Abstract

We study the energy density function of nondegenerate smooth maps with vanishing tension field between two real Finsler manifolds. Firstly, we get a variation formula of energy density function by using moving frame. With this formula, we obtain a rigidity theorem of nondegenerate map with vanishing tension field from the Finsler manifold to the Berwald manifold.

1. Introduction

Finsler manifolds are differential manifolds with Finsler metrics. Finsler metrics are Riemannian metrics but without quadratic restriction, which were firstly introduced by B. Riemann in 1854. Harmonic maps are important and interesting in both differential geometry and mathematical physics. Riemannian manifolds and Finsler manifolds are all metric-measure spaces, so we can study the harmonic map between Finsler manifolds by the theory of harmonic maps on general metric-measure spaces.

By using the volume measure induced from the projective sphere bundle, harmonic maps between real Finsler manifolds were introduced and investigated in [1โ€“5]. Recently, the author and Shen have studied the harmonic maps on complex Finsler manifolds [6]. In [3] Mo considered the energy functional and the Euler-Lagrange operator of a smooth map from a real Finsler manifold to a Riemannian manifold. In [5], Shen and Zhang give the tension field of the harmonic maps between Finsler manifolds. Recently, Shen and He [1] have simplified the tension field.

Under what conditions of the energy function a harmonic map is a constant mapping or totally geodesic mapping? This is an important and interesting issue in the study of harmonic maps, which is referred to as the rigidity theorem and studied by many people on the Riemannian manifold [7, 8]. In [1, 2], Shen and He have obtained some rigidity theorems. In this paper, we get some rigidity theorems for the nondegenerate map with vanishing tension field from the Finsler manifold to the Berwald manifold, which generalize the results in [2].

Precisely, we prove the following Bochner-type formula.

Theorem 1.1. Let (๐‘€,๐น) be a Finsler manifold, and let (๎‚‹๎‚๐‘€,๐น) be a Berwald manifold. If the tension field of ๎‚‹๎‚๐œ™โˆถ(๐‘€,๐น)โ†’(๐‘€,๐น) is zero, then ๎“๐‘—๐’ฎ๐‘—|๐‘—=||||โˆ‡๐‘‘๐œ™2+๎“๐‘–,๐‘—๎ซ๐œ™โˆ—๐‘’๐‘–,๐œ™โˆ—๐‘’๐‘—๎ฌ๐‘๐‘…๐‘–๐‘—โˆ’๎“๐‘–,๐‘—๎‚€||๐œ™โˆ—๐‘’๐‘–||2||๐œ™โˆ—๐‘’๐‘—||2โˆ’๎ซ๐œ™โˆ—๐‘’๐‘–,๐œ™โˆ—๐‘’๐‘—๐œ™๎ฌ๎ซโˆ—๐‘’๐‘–,๐œ™โˆ—๐‘’๐‘—๎ฌ๎‚๐พ๎‚‹๐‘€๎€ท๐œ™โˆ—๐‘’๐‘–โˆง๐œ™โˆ—๐‘’๐‘—๎€ธ,(1.1) where โˆ‘๐’ฎ=๐›ผ,๐‘–,๐‘—๐œ™๐›ผ๐‘–๐‘๐œ™๐›ผ๐‘–|๐‘—๐œ”๐‘—โˆถ=๐’ฎ๐‘—๐œ”๐‘—. In particular, if ๐‘€ and ๎‚‹๐‘€ are Riemannian manifolds, then โˆ‘๐‘—๐’ฎ๐‘—|๐‘— is ฮ”๐‘’(๐œ™).

Moreover, by using the formula we also prove the following rigidity theorem.

Theorem 1.2. Let M be a compact Finsler manifold of dimension ๐‘›, and let ๎‚‹๐‘€ be a Berwald manifold of dimension ๐‘š. Suppose ๐‘Ž,๐‘ are positive constants, for any ๐‘‹โˆˆ๐œ‹โˆ—๐‘‡๐‘€, ๐‘Ric(๐‘‹)โ‰ฅ๐‘Ž, and ๐พ๎‚‹๐‘€โ‰ค๐‘, where ๐พ๎‚‹๐‘€ is the directional section curvature of ๎‚‹๐‘€. Suppose the tension field of ๎‚‹๐‘€๐œ™โˆถ๐‘€โ†’ is zero and ๐œ™ is nondegenerate. If ๐‘’๐‘›(๐œ™)โ‰ค๐‘Ž2(๐‘›โˆ’1)๐‘,(1.2) then ๐œ™ is a constant map or totally geodesic map. In particular, if ๐‘’(๐œ™)โ‰ค๐‘Ž/2๐‘, then ๐œ™ must be a constant map.

Some technical terms above will be explained below. The contents of the paper are arranged as follows. In Section 2, some fundamental definitions and formulas which are necessary for the present paper are given. In Section 3, we consider the map between Finsler manifolds and get a pull-back formula. In Section 4, a Bochner-type formula from the Finsler manifold to the Berwald manifold is shown. Finally, by using the Bochner type formula, we obtain a rigidity theorem.

2. Finsler Manifold

Let ๐‘€ be an ๐‘›-dimension smooth manifold, and let ๐œ‹โˆถ๐‘‡๐‘€โ†’๐‘€ be the natural projection. A Finsler metric on ๐‘€ is a function ๐นโˆถ๐‘‡๐‘€โ†’[0,โˆž) satisfying the following properties:(i)๐น is smooth on ๐‘‡๐‘€โงต{0};(ii)๐น(๐‘ฅ,๐œ†๐‘ฆ)=๐œ†๐น(๐‘ฅ,๐‘ฆ) for all ๐œ†>0;(iii)the induced quadratic form ๐‘” is positively definite, where ๐‘”=๐‘”๐‘–๐‘—(๐‘ฅ,๐‘ฆ)๐‘‘๐‘ฅ๐‘–โŠ—๐‘‘๐‘ฅ๐‘—,๐‘”๐‘–๐‘—=12๎€ท๐น2๎€ธ๐‘ฆ๐‘–๐‘ฆ๐‘—.(2.1)

Here and from now on, [๐น]๐‘ฆ๐‘–, [๐น]๐‘ฆ๐‘–๐‘ฆ๐‘— denote ๐œ•F/๐œ•๐‘ฆ๐‘–, ๐œ•2๐น/๐œ•๐‘ฆ๐‘–๐œ•๐‘ฆ๐‘—, and so forth, and we will use the following convention of index range unless otherwise stated: 1โ‰ค๐‘–,๐‘—,๐‘˜,โ€ฆโ‰ค๐‘›,1โ‰ค๐‘Ž,๐‘,๐‘,โ€ฆโ‰ค๐‘›โˆ’1,๎‚‹๐‘Ž=๐‘›+๐‘Ž,๐‘›=dim๐‘€;1โ‰ค๐›ผ,๐›ฝ,๐›พโ‹ฏโ‰ค๐‘š,๐‘š=dim๐‘€.(2.2)

The canonical projection ๐œ‹โˆถ๐‘‡๐‘€โ†’๐‘€ gives to a covector bundle ๐œ‹โˆ—๐‘‡โˆ—๐‘€ which has a global section ๐œ”=[๐น]๐‘ฆ๐‘–๐‘‘๐‘ฅ๐‘– called the Hilbert form, whose dual vector field is ๐‘™=(๐‘ฆ๐‘–/๐น)(๐œ•/๐œ•๐‘ฅ๐‘–)=๐‘™๐‘–(๐œ•/๐œ•๐‘ฅ๐‘–), viewed as a global section of the pull-back bundle ๐œ‹โˆ—๐‘‡๐‘€. We have the following important quantities: ๐ดโˆถ=๐ด๐‘–๐‘—๐‘˜๐‘‘๐‘ฅ๐‘–โŠ—๐‘‘๐‘ฅ๐‘—โŠ—๐‘‘๐‘ฅ๐‘˜,๐ด๐‘–๐‘—๐‘˜=๐น2๎‚ƒ12๐น2๎‚„๐‘ฆ๐‘–๐‘ฆ๐‘—๐‘ฆ๐‘˜;๐œ‚โˆถ=๐ด๐‘–๐‘—๐‘˜๐‘”๐‘—๐‘˜๐‘‘๐‘ฅ๐‘–,๎€ท๐‘”๐‘—๐‘˜๎€ธ=๎€ท๐‘”๐‘–๐‘—๎€ธโˆ’1,(2.3) which are called the Cartan tensor and the Cartan form, respectively [9]. Each fibre of ๐œ‹โˆ—๐‘‡โˆ—๐‘€ has a positively oriented orthonormal coframe {๐œ”๐‘–} with ๐œ”๐‘›=๐œ” and โˆ‘๐‘”=๐‘–(๐œ”๐‘–)2โˆˆฮ“(โŠ™2๐œ‹โˆ—๐‘‡โˆ—๐‘€). Expand {๐œ”๐‘–} as ๐‘ฃ๐‘–๐‘—๐‘‘๐‘ฅ๐‘—, whereby the stipulated orientation implies that ๐‘ฃ=det(๐‘ฃ๐‘–๐‘—โˆš)=det(๐‘”๐‘–๐‘—).

Define ๐›ฟ๐›ฟ๐‘ฅ๐‘–๐œ•โˆถ=๐œ•๐‘ฅ๐‘–โˆ’๐‘๐‘—๐‘–๐œ•๐œ•๐‘ฆ๐‘—,๐›ฟ๐‘ฆ๐‘–=1๐น๎‚€๐‘‘๐‘ฆ๐‘–+๐‘๐‘–๐‘—๐‘‘๐‘ฅ๐‘—๎‚,๐œ”๐‘›+๐‘–=๐‘ฃ๐‘–๐‘—๐›ฟ๐‘ฆ๐‘—,(2.4) where ๐‘๐‘–๐‘—โˆถ=๐›พ๐‘–๐‘—๐‘˜๐‘ฆ๐‘˜โˆ’๐ด๐‘–๐‘—๐‘˜๐›พ๐‘˜๐‘๐‘ (๐‘ฆ๐‘๐‘ฆ๐‘ /๐น) and ๐›พ๐‘–๐‘—๐‘˜ are the formal Christoffel symbols of the second kind for ๐‘”๐‘–๐‘—. Note that ๐œ”2๐‘›=๐‘‘log๐น is dual with the radial vector ๐‘ฆ๐‘–(๐œ•/๐œ•๐‘ฆ๐‘–), so it vanishes on the projective tangent bundle ๐‘†๐‘€. So {๐œ”๐‘–,๐œ”๐‘›+๐‘–} forms an orthonormal basis for ๐‘‡โˆ—(๐‘‡๐‘€โงต{0}) with respect to the Sasaki metric ฬ‚๐‘”=๐‘”๐‘–๐‘—(๐‘ฅ,๐‘ฆ)๐‘‘๐‘ฅ๐‘–โŠ—๐‘‘๐‘ฅ๐‘—+๐‘”๐‘–๐‘—(๐‘ฅ,๐‘ฆ)๐›ฟ๐‘ฆ๐‘–๐นโŠ—๐›ฟ๐‘ฆ๐‘—๐น.(2.5)

It is well known that there exists the unique Chern connection ๐‘โˆ‡ on ๐œ‹โˆ—๐‘‡๐‘€ with ๐‘โˆ‡(๐œ•/๐œ•๐‘ฅ๐‘—)=๐œ”๐‘–๐‘—(๐œ•/๐œ•๐‘ฅ๐‘–) and ๐œ”๐‘–๐‘—=ฮ“๐‘–๐‘—๐‘˜๐‘‘๐‘ฅ๐‘˜, which satisfies the following structure equation: ๐‘‘๐œ”๐‘–=๐œ”๐‘—โˆง๐œ”๐‘–๐‘—,๐œ”๐‘–๐‘—+๐œ”๐‘—๐‘–=โˆ’2๐ด๐‘–๐‘—๐‘Ž๐œ”๐‘Ž,(2.6) where ๐œ”๐‘Ž=๐œ”๐‘Ž๐‘›, ๐ด๐‘–๐‘—๐‘Ž=๐ด(๐‘’๐‘–,๐‘’๐‘—,๐‘’๐‘Ž). The Chern connection is torsion-free and almost compatible with metric.

The Berwald connection ๐‘โˆ‡ is also an important connection on ๐œ‹โˆ—๐‘‡๐‘€, which is torsion-free and given by๐‘โˆ‡=๐‘ฬ‡โˆ‡+๐ดequivalently๐‘๐œ”๐‘–๐‘—=๐œ”๐‘–๐‘—+ฬ‡๐ด๐‘–๐‘—๐‘˜๐œ”๐‘˜,(2.7) where โ€œยทโ€ denotes the covariant derivative along the Hilbert form. The one-form of the Berwald connection ๐‘๐œ”๐‘–๐‘— satisfies ๐‘‘๐œ”๐‘–=๐œ”๐‘—โˆง๐‘๐œ”๐‘–๐‘—,๐‘๐œ”๐‘–๐‘—+๐‘๐œ”๐‘—๐‘–=โˆ’2๐ด๐‘–๐‘—๐‘Ž๐œ”๐‘Žฬ‡๐ด+2๐‘–๐‘—๐‘˜๐œ”๐‘˜.(2.8)

The curvature 2-form of the Chern connection ๐‘โˆ‡ is given by ๐‘‘๐œ”๐‘–๐‘—โˆ’๐œ”๐‘˜๐‘—โˆง๐œ”๐‘–๐‘˜=ฮฉ๐‘–๐‘—=12๐‘…๐‘–๐‘—๐‘˜๐‘™๐œ”๐‘˜โˆง๐œ”๐‘™+๐‘ƒ๐‘–๐‘—๐‘˜๐‘Ž๐œ”๐‘˜โˆง๐œ”๐‘Ž,(2.9) where ๐‘…๐‘–๐‘—๐‘˜๐‘™=โˆ’๐‘…๐‘–๐‘—๐‘™๐‘˜,๐‘ƒ๐‘–๐‘—๐‘˜๐‘Ž=๐‘ƒ๐‘–๐‘˜๐‘—๐‘Ž. For the Landsberg curvature ๐‘ƒ๐‘–๐‘—๐‘˜โˆถ=๐‘ƒ๐‘–๐‘›๐‘—๐‘˜, we have ๐‘ƒ๐‘–๐‘—๐‘˜=๐›ฟ๐‘–๐‘™๐‘ƒ๐‘™๐‘—๐‘˜ฬ‡๐ด=โˆ’๐‘–๐‘—๐‘˜,๐‘ƒ๐‘›๐‘—๐‘˜=0.(2.10)

Similarly, the curvature 2-form of the Berwald connection ๐‘โˆ‡ can also be expressed as ๐‘‘๐‘๐œ”๐‘–๐‘—โˆ’๐‘๐œ”๐‘˜๐‘—โˆง๐‘๐œ”๐‘–๐‘˜=๐‘ฮฉ๐‘–๐‘—=12๐‘๐‘…๐‘–๐‘—๐‘˜๐‘™๐œ”๐‘˜โˆง๐œ”๐‘™+๐‘๐‘ƒ๐‘–๐‘—๐‘˜๐‘Ž๐œ”๐‘˜โˆง๐œ”๐‘Ž,(2.11) where ๐‘๐‘…๐‘–๐‘—๐‘˜๐‘™=โˆ’๐‘๐‘…๐‘–๐‘—๐‘™๐‘˜,๐‘๐‘ƒ๐‘–๐‘—๐‘˜๐‘Ž=๐‘๐‘ƒ๐‘–๐‘˜๐‘—๐‘Ž.

Next, we will give several definitions which will be used in the following.

Definition 2.1. For any ๐‘‹=๐‘‹๐‘–(๐œ•/๐œ•๐‘ฅ๐‘–)โˆˆ๐œ‹โˆ—๐‘‡๐‘€, the Ricci curvature under the Berwald connection in the direction ๐‘‹ is given as ๐‘Ric๐‘€1(๐‘ฅ,๐‘ฆ,๐‘‹)โˆถ=โŸจ๐‘‹,๐‘‹โŸฉ๐‘”๎“๐‘—,๐‘™,๐‘ ๐›ฟ๐‘๐‘˜๐‘ ๐‘…๐‘ ๐‘—๐‘™๐‘—(๐‘ฅ,๐‘ฆ)๐‘‹๐‘˜๐‘‹๐‘™.(2.12) Obviously, if ๐‘‹=ฬ‚๐‘’, then the Ricci curvature is just the common scalar Ricci curvature.

Definition 2.2. For any ๐‘‹,๐‘Œโˆˆ๐œ‹โˆ—๐‘‡๐‘€, the directional section curvature of ๐‘€ under the Chern connection is given as ๐‘…๐พ(๐‘ฅ,๐‘ฆ,๐‘‹โˆง๐‘Œ)=๐‘–๐‘—๐‘˜๐‘™(๐‘ฅ,๐‘ฆ)๐‘‹๐‘–๐‘Œ๐‘—๐‘‹๐‘˜๐‘Œ๐‘™โŸจ๐‘‹,๐‘‹โŸฉโŸจ๐‘Œ,๐‘ŒโŸฉโˆ’โŸจ๐‘‹,๐‘ŒโŸฉ2.(2.13) In general, ๐พ(๐‘ฅ,๐‘ฆ,๐‘‹โˆง๐‘Œ)โ‰ ๐พ(๐‘ฅ,๐‘ฆ,๐‘Œโˆง๐‘‹). Particularly, if ๐‘€ is the Riemannian manifold, then ๐พ is the Riemannian section curvature.

3. The Map between Finsler Manifolds

Let (๐‘€,๐น) and (๎‚‹๎‚๐‘€,๐น) be Finsler manifolds of dimension ๐‘› and ๐‘š, respectively, and let ๎‚‹๎‚๐œ™โˆถ(๐‘€,๐น)โ†’(๐‘€,๐น) be a smooth map. ๐น and ๎‚๐น induce the metrics โˆ‘๐‘”=๐‘–(๐œ”๐‘–)2 and โˆ‘ฬƒ๐‘”=๐›ผ(๎‚๐œ”๐›ผ)2, where {๐œ”๐‘–} and {๎‚๐œ”๐›ผ} are the orthonormal one-form on ๐‘‡๐‘€ and ๐‘‡๎‚‹๐‘€, respectively.

In [5], Shen and Zhang give the tension field of the harmonic maps between real Finsler manifolds. Recently, Shen and He [1] have simplified the tension field into the following form: ๐‘‘๐‘‘๐‘ก๐ธ(๐œ™)๐‘กโˆฃ๐‘ก=0๐‘›=โˆ’2๐‘๐‘›โˆ’1๎€œ๐‘†๐‘€โŸจฬƒ๐œ,๐‘‰โŸฉฬƒ๐‘”๐‘‘๐‘‰๐‘†๐‘€,(3.1) where ๎‚€๎‚โˆ‡ฬƒ๐œโˆถ=๐‘™๎‚1๐‘‘๐œ™(๐‘™)=๐น2ฬƒ๐œ๐›ผ๐œ•๐œ•ฬƒ๐‘ฅ๐›ผ,ฬƒ๐œ๐›ผ=๐œ™๐›ผ๐‘–๐‘—๐‘ฆ๐‘–๐‘ฆ๐‘—โˆ’๐œ™๐›ผ๐‘˜๐บ๐‘˜+๎‚๐บ๐›ผ,(3.2) where ๐‘™=๐‘™๐‘–(๐œ•/๐œ•๐‘ฅ๐‘–),๐‘™๐‘–=๐‘ฆ๐‘–/๐น is the dual field of the Hilbert form, and ๐บ๐‘˜ and ๎‚๐บ๐›ผ are the geodesic coefficients of (๐‘€,๐น) and (๎‚‹๎‚๐‘€,๐น), respectively. Here ๐œ™๐›ผ๐‘–๐‘—=๐œ•2๐œ™๐›ผ๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—,๐œ™๐›ผ๐‘–=๐œ•๐œ™๐›ผ๐œ•๐‘ฅ๐‘–.(3.3) From the formula (3.1), we have

Lemma 3.1 (see [5]). Let ๐œ™ be harmonic map if and only if for any vector field ๐‘‰โˆˆ๐’ž(๐œ™โˆ’1๐‘‡๎‚‹๐‘€), ๎€œ๐‘†๐‘€โŸจฬƒ๐œ,๐‘‰โŸฉฬƒ๐‘”๐‘‘๐‘‰๐‘†๐‘€=0.(3.4) โ€‰๐œ™ is the strongly harmonic map if and only if ฬƒ๐œ๐›ผ=0.

Let ๎‚‹๐‘€ฮฆโˆถ๐‘†๐‘€โ†’๐‘† be the map between the projective sphere bundles of ๐‘€ and ๎‚‹๐‘€, which is induced by ๐œ™. It is easy to find that ฮฆโˆ—โˆ˜๐‘‘=๐‘‘โˆ˜ฮฆโˆ—, ๐œ™โˆ—(๎‚๐œ”๐›ผ)=๐œ™๐›ผ๐‘—๐œ”๐‘— is just the same as ฮฆโˆ—(๎‚๐œ”๐›ผ)=๐œ™๐›ผ๐‘—๐œ”๐‘—. Let {๐œ”๐‘–,๐œ”๐‘Ž+๐‘›} be the orthonormal frames of the dual bundle for ๐‘†๐‘€, and let {๎‚๐œ”๐›ผ,๎‚๐œ”๐”ž+๐‘š} be the orthonormal frames of the dual bundle for ๐‘†๎‚‹๐‘€. Then we have the following.

Proposition 3.2. Let ๎‚‹๐‘€ฮฆโˆถ๐‘†๐‘€โ†’๐‘† be the map between the projective sphere bundle of ๐‘€ and ๎‚‹๐‘€. Then ฮฆโˆ—๎€ท๎‚๐œ”๐›ผ๎€ธ=๐œ™๐›ผ๐‘—๐œ”๐‘—,ฮฆโˆ—๎€ท๎‚๐œ”๐›ผ+๐‘š๎€ธ=12ฬƒ๐œ๐›ผ๐‘—๐œ”๐‘—+๐œ™๐›ผ๐‘—๐œ”๐‘—+๐‘›.(3.5) Obviously, if ๐œ™ is a strongly harmonic map, then ฮฆโˆ—(๐œ”๐›ผ+๐‘š)=๐œ™๐›ผ๐‘—๐œ”๐‘—+๐‘›.

Proof. We will use natural frame to proof the Theorem. The relation between natural frame and moving frame satisfies ๐œ”๐‘–=๐ถ๐‘–๐‘—๐‘‘๐‘ฅ๐‘—,๐œ”๐‘–+๐‘›=๐ท๐‘–๐‘—๐›ฟ๐‘ฆ๐‘—,๎‚๐œ”๐›ผ=๐ด๐›ผ๐›ฝ๐‘‘๐‘ข๐›ฝ,๎‚๐œ”๐›ผ+๐‘š=๐ต๐›ผ๐›ฝ๐›ฟ๐‘ฃ๐›ฝ,(3.6) where ๐ด๐›ผ๐›ฝ,๐ต๐›ผ๐›ฝ,๐ถ๐‘–๐‘—,๐ท๐‘–๐‘— are orthonormal matrixes, and {๐‘‘๐‘ฅ๐‘–,๐›ฟ๐‘ฆ๐‘–} and {๐‘‘๐‘ข๐‘–,๐›ฟ๐‘ฃ๐‘–} are the natural bases of the dual bundle for ๐‘†๐‘€ and ๐‘†๎‚‹๐‘€, respectively. Then we have ฮฆโˆ—๎€ท๎‚๐œ”๐›ผ๎€ธ=ฮฆโˆ—๎‚€๐ด๐›ผ๐›ฝ๐‘‘๐‘ข๐›ฝ๎‚=๐ด๐›ผ๐›ฝฮฆโˆ—๎€ท๐‘‘๐‘ข๐›ฝ๎€ธ=๐ด๐›ผ๐›ฝ๐‘‘(๐‘ข๐›ผโˆ˜ฮฆ)=๐ด๐›ผ๐›ฝ๐œ•๐œ™๐›ผ๐œ•๐‘ฅ๐‘–๐‘‘๐‘ฅ๐‘–=๐ด๐›ผ๐›ฝ๐œ•๐œ™๐›ผ๐œ•๐‘ฅ๐‘–๎€ท๐ถโˆ’1๎€ธ๐‘–๐‘—๐œ”๐‘—โˆถ=๐œ™๐›ผ๐‘–๐œ”๐‘–,ฮฆโˆ—๎€ท๎‚๐œ”๐›ผ+๐‘š๎€ธ=ฮฆโˆ—๎‚€๐ต๐›ผ๐›ฝ๐›ฟ๐‘ฃ๐›ฝ๎‚=๐ต๐›ผ๐›ฝ๐‘‘(๐‘ฃ๐›ผโˆ˜ฮฆ)+๐ต๐›ผ๐›ฝ๎‚๐‘๐›ฝ๐›พ๐œ•๐œ™๐›พ๐œ•๐‘ฅ๐‘—๐‘‘๐‘ฅ๐‘—=๐ต๐›ผ๐›ฝ๎‚ต๐œ•2๐œ™๐›ผ๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—๐‘ฆ๐‘–๐‘‘๐‘ฅ๐‘—+๐œ•๐œ™๐›ผ๐œ•๐‘ฅ๐‘—๐‘‘๐‘ฆ๐‘—๎‚ถ+๐ต๐›ผ๐›ฝ๎‚๐‘๐›ฝ๐›พ๐œ•๐œ™๐›พ๐œ•๐‘ฅ๐‘—๐‘‘๐‘ฅ๐‘—=๐ต๐›ผ๐›ฝ๎‚ต๐œ•2๐œ™๐›ผ๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—๐‘ฆ๐‘–+๎‚๐‘๐›ฝ๐›พ๐œ•๐œ™๐›พ๐œ•๐‘ฅ๐‘—๎‚ถ๎€ท๐ถโˆ’1๎€ธ๐‘—๐‘˜๐œ”๐‘˜+๐ต๐›ผ๐›ฝ๐œ•๐œ™๐›ฝ๐œ•๐‘ฅ๐‘—๎€ท๐‘‘๐‘ฆ๐‘—+๐‘๐‘—๐‘˜๐‘‘๐‘ฅ๐‘˜๎€ธโˆ’๐ต๐›ผ๐›ฝ๐œ•๐œ™๐›ฝ๐œ•๐‘ฅ๐‘—๐‘๐‘—๐‘˜๐‘‘๐‘ฅ๐‘˜=๐ต๐›ผ๐›ฝ๎‚ต๐œ•2๐œ™๐›ผ๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—๐‘ฆ๐‘–+๎‚๐‘๐›ฝ๐›พ๐œ•๐œ™๐›พ๐œ•๐‘ฅ๐‘—โˆ’๐œ•๐œ™๐›ฝ๐œ•๐‘ฅ๐‘™๐‘๐‘™๐‘—๎‚ถ๎€ท๐ถโˆ’1๎€ธ๐‘—๐‘˜๐œ”๐‘˜+๐ต๐›ผ๐›ฝ๐œ•๐œ™๐›ฝ๐œ•๐‘ฅ๐‘™๎€ท๐ทโˆ’1๎€ธ๐‘™๐‘—๐œ”๐‘—+๐‘›1โˆถ=2ฬƒ๐œ๐›ผ๐‘—๐œ”๐‘—+๐œ™๐›ผ๐‘—๐œ”๐‘—+๐‘›.(3.7) So, we have completed the proof of the proposition.

4. The Rigidity Theorem

In the following, let (๐‘€,๐น) be a Finsler manifold of dimension ๐‘›, and let (๎‚‹๎‚๐‘€,๐น) be a Berwald manifold of dimension ๐‘š. Let ๎‚‹๎‚๐œ™โˆถ(๐‘€,๐น)โ†’(๐‘€,๐น) be a map with zero tension field, that is, strongly harmonic map. Because the Berwald connection on the Berwald manifold is the same as the Chern connection, so we will use the Berwald connection on (๐‘€,๐น) and (๎‚‹๎‚๐‘€,๐น).

Let 1๐‘’(๐œ™)=2๎“๐›ผ,๐‘–๎€ท๐œ™๐›ผ๐‘–๎€ธ2=12โ€–โ€–๐œ™โˆ—โ€–โ€–2.(4.1) Define ๐‘๐œ™๐›ผ๐‘–|๐‘—๐œ”๐‘—+๐‘๐œ™๐›ผ๐‘–;๐‘Ž๐œ”๐‘Žโˆถ=๐‘‘๐œ™๐›ผ๐‘–โˆ’๐œ™๐›ผ๐‘—๐‘๐œ”๐‘—๐‘–+๐œ™๐›ฝ๐‘–ฮฆโˆ—๎€ท๎‚๐œ”๐›ผ๐›ฝ๎€ธ,(4.2)๐‘๐œ™๐›ผ๐‘–|๐‘—|๐‘˜๐œ”๐‘˜+๐‘๐œ™๐›ผ๐‘–|๐‘—;๐‘Ž๐œ”๐‘Žโˆถ=๐‘‘๐‘๐œ™๐›ผ๐‘–|๐‘—โˆ’๐‘๐œ™๐›ผ๐‘๐‘™|๐‘—๐œ”๐‘™๐‘–โˆ’๐‘๐œ™๐›ผ๐‘๐‘–|๐‘™๐œ”๐‘™๐‘—+๐‘๐œ™๐›ฝ๐‘–|๐‘—ฮฆโˆ—๎€ท๎‚๐œ”๐›ผ๐›ฝ๎€ธ.(4.3) Differentiating ฮฆโˆ—๎‚๐œ”๐›ผ=โˆ‘๐œ™๐›ผ๐‘–๐œ”๐‘– and by ฮฆโˆ—โˆ˜๐‘‘=๐‘‘โˆ˜ฮฆโˆ—, we have ฮฆโˆ—๐‘‘๎‚๐œ”๐›ผ=๐‘‘๐œ™๐›ผ๐‘–โˆง๐œ”๐‘–+๐œ™๐›ผ๐‘–๐‘‘๐œ”๐‘–.(4.4) Substituting (2.8) and (4.2) into (4.4) yields ฮฆโˆ—๎€ท๐‘‘๎‚๐œ”๐›ผ๎€ธ=๎‚€๐‘๐œ™๐›ผ๐‘–|๐‘—๐œ”๐‘—+๐‘๐œ™๐›ผ๐‘–;๐‘Ž๐œ”๐‘Ž+๐œ™๐›ผ๐‘—๐‘๐œ”๐‘—๐‘–โˆ’๐œ™๐›ฝ๐‘–ฮฆโˆ—๎€ท๎‚๐œ”๐›ผ๐›ฝ๎€ธ๎‚โˆง๐œ”๐‘–โˆ’๐œ™๐›ผ๐‘–๐‘๐œ”๐‘–๐‘˜โˆง๐œ”๐‘˜.(4.5) On the other hand, since ฮฆโˆ—๎€ท๐‘‘๎‚๐œ”๐›ผ๎€ธ=โˆ’ฮฆโˆ—๎‚€๎‚๐œ”๐›ผ๐›ฝโˆง๎‚๐œ”๐›ฝ๎‚=โˆ’ฮฆโˆ—๎€ท๎‚๐œ”๐›ผ๐›ฝ๎€ธโˆงฮฆโˆ—๎‚€๎‚๐œ”๐›ฝ๎‚=โˆ’ฮฆโˆ—๎€ท๎‚๐œ”๐›ผ๐›ฝ๎€ธโˆง๐œ™๐›ฝ๐‘–๐œ”๐‘–,(4.6) from (4.5), we have ๐‘๐œ™๐›ผ๐‘–|๐‘—๐œ”๐‘—โˆง๐œ”๐‘–+๐‘๐œ™๐›ผ๐‘–;๐‘Ž๐œ”๐‘Žโˆง๐œ”๐‘–=0.(4.7) That is, ๐‘๐œ™๐›ผ๐‘–;๐‘Ž=0,๐‘๐œ™๐›ผ๐‘–|๐‘—=๐‘๐œ™๐›ผ๐‘—|๐‘–.(4.8) Differentiating (4.2) and from (4.8), we get ๐‘๐œ™๐›ผ๐‘–|๐‘—๐‘‘๐œ”๐‘—+๎‚€๐‘‘๐‘๐œ™๐›ผ๐‘–|๐‘—๎‚โˆง๐œ”๐‘—=โˆ’๐‘‘๐œ™๐›ผ๐‘—โˆง๐‘๐œ”๐‘—๐‘–โˆ’๐œ™๐›ผ๐‘—๐‘‘๐‘๐œ”๐‘—๐‘–+๐‘‘๐œ™๐›ฝ๐‘–โˆงฮฆโˆ—๎€ท๎‚๐œ”๐›ผ๐›ฝ๎€ธ+๐œ™๐›ฝ๐‘–ฮฆโˆ—๎€ท๐‘‘๎‚๐œ”๐›ผ๐›ฝ๎€ธ.(4.9) then by (2.8), (2.11), and (4.3), we have ๎‚€๐‘๐œ™๐›ผ๐‘–||๐‘—||๐‘˜๐œ”๐‘˜+๐‘๐œ™๐›ผ๐‘–|๐‘—;๐‘Ž๐œ”๐‘Ž+๐‘๐œ™๐›ผ๐‘๐‘™|๐‘—๐œ”๐‘™๐‘–+๐‘๐œ™๐›ผ๐‘๐‘–|๐‘™๐œ”๐‘™๐‘—โˆ’๐‘๐œ™๐›ฝ๐‘–|๐‘—ฮฆโˆ—๎€ท๎‚๐œ”๐›ผ๐›ฝ๎€ธ๎‚โˆง๐œ”๐‘—=๐‘๐œ™๐›ผ๐‘๐‘–|๐‘—๐œ”๐‘—๐‘˜โˆง๐œ”๐‘˜+๎‚€โˆ’๐‘๐œ™๐›ผ๐‘—|๐‘™๐œ”๐‘™โˆ’๐œ™๐›ผ๐‘™๐‘๐œ”๐‘™๐‘—+๐œ™๐›ฝ๐‘—ฮฆโˆ—๎€ท๎‚๐œ”๐›ผ๐›ฝ๎€ธ๎‚โˆง๐‘๐œ”๐‘—๐‘–+๐œ™๐›ผ๐‘—๎€ท๐‘๐œ”๐‘—๐‘˜โˆง๐‘๐œ”๐‘˜๐‘–โˆ’๐‘ฮฉ๐‘—๐‘–๎€ธ+๐œ™๐›ฝ๐‘–ฮฆโˆ—๎‚€โˆ’๎‚๐œ”๐›ผ๐›พโˆง๎‚๐œ”๐›พ๐›ฝ+๎‚ฮฉ๐›ผ๐›ฝ๎‚+๎‚€๐‘๐œ™๐›ฝ๐‘–|๐‘—๐œ”๐‘—+๐œ™๐›ฝ๐‘™๐‘๐œ”๐‘™๐‘–โˆ’๐œ™๐›พ๐‘–ฮฆโˆ—๎‚€๎‚๐œ”๐›ฝ๐›พ๎‚๎‚โˆงฮฆโˆ—๎€ท๎‚๐œ”๐›ผ๐›ฝ๎€ธ.(4.10) Simplifying (4.10) yields ๐‘๐œ™๐›ผ๐‘–|๐‘—|๐‘˜๐œ”๐‘˜โˆง๐œ”๐‘—+๐‘๐œ™๐›ผ๐‘–|๐‘—;๐‘Ž๐œ”๐‘Žโˆง๐œ”๐‘—=โˆ’๐œ™๐›ผ๐‘—๐‘ฮฉ๐‘—๐‘–+๐œ™๐›ฝ๐‘–ฮฆโˆ—๎‚ฮฉ๐›ผ๐›ฝ.(4.11) Note that ฮฆโˆ—๎‚€๎‚ฮฉ๐›ผ๐›ฝ๎‚=ฮฆโˆ—๎‚€12๎‚๐‘…๐›ผ๐›ฝ๐›พ๐œŽ๎‚๐œ”๐›พโˆง๎‚๐œ”๐œŽ+๎‚๐‘ƒ๐›ผ๐›ฝ๐›พ๐”ž๎‚๐œ”๐›พโˆง๎‚๐œ”๐”ž๎‚=12๎‚๐‘…๐›ผ๐›ฝ๐›พ๐œŽ๐œ™๐›พ๐‘˜๐œ™๐œŽ๐‘˜๐œ”๐‘˜โˆง๐œ”๐‘™+๎‚๐‘ƒ๐›ผ๐›ฝ๐›พ๐”ž๐œ™๐›พ๐‘˜๐œ™๐”ž๐‘๐œ”๐‘˜โˆง๐œ”๐‘.(4.12) Substituting (2.11) and (4.12) into (4.11), by comparing the two sides of (4.11), we can get ๐‘๐œ™๐›ผ๐‘–|๐‘—|๐‘˜โˆ’๐‘๐œ™๐›ผ๐‘–|๐‘˜|๐‘—=๐œ™๐›ผ๐‘™๐‘๐‘…๐‘™๐‘–๐‘—๐‘˜โˆ’๎‚๐‘…๐›ผ๐›ฝ๐›พ๐œŽ๐œ™๐›ฝ๐‘–๐œ™๐›พ๐‘—๐œ™๐œŽ๐‘˜,๐‘๐œ™๐›ผ๐‘–|๐‘—;๐‘Ž=๐œ™๐›ผ๐‘™๐‘๐‘ƒ๐‘™๐‘–๐‘—๐‘Žโˆ’๎‚๐‘ƒ๐›ผ๐›ฝ๐›พ๐”ž๐œ™๐›ฝ๐‘–๐œ™๐›พ๐‘—๐œ™๐”ž๐‘Ž.(4.13)

By Definitions 2.1 and 2.2, we have the following Bochner-type formula.

Theorem 4.1. Let (๐‘€,๐น) be a Finsler manifold, and let (๎‚‹๎‚๐‘€,๐น) be a Berwald manifold. If the tension field of ๎‚‹๎‚๐œ™โˆถ(๐‘€,๐น)โ†’(๐‘€,๐น) is zero, then ๎“๐‘—๐’ฎ๐‘—โˆฃ๐‘—=||||โˆ‡๐‘‘๐œ™2+๎“๐‘–,๐‘—๎ซ๐œ™โˆ—๐‘’๐‘–,๐œ™โˆ—๐‘’๐‘—๎ฌ๐‘๐‘…๐‘–๐‘—โˆ’๎“๐‘–,๐‘—๎‚€||๐œ™โˆ—๐‘’๐‘–||2||๐œ™โˆ—๐‘’๐‘—||2โˆ’๎ซ๐œ™โˆ—๐‘’๐‘–,๐œ™โˆ—๐‘’๐‘—๐œ™๎ฌ๎ซโˆ—๐‘’๐‘–,๐œ™โˆ—๐‘’๐‘—๎ฌ๎‚๐พ๎‚‹๐‘€๎€ท๐œ™โˆ—๐‘’๐‘–โˆง๐œ™โˆ—๐‘’๐‘—๎€ธ,(4.14) where โˆ‘๐’ฎ=๐›ผ,๐‘–,๐‘—๐œ™๐›ผ๐‘–๐‘๐œ™๐›ผ๐‘–|๐‘—๐œ”๐‘—โˆถ=๐’ฎ๐‘—๐œ”๐‘—. In particular, if ๐‘€ and ๎‚‹๐‘€ are Riemannian manifolds, then โˆ‘๐‘—๐’ฎ๐‘—|๐‘— is ฮ”๐‘’(๐œ™).

Proof. Letting โˆ‘๐‘’(๐œ™)=1/2๐›ผ,๐‘–(๐œ™๐›ผ๐‘–)2, then we have ๎“de(๐œ™)=๐›ผ,๐‘–๐œ™๐›ผ๐‘–๐‘‘๐œ™๐›ผ๐‘–.(4.15) Substituting (4.2) into (4.15) yields ๎“de(๐œ™)=๐›ผ,๐‘–,๐‘—๎‚€๐œ™๐›ผ๐‘–๐‘๐œ™๐›ผ๐‘–|๐‘—๐œ”๐‘—+๐œ™๐›ผ๐‘–๐œ™๐›ผ๐‘—๐‘๐œ”๐‘—๐‘–โˆ’๐œ™๐›ผ๐‘–๐œ™๐›ฝ๐‘–ฮฆโˆ—๎€ท๎‚๐œ”๐›ผ๐›ฝ๎€ธ๎‚.(4.16) By (2.8), we can get ๎“๐›ผ,๐‘–,๐‘—๐œ™๐›ผ๐‘–๐œ™๐›ผ๐‘—๐‘๐œ”๐‘—๐‘–=12๎“๐›ผ,๐‘–,๐‘—๐œ™๐›ผ๐‘–๐œ™๐›ผ๐‘—๎‚€๐‘๐œ”๐‘—๐‘–+๐‘๐œ”๐‘–๐‘—๎‚๎“=โˆ’๐›ผ,๐‘–,๐‘—๐œ™๐›ผ๐‘–๐œ™๐›ผ๐‘—๐ด๐‘–๐‘—๐‘Ž๐œ”๐‘Ž+๎“๐›ผ,๐‘–,๐‘—๐œ™๐›ผ๐‘–๐œ™๐›ผ๐‘—ฬ‡๐ด๐‘–๐‘—๐‘˜๐œ”๐‘˜.(4.17) From (2.6) and (3.5), we can obtain ๎“๐›ผ,๐›ฝ,๐‘–๐œ™๐›ผ๐‘–๐œ™๐›ฝ๐‘–ฮฆโˆ—๎€ท๎‚๐œ”๐›ผ๐›ฝ๎€ธ=12๎“๐›ผ,๐›ฝ,๐‘–๐œ™๐›ผ๐‘–๐œ™๐›ฝ๐‘–ฮฆโˆ—๎‚€๎‚๐œ”๐›ผ๐›ฝ+๎‚๐œ”๐›ฝ๐›ผ๎‚๎“=โˆ’๐›ผ,๐›ฝ,๐‘–๎‚๐ด๐›ผ๐›ฝ๐”ž๐œ™๐›ผ๐‘–๐œ™๐›ฝ๐‘–๐œ™๐”ž๐‘Ž๐œ”๐‘Ž.(4.18) Substituting (4.17) and (4.18) into (4.16), we have ๎“de(๐œ™)=๐›ผ,๐‘–,๐‘—๐œ™๐›ผ๐‘–๐‘๐œ™๐›ผ๐‘–|๐‘—๐œ”๐‘—โˆ’๎“๐›ผ,๐‘–,๐‘—๐œ™๐›ผ๐‘–๐œ™๐›ผ๐‘—๐ด๐‘–๐‘—๐‘Ž๐œ”๐‘Ž+๎“๐›ผ,๐‘–,๐‘—๐œ™๐›ผ๐‘–๐œ™๐›ผ๐‘—ฬ‡๐ด๐‘–๐‘—๐‘˜๐œ”๐‘˜+๎“๐›ผ,๐›ฝ,๐‘–๎‚๐ด๐›ผ๐›ฝ๐”ž๐œ™๐›ผ๐‘–๐œ™๐›ฝ๐‘–๐œ™๐”ž๐‘Ž๐œ”๐‘Ž.(4.19) Defining โˆ‘๐’ฎ=๐›ผ,๐‘–,๐‘—๐œ™๐›ผ๐‘–๐‘๐œ™๐›ผ๐‘–|๐‘—๐œ”๐‘—โˆถ=๐’ฎ๐‘—๐œ”๐‘—, then we have ๎“๐‘—๐’ฎ๐‘—โˆฃ๐‘—=๎“๐‘–๎‚€๐‘โˆ‡ฬ‚๐‘’๐‘–๐’ฎ๐‘—๐œ”๐‘—๎‚๎€ทฬ‚๐‘’๐‘–๎€ธ=๎“๐‘–๎€ท๐‘‘๐’ฎ๐‘–๎€ธ๎€ทฬ‚๐‘’๐‘–๎€ธโˆ’๎“๐‘–,๐‘—๐’ฎ๐‘—๐‘๐œ”๐‘—๐‘–๎€ทฬ‚๐‘’๐‘–๎€ธ=๎“๐‘–๎€ท๐‘‘๐’ฎ๐‘–๎€ธ๎€ทฬ‚๐‘’๐‘–๎€ธโˆ’๎“๐‘–,๐‘™,๐‘—๐œ™๐›ผ๐‘™๐‘๐œ™๐›ผ๐‘๐‘™|๐‘—๐œ”๐‘—๐‘–๎€ทฬ‚๐‘’๐‘–๎€ธ.(4.20) On the other hand, from (4.2) and (4.3), we have ๎“๐‘–๎€ท๐‘‘๐’ฎ๐‘–๎€ธ๎€ทฬ‚๐‘’๐‘–๎€ธ=๎“๐›ผ,๐‘–,๐‘™๐‘‘๎‚€๐œ™๐›ผ๐‘™๐‘๐œ™๐›ผ๐‘™โˆฃ๐‘–๎‚๎€ทฬ‚๐‘’๐‘–๎€ธ=๎“๐‘๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™|๐‘–๎€ท๐‘‘๐œ™๐›ผ๐‘™๎€ธ๎€ทฬ‚๐‘’๐‘–๎€ธ+๎“๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๐‘‘๐‘๐œ™๐›ผ๐‘™|๐‘–๎€ทฬ‚๐‘’๐‘–๎€ธ=๎“๐‘๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™|๐‘–๎‚€๐‘๐œ™๐›ผ๐‘™|๐‘–+๐œ™๐›ผ๐‘๐‘๐œ”๐‘๐‘™๎€ทฬ‚๐‘’๐‘–๎€ธโˆ’๐œ™๐›ฝ๐‘™ฮฆโˆ—๎€ท๎‚๐œ”๐›ผ๐›ฝ๎€ธ๎€ทฬ‚๐‘’๐‘–๎€ธ๎‚+๎“๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๎‚€๐‘๐œ™๐›ผ๐‘™|๐‘–|๐‘–+๐‘๐œ™๐›ผ๐‘๐‘™|๐‘๐œ”๐‘๐‘–๎€ทฬ‚๐‘’๐‘–๎€ธ+๐‘๐œ™๐›ผ๐‘๐‘|๐‘–๐œ”๐‘๐‘™๎€ทฬ‚๐‘’๐‘–๎€ธโˆ’๐‘๐œ™๐›ฝ๐‘™|๐‘–ฮฆโˆ—๎€ท๎‚๐œ”๐›ผ๐›ฝ๎€ธ๎€ทฬ‚๐‘’๐‘–๎€ธ๎‚=๎“๐›ผ,๐‘–,๐‘™๎‚€๐‘๐œ™๐›ผ๐‘™|๐‘–๎‚2+๎“๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๐‘๐œ™๐›ผ๐‘™|๐‘–|๐‘–+๎“๐‘๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™|๐‘–๐œ™๐›ผ๐‘๐‘๐œ”๐‘๐‘™๎€ทฬ‚๐‘’๐‘–๎€ธ+๎“๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๐‘๐œ™๐›ผ๐‘๐‘|๐‘–๐œ”๐‘๐‘™๎€ทฬ‚๐‘’๐‘–๎€ธ+๎“๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๐‘๐œ™๐›ผ๐‘๐‘™|๐‘๐œ”๐‘๐‘–๎€ทฬ‚๐‘’๐‘–๎€ธ.(4.21) Substituting (4.21) into (4.20) and by (2.8), we can get ๎“๐‘—๐’ฎ๐‘–|๐‘–=๎“๐›ผ,๐‘–,๐‘™๎‚€๐‘๐œ™๐›ผ๐‘™|๐‘–๎‚2+๎“๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๐‘๐œ™๐›ผ๐‘™|๐‘–|๐‘–+๎“๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๐‘๐œ™๐›ผ๐‘|๐‘–๎€ท๐‘๐œ”๐‘๐‘™+๐‘๐œ”๐‘™๐‘๎€ธ๎€ทฬ‚๐‘’๐‘–๎€ธ=๎“๐›ผ,๐‘–,๐‘™๎‚€๐‘๐œ™๐›ผ๐‘™|๐‘–๎‚2+๎“๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๐‘๐œ™๐›ผ๐‘™|๐‘–|๐‘–๎“+2๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๐‘๐œ™๐›ผ๐‘|๐‘–ฬ‡๐ด๐‘๐‘™๐‘–.(4.22) From (4.3), we have ๎“๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๐‘๐œ™๐›ผ๐‘™|๐‘–|๐‘–=๎“๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๐‘๐œ™๐›ผ๐‘–|๐‘–|๐‘™+๎“๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๐œ™๐›ผ๐‘๐‘๐‘…๐‘๐‘–๐‘™๐‘–โˆ’๎“๐›ผ,๐‘–,๐‘™๎‚๐‘…๐›ผ๐›ฝ๐›พ๐œŽ๐œ™๐›ผ๐‘™๐œ™๐›ฝ๐‘–๐œ™๐›พ๐‘™๐œ™๐œŽ๐‘–.(4.23) Because ๐œ™ is a strongly harmonic map, from (3.2) and Lemma 3.1, we have that ๎“๐‘–๐‘๐œ™๐›ผ๐‘–|๐‘–=0,(4.24) Then ๎“0=๐‘–๐‘‘๐‘๐œ™๐›ผ๐‘–|๐‘–๎€ทฬ‚๐‘’๐‘™๎€ธ=๎“๐‘๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘–|๐‘–|๐‘™+๎“๐‘๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘๐‘|๐‘–๐œ”๐‘๐‘–๎€ทฬ‚๐‘’๐‘™๎€ธ+๎“๐‘๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘๐‘–|๐‘๐œ”๐‘๐‘–๎€ทฬ‚๐‘’๐‘™๎€ธ.(4.25) So ๎“๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๐‘๐œ™๐›ผ๐‘–|๐‘–|๐‘™๎“=โˆ’๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๐‘๐œ™๐›ผ๐‘|๐‘–๎€ท๐‘๐œ”๐‘๐‘–+๐‘๐œ”๐‘–๐‘๎€ธ๎€ทฬ‚๐‘’๐‘™๎€ธ๎“=โˆ’2๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๐‘๐œ™๐›ผ๐‘|๐‘–ฬ‡๐ดpil.(4.26) Substituting (4.23) and (4.26) into (4.22) yields ๎“๐‘—๐’ฎ๐‘—|๐‘—=๎“๐›ผ,๐‘–,๐‘™๎‚€๐‘๐œ™๐›ผ๐‘™|๐‘–๎‚2+๎“๐›ผ,๐‘–,๐‘™๐œ™๐›ผ๐‘™๐œ™๐›ผ๐‘๐‘๐‘…๐‘๐‘–๐‘™๐‘–โˆ’๎“๐›ผ,๐‘–,๐‘™๎‚๐‘…๐›ผ๐›ฝ๐›พ๐œŽ๐œ™๐›ผ๐‘™๐œ™๐›ฝ๐‘–๐œ™๐›พ๐‘™๐œ™๐œŽ๐‘–.(4.27) Then we get Theorem 4.1.

From Definitions 2.1 and 2.2, and Theorem 4.1, we can get the following rigidity theorem

Theorem 4.2. Let M be a compact Finsler manifold of dimension ๐‘›, and let ๎‚‹๐‘€ be a Berwald manifold of dimension ๐‘š. Suppose ๐‘Ž,๐‘ are positive constants, for any ๐‘‹โˆˆ๐œ‹โˆ—๐‘‡๐‘€, ๐‘Ric(๐‘‹)โ‰ฅ๐‘Ž, and ๐พ๎‚‹๐‘€โ‰ค๐‘, where ๐พ๎‚‹๐‘€ is the directional section curvature of ๎‚‹๐‘€. Suppose the tension field of ๎‚‹๐‘€๐œ™โˆถ๐‘€โ†’ is zero and ๐œ™ is nondegenerate. If ๐‘’๐‘›(๐œ™)โ‰ค๐‘Ž2(๐‘›โˆ’1)๐‘,(4.28) then ๐œ™ is a constant map or totally geodesic map. In particular, if ๐‘’(๐œ™)โ‰ค๐‘Ž/2๐‘, then ๐œ™ must be a constant map.

Proof. From Theorem 4.1, we have ๎“๐‘—๐’ฎ๐‘—|๐‘—=||||โˆ‡๐‘‘๐œ™2+๎“๐‘–,๐‘—๎ซ๐œ™โˆ—๐‘’๐‘–,๐œ™โˆ—๐‘’๐‘—๎ฌ๐‘๐‘…๐‘–๐‘—โˆ’๎“๐‘–,๐‘—๎‚€||๐œ™โˆ—๐‘’๐‘–||2||๐œ™โˆ—๐‘’๐‘—||2โˆ’๎ซ๐œ™โˆ—๐‘’๐‘–,๐œ™โˆ—๐‘’๐‘—๐œ™๎ฌ๎ซโˆ—๐‘’๐‘–,๐œ™โˆ—๐‘’๐‘—๎ฌ๎‚๐พ๎‚‹๐‘€๎€ท๐œ™โˆ—๐‘’๐‘–,๐œ™โˆ—๐‘’๐‘—๎€ธ(4.29) Diagonalizing โŸจ๐œ™โˆ—๐‘’๐‘–,๐œ™โˆ—๐‘’๐‘—โŸฉ at a point (๐‘ฅ,๐‘ฆ)โˆˆ๐‘†๐‘€, then we have ๎ซ๐œ™โˆ—๐‘’๐‘–,๐œ™โˆ—๐‘’๐‘—๎ฌ=๐œ†๐‘–๐›ฟ๐‘–๐‘—.(4.30) Fixing a point (๐‘ฅ,๐‘ฆ), then eigenvalues {๐œ†๐‘–} can be sorted as the following sequence: ๐œ†1(๐‘ฅ,๐‘ฆ)โ‰ฅ๐œ†2(๐‘ฅ,๐‘ฆ)โ‰ฅโ‹ฏโ‰ฅ๐œ†๐‘›(๐‘ฅ,๐‘ฆ)>0.(4.31) So, we have ๎“๐‘—๐’ฎ๐‘—|๐‘—โ‰ฅ||||โˆ‡๐‘‘๐œ™2๎ƒฉโˆ’๐‘4๐‘’2(๐œ™)โˆ’๐‘›๎“๐‘˜=1๐œ†2๐‘˜๎ƒช+2๐‘Ž๐‘’(๐œ™).(4.32) Then by the Schwarz inequality, we can get ๎“๐‘—๐’ฎ๐‘—|๐‘—โ‰ฅ||||โˆ‡๐‘‘๐œ™2๎‚ต+2๐‘’(๐œ™)๐‘Žโˆ’2(๐‘›โˆ’1)๐‘›๎‚ถ๐‘๐‘’(๐œ™).(4.33) Integrating the two sides of (4.33), we have ||||โˆ‡๐‘‘๐œ™2๎‚ต=0,(4.34)2๐‘’(๐œ™)๐‘Žโˆ’2(๐‘›โˆ’1)๐‘›๎‚ถ๐‘๐‘’(๐œ™)=0.(4.35) If ๐‘’(๐œ™)โ‰ 0, then ๐œ™ is a totally geodesic map and ๐‘’(๐œ™)โ‰ก(2(๐‘›โˆ’1)/๐‘›)๐‘. In particular, if ๐‘’(๐œ™)โ‰ค๐‘Ž/2๐‘, then ๐‘’(๐œ™)<(๐‘›/2(๐‘›โˆ’1))(๐‘Ž/๐‘). So by (4.35), we have ๐‘’(๐œ™)โ‰ก0,(4.36) that is, ๐œ™ is a constant map.

Acknowledgments

This work is supported by the NSF of China under Grant no. 11001069 and 11026105, the authors are also supported by the Hangdian Foundation KYS075608077. they thank anonymous referees for their valuable suggestions and pertinent criticisms.