Abstract

Let ๐บโŠ‚โ„‚ be a domain bounded by a piecewise analytic Jordan's curve L, and let ๐น๐‘›,๐‘ denote the p-Faber polynomials associated with G. We derive estimates of the form ๐น๐‘›,๐‘(๐‘ง)=๐‘‚(1/๐‘›๐œ‚), (๐‘›โ†’โˆž) for ๐‘งโˆˆ๐บ, where ๐œ‚ depends on geometric properties of L and the parameter p. Also, we show that O cannot be replaced by o in the relation given above.

1. Introduction and Main Results

Let ๐บโŠ‚โ„‚ be a domain bounded by a Jordan curve ๐ฟ, and let ฮฆ be the conformal mapping of the domain ฮฉโˆถ=โ„‚โˆžโงต๐บ, where โ„‚โˆžโˆถ=โ„‚โˆช{โˆž}, onto ฮ”โˆถ={๐‘คโˆถ|๐‘ค|>1} with the usual normalization at infinity: ๐‘ค=ฮฆ(๐‘ง)=๐›ผ๐‘ง+๐‘Ž0+๐‘Ž1๐‘ง+โ‹ฏ,๐›ผ>0,๐‘งโˆˆฮฉ.(1.1) Let ฮจโˆถ=ฮฆโˆ’1โˆถฮ”โ†’ฮฉ denote the inverse conformal map. Then, ๐‘ง=ฮจ(๐‘ค)=๐›ฝ๐‘ค+๐‘0+๐‘1๐‘ค+โ‹ฏ,|๐‘ค|>1,(1.2) where ๐›ฝ=1/๐›ผ gives the capacity ๐‘๐‘Ž๐‘(๐ฟ) of ๐ฟ.

Let 0<๐‘<โˆž. The ๐‘-Faber polynomials ๐น๐‘›,๐‘ associated the domain ๐บ are defined as the polynomial part of the expansion of ฮฆ๐‘›๎€ทฮฆ(๐‘ง)๎…ž๎€ธ(๐‘ง)1/๐‘,๐‘›=0,1,2,โ€ฆ,(1.3) in a neighborhood of the infinity. Therefore, from (1.1) we have ฮฆ๐‘›๎€ทฮฆ(๐‘ง)๎…ž๎€ธ(๐‘ง)1/๐‘โˆถ=๐น๐‘›,๐‘(๐‘ง)+๐ธ๐‘›,๐‘(๐‘ง),๐‘งโˆˆฮฉ,(1.4) where ๐น๐‘›,๐‘(๐‘ง)โˆถ=๐›ผ๐‘›+1/๐‘๐‘ง๐‘›+โ‹ฏ(1.5) is the ๐‘-Faber polynomial of degree ๐‘› and ๐ธ๐‘›,๐‘๐‘(๐‘ง)=0๐‘ง+๐‘1๐‘ง2+๐‘2๐‘ง3+โ‹ฏ(1.6) is the singular part of ฮฆ๐‘›(๐‘ง)(ฮฆ๎…ž(๐‘ง))1/๐‘. Indeed, the number ๐‘0 vanishes, since ๐‘ง((ฮฆ๎…ž(๐‘ง))1/๐‘โˆ’๐›ผ1/๐‘) tends to zero when ๐‘ง tends to infinity. Also, the ๐‘-Faber polynomials associated with ๐บ can be defined by the generating function ๎€ทฮจ๐‘”(๐‘ค)โˆถ=๎…ž๎€ธ(๐‘ค)1โˆ’1/๐‘=ฮจ(๐‘ค)โˆ’๐‘งโˆž๎“๐‘›=0๐น๐‘›,๐‘(๐‘ง)๐‘ค๐‘›+1,๐‘งโˆˆ๐บ,|๐‘ค|>1,(1.7) see [1, 2].

If ๐‘ tends to infinity, the ๐‘-Faber polynomials coincide with the usual Faber polynomials ๐น๐‘›. If ๐‘=1, then it follows immediately from (1.4) that ๐น๐‘›,1๐น(๐‘ง)=๎…ž๐‘›+1(๐‘ง)๐‘›+1,(1.8) where ๐น๐‘› is the Faber polynomials of G of degree ๐‘›.

The aim of this paper is to find asymptotic behaviors of ๐‘-Faber polynomials ๐น๐‘›,๐‘ in ๐บ and ๐ธ๐‘›,๐‘ in ฮฉ.

If ๐ฟ is rectifiable, then ฮฆ๎…ž belongs to the Smirnov class ๐ธ1(ฮฉ{โˆž}). In addition, both ฮจ๎…ž and ฮฆ๎…ž have nontangential limits almost everywhere on ๐•‹ boundary of the unit disc ๐”ปโˆถ={๐‘คโˆˆโ„‚โˆถ|๐‘ค|<1} and ๐ฟ; respectively, and they are integrable with respect to the arc length measure; see [3] or [4].

Assume now that the boundary ๐ฟ is rectifiable. For such a boundary, Cauchyโ€™s integral formula yields the following representations for the ๐‘-Faber polynomials and their associated singular parts: ๐น๐‘›,๐‘1(๐‘ง)=๎€œ2๐œ‹๐‘–๐ฟฮฆ๐‘›๎€ทฮฆ(๐œ)๎…ž๎€ธ(๐œ)1/๐‘๐ธ๐œโˆ’๐‘ง๐‘‘๐œ,๐‘งโˆˆ๐บ,๐‘›,๐‘1(๐‘ง)=๎€œ2๐œ‹๐‘–๐ฟฮฆ๐‘›๎€ทฮฆ(๐œ)๎…ž๎€ธ(๐œ)1/๐‘๐œโˆ’๐‘ง๐‘‘๐œ,๐‘งโˆˆ๐บ.(1.9) Our assumption for this work is that ๐ฟ is a piecewise analytic Jordanโ€™s curve. That is, โ‹ƒ๐ฟ=๐‘š๐‘—=1๐ฟ๐‘—, ๐‘šโˆˆโ„•, where ๐ฟ๐‘— are a finite number of analytic Jordanโ€™s arcs meeting at corners ๐‘ง๐‘— where ๐ฟ has an exterior angle ๐œ†๐‘—๐œ‹ with 0<๐œ†๐‘—<2. Cusps are, therefore, excluded, but ๐œ†๐‘—=1 may occurโ€”a โ€œsmooth cornerโ€.

Let ๐œ†โˆถ=min๐‘—=1,โ€ฆ,๐‘š{๐œ†๐‘—}. Gaier [5] proved that ๐น๐‘›๎‚€1(๐‘ง)=๐‘‚๐‘›๐œ†๎‚(๐‘›โ†’โˆž),(1.10) for ๐‘งโˆˆ๐บ, uniformly on compact subsets of ๐บ. Stylianopoulos [6] indicated that one can obtain ๐น๐‘›,1(๐‘ง)โ‰ค๐‘(๐ฟ,๐น)๐‘›๐œ†+1,๐‘งโˆˆ๐น(1.11) by using (1.8) and (1.13), where ๐น is an arbitrary compact subset of ๐บ, and ๐‘(๐ฟ,๐น) is a constant depending on ๐ฟ and ๐น. Estimates of the form (1.13) have been given by Suetin [2, 7], for boundary ๐ฟ has high degree of smoothness.

For simplicity of notation, we write ๎‚ต1๐œ‚โˆถ=๐œ‚(๐œ†,๐‘)โˆถ=(1โˆ’๐œ†)1โˆ’๐‘๎‚ถ.(1.12) It is clear that, if 0<๐œ†<2 and 1/2โ‰ค๐‘โ‰คโˆž, then |๐œ‚|<1.

The main results of the paper are the following.

Theorem 1.1. Let 1/2โ‰ค๐‘โ‰คโˆž, and let ๐บโŠ‚โ„‚ be bounded by a piecewise analytic Jordan curve ๐ฟ. If ๐ฟ has exterior angles ๐œ†๐‘—๐œ‹ with 0<๐œ†๐‘—<2 and if ๐œ†โˆถ=min๐‘—๐œ†๐‘—, then ๐น๐‘›,๐‘๎‚€1(๐‘ง)=๐‘‚๐‘›1โˆ’๐œ‚๎‚(๐‘›โ†’โˆž),(1.13) for ๐‘งโˆˆ๐บ, uniformly on compact subsets of ๐บ.

Remark 1.2. From the proof of Theorem 1.1, it follows that an estimate of the form (1.13) holds also all derivatives of the ๐‘-Faber polynomials.

Remark 1.3. If ๐ฟ has no smooth corners; that is, all ๐œ†๐‘—โ‰ 1, ๐‘‚ cannot be replaced by ๐‘œ in (1.13).

Remark 1.4. If ๐‘ tends to infinity, we get the result (1.13) of Gaier.
Similar arguments in the proof of Theorem 1.1 provide the following theorem.

Theorem 1.5. Under the assumptions of Theorem 1.1, we have, for any๐‘›โˆˆโ„•, ||๐ธ๐‘›,๐‘||โ‰ค(๐‘ง)๐‘(๐ฟ)1dist(๐‘ง,๐ฟ)๐‘›1โˆ’๐œ‚,๐‘งโˆˆฮฉ,(1.14) where ๐‘(๐ฟ) depends on ๐ฟ only.

Remark 1.6. The equalities (1.13) and (1.14) are also valid for 0<๐‘<1/2 under condition max๐‘—=1,โ€ฆ,๐‘š๐œ†๐‘—<1/(1โˆ’๐‘).

Remark 1.7. If ๐‘=1, we get the result of Stylianopoulos [6]: ||๐ธ๐‘›,1||โ‰ค(๐‘ง)๐‘(๐ฟ)1dist(๐‘ง,๐ฟ)๐‘›,๐‘งโˆˆฮฉ.(1.15) We will prove Theorems 1.1, 1.5 and Remark 1.3 in section 3.

2. Auxiliary Results

We are going to follow the analog used by Gaier in [5]. Since the components ๐ฟ๐‘— of ๐ฟ are assumed to be analytic Jordanโ€™s arcs, the mapping ฮฆ from ฮฉ to ฮ” can be continued analytically beyond each point of ๐ฟ that is not corner; this follows from Schwarz's reflection principle. Since ๐ฟ has no cusps, we can refine this statement. For each ๐‘—=1,2,โ€ฆ,๐‘š, there are (short) line segments ๐‘ ๐‘— and ๐‘ ๎…ž๐‘— in the interior of ๐ฟ meeting ๐ฟ๐‘— at ๐‘ง๐‘— and ๐‘ง๐‘—+1, respectively, at a (small) positive angle and a rectifiable arc ๐›พ๐‘— lying entirely in the interior of ๐ฟ and connecting the other two endpoints of ๐‘ ๐‘— and ๐‘ ๎…ž๐‘— such that ฮฆ has analytic continuation beyond ๐ฟ๐‘— into the strip-like domain ๐‘”๐‘— bounded by ๐ฟ๐‘—,๐‘ ๐‘—,๐‘ ๎…ž๐‘—, and ๐›พ๐‘— (see [5] or [6] for figure). Therefore, the arc ฮฆ(๐›พ๐‘—) is in ๐”ป while ฮฆ(๐‘ ๐‘—) and ฮฆ(๐‘ ๎…ž๐‘—) are arcs in ๐”ป except for their endpoints ฮฆ(๐‘ง๐‘—) and ฮฆ(๐‘ง๐‘—+1). More can be said: since reflection preserves angles and since the exterior angle at ๐‘ง๐‘— of opening ๐œ†๐‘—๐œ‹ is mapped onto a angle of opening ๐œ‹ at ฮฆ(๐‘ง๐‘—), we see that ฮฆ(๐‘ ๐‘—) lies in a Stolz angle in ๐”ป with corner at ฮฆ(๐‘ง๐‘—): ||ฮฆ๎€ท๐‘ง(๐‘ง)โˆ’ฮฆ๐‘—๎€ธ||||||1โˆ’ฮฆ(๐‘ง)โ‰ค๐‘1for๐‘งโˆˆ๐‘ ๐‘—,๐‘—=1,2,โ€ฆ,๐‘š,(2.1) and similarly ||ฮฆ๎€ท๐‘ง(๐‘ง)โˆ’ฮฆ๐‘—+1๎€ธ||||||1โˆ’ฮฆ(๐‘ง)โ‰ค๐‘๎…ž1for๐‘งโˆˆ๐‘ ๎…ž๐‘—,๐‘—=1,2,โ€ฆ,๐‘š.(2.2) Furthermore, we have the following inequalities for ๐‘ง on ๐‘ ๐‘—(๐‘—=1,2,โ€ฆ,๐‘š): ||๎€ท๐‘งฮฆ(๐‘ง)โˆ’ฮฆ๐‘—๎€ธ||||โ‰ฅconstโ‹…๐‘งโˆ’๐‘ง๐‘—||1/๐œ†๐‘—,||ฮฆ(2.3)๎…ž||||(๐‘ง)โ‰คconstโ‹…๐‘งโˆ’๐‘ง๐‘—||1/๐œ†๐‘—โˆ’1||||||,(2.4)ฮฆ(๐‘ง)โ‰ค1โˆ’constโ‹…๐‘งโˆ’๐‘ง๐‘—||1/๐œ†๐‘—||,(2.5)dist(๐‘ง,๐ฟ)โ‰ฅconstโ‹…๐‘งโˆ’๐‘ง๐‘—||.(2.6) The similar inequalities of (2.3)โ€“(2.6) can be written by replacing ๐‘ ๐‘—, ๐‘ง๐‘—, and ๐œ†๐‘— with ๐‘ ๎…ž๐‘—, ๐‘ง๐‘—+1, and ๐œ†๐‘—+1, respectively. The inequalities (2.3) and (2.4) emerge from Lehman's asymptotic expansions of conformal mappings near an analytic corner [8]. The inequality (2.5) follows from (2.3), because reflection preserves angles. Finally, (2.6) is a simple fact of conformal mapping geometry.

The last auxiliary facts are on the behavior of ๐‘” near ๐•‹ obtained by using Lehman's asymptotic expansions of conformal mappings near an analytic corner [8]. Assume that ๐ฟ has a corner at ๐œ with exterior angle ๐œ†๐œ‹, 0<๐œ†<2 and that ๐œ=ฮจ(1). Let further ๐‘งโˆˆ๐บ be fixed. Similar arguments in [5] apply to the ๐‘”(๐‘ค)=(ฮจโ€ฒ(๐‘ค))1โˆ’1/๐‘/(ฮจ(๐‘ค)โˆ’๐‘ง) one can obtain that if 0<๐œ†<1, then ๐ถ๐‘”(๐‘ค)โ‰…(๐‘คโˆ’1)๐œ‚,as๐‘คโ†’1+,with๐ถโ‰ 0.(2.7) If 1<๐œ†<2, then ๐‘”๎…ž๐ถ(๐‘ค)โ‰…(๐‘คโˆ’1)๐œ‚+1,as๐‘คโ†’1+,with๐ถโ‰ 0.(2.8)

3. Proofs of Theorems

From now on, ๐‘ denote positive constants, not necessarily the same at the different places and not depending on ๐‘› degree of the ๐‘-Faber polynomial and the parameter ๐‘. We recite that ๎‚ต1๐œ‚โˆถ=(1โˆ’๐œ†)1โˆ’๐‘๎‚ถ.(3.1)

Proof of Theorem 1.1. Here we use the integral representation (1.9) of the ๐‘- Faber polynomials ๐น๐‘›,๐‘ in ๐บ. Given a compact subset ๐น of ๐บ, we deform the path of integration by replacing each component ๐ฟ๐‘— of ๐ฟ by some ๐ฟ๎…ž๐‘—โˆถ=๐‘ ๐‘—โˆช๐ฟ๐‘—โˆช๐‘ โ€ฒ๐‘— (๐‘—=1,2,โ€ฆ,๐‘š), as mentioned before, with proper orientation and such that โ‹ƒ๐นโŠ‚๐ฟโ€ฒโˆถ=๐‘š๐‘—=1๐ฟ๎…ž๐‘—. This gives ||๐น๐‘›,๐‘||โ‰ค1(๐‘ง)2๐œ‹๐‘š๎“๐‘—=1๎€œ๐ฟโ€ฒ๐‘—||||ฮฆ(๐œ)๐‘›||||ฮฆโ€ฒ(๐œ)1/๐‘||||||||๐œโˆ’๐‘ง๐‘‘๐œโ‰ค๐ถ(๐ฟ,๐น)๐‘š๎“๐‘—=1๎€œ๐ฟโ€ฒ๐‘—||||ฮฆ(๐œ)๐‘›||||ฮฆโ€ฒ(๐œ)1/๐‘||||๐‘‘๐œ=๐ถ(๐ฟ,๐น)๐‘š๎“๐‘—=1๎ƒฉ๎€œ๐‘ ๐‘—+๎€œ๐‘ โ€ฒ๐‘—+๎€œ๐ฟ๐‘—๎ƒช||||ฮฆ(๐œ)๐‘›||||ฮฆโ€ฒ(๐œ)1/๐‘||||.๐‘‘๐œ(3.2) The contributions of the arcs ๐ฟ๐‘— to these integrals are obviously O(๐œŒ๐‘›) for some ๐œŒ<1, so that typical integrals ๐ผ๐‘—=๎€œ๐‘ ๐‘—||||ฮฆ(๐œ)๐‘›||ฮฆ๎…ž(||๐œ)1/๐‘||||๐‘‘๐œ(3.3) extended over the line segments ๐‘ ๐‘— (and ๐‘ ๎…ž๐‘—) remain to be estimated. If ๐‘  is arc length of ๐‘ ๐‘— measured from ๐‘ง๐‘—, by using (2.4) and (2.5), ||||ฮฆ(๐œ)โ‰ค1โˆ’๐‘๐‘ 1/๐œ†๐‘—๎€ท<expโˆ’๐‘๐‘ 1/๐œ†๐‘—๎€ธ,||||ฮฆโ€ฒ(๐œ)โ‰ค๐‘๐‘ 1/๐œ†๐‘—โˆ’1,(3.4) and, therefore, ๐ผ๐‘—๎€œ<๐‘โˆž0๎€ทexpโˆ’๐‘๐‘›๐‘ 1/๐œ†๐‘—๎€ธ๐‘ (1/๐œ†๐‘—โˆ’1)/๐‘=๐‘๐‘‘๐‘ ๐‘›(1โˆ’๐œ†๐‘—)/๐‘+๐œ†๐‘—๎€œโˆž0๐‘’โˆ’๐‘ก๐‘ก(1/๐‘โˆ’1)(1โˆ’๐œ†๐‘—)๐‘‘๐‘ .(3.5) If 1/2โ‰ค๐‘โ‰คโˆž, then the integral in the last line is convergent; that is, ๐ผ๐‘—<๐‘๐‘›(1โˆ’๐œ†๐‘—)/๐‘+๐œ†๐‘—.(3.6) From this we obtain the Theorem 1.1.
In the case 0<๐‘<1/2, similar arguments show that, under the condition ๐œ†๐‘—<1/(1โˆ’๐‘), the inequality (3.6) is valid. This proves Remark 1.4.

Proof of Remark 1.3. We now show that ๐‘‚ in Theorem 1.1 cannot be replaced by ๐‘œ. Let ๐ฟ be any piecewise analytic Jordanโ€™s curve that has no smooth corners; that is, all ๐œ†๐‘—โ‰ 1. We assume that one of them is at ฮจ(1) with exterior angle ๐œ†. Assume that ๐น๐‘›,๐‘(๐‘ง)=๐‘œ(1/๐‘›1โˆ’๐œ‚)โ€‰โ€‰(๐‘›โ†’โˆž) for some fixed ๐‘งโˆˆ๐บ.
(a) If 0<๐œ†<1 and ๐‘>1, we consider for|๐‘ค|>1๎€ทฮจ๐‘”(๐‘ค)=๎…ž๎€ธ(๐‘ค)1โˆ’1/๐‘=ฮจ(๐‘ค)โˆ’๐‘งโˆž๎“๐‘›=0๐น๐‘›,๐‘(๐‘ง)๐‘ค๐‘›+1.(3.7) Since โˆž๎“๐‘›=1๐‘ฅ๐‘›๐‘›๐›ผโˆผฮ“(1โˆ’๐›ผ)(1โˆ’๐‘ฅ)1โˆ’๐›ผ,when๐‘ฅโ†’1โˆ’(3.8) for ๐›ผ<1, where ฮ“ is Gamma Function (see [9, page 225]), then ||||๎ƒฉ๐‘”(๐‘ค)=๐‘œโˆž๎“๐‘›=11๐‘›1โˆ’๐œ‚๐‘ค๐‘›๎ƒช1=๐‘œ(1)(๐‘คโˆ’1)๐œ‚,as๐‘คโ†’1+.(3.9) This contradicts (2.7).
(b) If 1<๐œ†<2, then, by using (3.8) and ๐‘”๎…ž(๐‘ค)=โˆ’โˆž๎“๐‘›=0(๐‘›+1)๐น๐‘›,๐‘(๐‘ง)๐‘ค๐‘›+2,(3.10) we get ||||๎ƒฉ๐‘”โ€ฒ(๐‘ค)=๐‘œโˆž๎“๐‘›=1๐‘›๐‘›1โˆ’๐œ‚๐‘ค๐‘›๎ƒช1=๐‘œ(1)(๐‘คโˆ’1)๐œ‚+1,as๐‘คโ†’1+(3.11) which is contradiction to (2.8).

Proof of Theorem 1.5. The proof goes along similar lines as those taken in the proof of Theorem 1.1 with one significant difference: here, ๐‘ง lies in ฮฉ, instead of ๐บ, and, thus, can tend to ๐ฟ without need altering the curve ๐ฟโ€ฒ. As a consequence, the set ๐น defined above does not depend on ๐‘ง, and; thus, dist(๐‘ง,๐น)>dist(๐ฟ,๐น)=๐‘(๐ฟ).