆโ„•, ๐œ“1,โ€ฆ,๐œ“๐‘Ÿ are forms over ๐พ, and ๐œ‹1,โ€ฆ,๐œ‹๐‘Ÿ are ๐‘›-fold Pfister forms over ๐พ such that ๐ป(๐œ‹1),โ€ฆ,๐ป(๐œ‹๐‘Ÿ) are nonempty and pairwise disjoint.

Proof. Consider ๐‘Žโˆˆ๐พร— and an ๐‘›-fold Pfister form ๐œ‹1 over ๐พ. As st(๐‘‡)โ‰ค๐‘›, there exist ๐‘›-fold Pfister forms ๐œ‹2 and ๐œ‹3 over ๐พ such that ๐ป๎€ท๐œ‹2๎€ธ๎€ท๐œ‹=๐ป1๎€ธ๎€ท๐œ‹โˆฉ๐ป(๐‘Ž),๐ป3๎€ธ๎€ท๐œ‹=๐ป1๎€ธโˆฉ๐ป(โˆ’๐‘Ž).(3.6) It follows that sign๐‘‡(๐œ‹1)=sign๐‘‡(๐œ‹2)+sign๐‘‡(๐œ‹3). Applying Theorem 3.8 with ๐‘Ž1=1 and ๐‘Ž2=๐‘Ž3=โˆ’1 yields that ๐œ‹1โ‰ก๐œ‹2โŸ‚๐œ‹3mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ.(3.7)
Consider now a finite set ๐นโŠ†๐พร—. For ๐‘†โŠ†๐น, let ๐ป๐‘† denote the Harrison set consisting of the orderings ๐‘ƒโˆˆ๐‘‹๐‘‡(๐พ) with ๐‘†โŠ†๐‘ƒ and ๐นโงต๐‘†โŠ†โˆ’๐‘ƒ. Let ๐’ซ=๐’ซ(๐น), the power set of ๐น. Then, (๐ป๐‘†)๐‘†โˆˆ๐’ซ is a finite partition of ๐‘‹๐‘‡(๐พ). (However, ๐ป๐‘† can be empty for many ๐‘†โˆˆ๐’ซ.) Induction on the cardinality of ๐น, using the above argument in the induction step, yields that, given an arbitrary ๐‘›-fold Pfister form ๐œŒ over ๐พ, there exists a family of ๐‘›-fold Pfister forms (๐œŒ๐‘†)๐‘†โˆˆ๐’ซ such that ๐ป(๐œŒ๐‘†)=๐ป(๐œŒ)โˆฉ๐ป๐‘† for every ๐‘†โˆˆ๐’ซ and ๎“๐œŒโ‰ก๐‘†โˆˆ๐’ซ๐œŒ๐‘†mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ.(3.8) Moreover, if ๐œŒ=โŸจ1,๐‘Ž1โŸฉโŠ—โ‹ฏโŠ—โŸจ1,๐‘Ž๐‘›โŸฉ for ๐‘Ž1,โ€ฆ,๐‘Ž๐‘›โˆˆ๐น and ๐‘†โˆˆ๐’ซ, then ๐ป(๐œŒ๐‘†)=๐ป๐‘† in case ๐‘Ž1,โ€ฆ,๐‘Ž๐‘› all belong to ๐‘† and ๐ป(๐œŒ๐‘†)=โˆ… otherwise.
An arbitrary element of ๐ผ๐‘›๐พ is given by a form ๐‘Ž1๐œŒ1โŸ‚โ‹ฏโŸ‚๐‘Ž๐‘š๐œŒ๐‘š,(3.9) where ๐‘šโ‰ฅ1, ๐‘Ž1,โ€ฆ,๐‘Ž๐‘šโˆˆ๐พร— and where ๐œŒ1,โ€ฆ,๐œŒ๐‘š are ๐‘›-fold Pfister forms over ๐พ. Choose a finite set ๐นโŠ†๐พร— such that for 1โ‰ค๐‘–โ‰ค๐‘š there exist ๐‘๐‘–1,โ€ฆ,๐‘๐‘–๐‘›โˆˆ๐น such that ๐œŒ๐‘–=โŸจ1,๐‘๐‘–1โŸฉโŠ—โ‹ฏโŠ—โŸจ1,๐‘๐‘–๐‘›โŸฉ. Put ๐’ซ=๐’ซ(๐น). Using that ๐‘›โ‰ฅst(๐‘‡), we choose a family of ๐‘›-fold Pfister forms (๐œ‹๐‘†)๐‘†โˆˆ๐’ซ such that ๐ป(๐œ‹๐‘†)=๐ป๐‘† for ๐‘†โˆˆ๐’ซ.
By the above argument, we choose for 1โ‰ค๐‘–โ‰ค๐‘š a family of ๐‘›-fold Pfister forms (๐œŒ๐‘–,๐‘†)๐‘†โˆˆ๐’ซ such that ๐œŒ๐‘–โ‰ก๎“๐‘†โˆˆ๐’ซ๐œŒ๐‘–,๐‘†mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ(3.10) and such that ๐ป(๐œŒ๐‘–,๐‘†) is either empty or equal to ๐ป๐‘† for any ๐‘†โˆˆ๐’ซ. Using Lemma 3.5, for 1โ‰ค๐‘–โ‰ค๐‘š and ๐‘†โˆˆ๐’ซ, it follows that ๐œŒ๐‘–,๐‘†โ‰ก0mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ if ๐ป(๐œŒ๐‘–,๐‘†)=โˆ… and ๐œŒ๐‘–,๐‘†โ‰ก๐œ‹๐‘†mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ otherwise. Put ๐’ซโ€ฒ={๐‘†โˆˆ๐’ซโˆฃ๐ป๐‘†โ‰ โˆ…}. For ๐‘†โˆˆ๐’ซโ€ฒ, let ๐œ“๐‘† be the orthogonal sum of those โŸจ๐‘Ž๐‘–โŸฉ with 1โ‰ค๐‘–โ‰ค๐‘š such that ๐ป(๐œŒ๐‘–,๐‘†)=๐ป๐‘†. We conclude that ๐‘Ž1๐œŒ1โŸ‚โ‹ฏโŸ‚๐‘Ž๐‘š๐œŒ๐‘šโ‰ก๎“๐‘†โˆˆ๐’ซโ€ฒ๐œ“๐‘†โŠ—๐œ‹๐‘†mod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ.(3.11)

Theorem 3.10 (Krรผskemper). If ๐‘›โ‰ฅst(๐‘‡), then ๐ผ๐‘›๐‘‡๐พ=๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ.

Proof. We trivially have that ๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พโŠ†๐ผ๐‘›๐‘‡๐พ. To prove the converse inclusion, we assume that ๐‘›โ‰ฅst(๐‘‡) and ๐œ‘โˆˆ๐ผ๐‘›๐‘‡๐พ. By Proposition 3.9, we have ๐œ‘โ‰ก๐œ“1โŠ—๐œ‹1โŸ‚โ‹ฏโŸ‚๐œ“๐‘ŸโŠ—๐œ‹๐‘Ÿmod๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ,(3.12) where ๐‘Ÿโˆˆโ„•, ๐œ“1,โ€ฆ,๐œ“๐‘Ÿ are forms and where ๐œ‹1,โ€ฆ,๐œ‹๐‘Ÿ are ๐‘›-fold Pfister forms such that ๐ป(๐œ‹1),โ€ฆ,๐ป(๐œ‹๐‘Ÿ) are nonempty and pairwise disjoint. Using this and the fact that sign๐‘‡(๐œ‘)=0, we obtain for 1โ‰ค๐‘–โ‰ค๐‘Ÿ that sign๐‘‡(๐œ“๐‘–โŠ—๐œ‹๐‘–)=0 and that ๐œ“๐‘–โˆˆ๐ผ๐พ because sign๐‘‡(๐œ‹๐‘–)โ‰ 0, so that ๐œ“๐‘–โŠ—๐œ‹๐‘–โˆˆ๐ผ๐‘‡๐พโ‹…๐ผ๐‘›๐พ by Corollary 3.6. Therefore, ๐œ‘โˆˆ๐ผ๐‘‡๐พโ‹…๐ผ๐‘›โˆ’1๐พ.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (Project Quadratic Forms and Invariants, no. BE 2614/3-1) and by the Zukunftskolleg, Universitรคt Konstanz.