Abstract

We investigate the existence of multiple positive solutions to the nonlinear ๐‘ž-fractional boundary value problem ๐‘๐ท๐‘Ž๐‘ž๐‘ข(๐‘ก)+๐‘Ž(๐‘ก)๐‘“(๐‘ข(๐‘ก))=0, 0โ‰ค๐‘กโ‰ค1,2<๐‘Žโ‰ค3, ๐‘ข(0)=๐ท2๐‘ž๐‘ข(0)=0,๐›พ๐ท๐‘ž๐‘ข(1)+๐›ฝ๐ท2๐‘ž๐‘ข(1)=0, by using a fixed point theorem in a cone.

1. Introduction

Fractional differential calculus is a discipline to which many researchers are dedicating their time, perhaps because of its demonstrated applications in various fields of science and engineering [1]. Many researchers studied the existence of solutions to fractional boundary value problems, for example, [2โ€“5].

The ๐‘ž-difference calculus or quantum calculus is an old subject that was initially developed by Jackson [6, 7], basic definitions and properties of ๐‘ž-difference calculus can be found in the book mentioned in [8].

The fractional ๐‘ž-difference calculus had its origin in the works by Al-Salam [9] and Agarwal [10]. More recently, maybe due to the explosion in research within the fractional differential calculus setting, new developments in this theory of fractional ๐‘ž-difference calculus were made, for example, ๐‘ž-analogues of the integral and differential fractional operators properties such as MittageLeffler function [11], just to mention some.

El-Shahed and Hassan [12] studied the existence of positive solutions of the ๐‘ž-difference boundary value problem: โˆ’๐ท2๐‘ž๐‘ข(๐‘ก)=๐‘Ž(๐‘ก)๐‘“(๐‘ข(๐‘ก)),0โ‰ค๐‘กโ‰ค1,๐›ผ๐‘ข(0)โˆ’๐›ฝ๐ท๐‘ž๐‘ข(0)=0,๐›พ๐‘ข(1)+๐›ฟ๐ท๐‘ž๐‘ข(1)=0.(1.1)

Ferreira [13] considered the existence of positive solutions to nonlinear ๐‘ž-difference boundary value problem: ๎‚€RL๐ท๐›ผ๐‘ž๐‘ข๎‚(๐‘ก)=โˆ’๐‘“(๐‘ก,๐‘ข(๐‘ก)),0<๐‘ก<1,1<๐›ผโ‰ค2,๐‘ข(0)=๐‘ข(1)=0.(1.2) In other paper, Ferreira [14] studied the existence of positive solutions to nonlinear ๐‘ž-difference boundary value problem:๎‚€RL๐ท๐›ผ๐‘ž๐‘ข๎‚๎€ท๐ท(๐‘ก)=โˆ’๐‘“(๐‘ก,๐‘ข(๐‘ก)),0<๐‘ก<1,2<๐›ผโ‰ค3,๐‘ข(0)=๐‘ž๐‘ข๎€ธ๎€ท๐ท(0)=0,๐‘ž๐‘ฆ๎€ธ(1)=๐›ฝโ‰ฅ0.(1.3)

In this paper, we consider the existence of positive solutions to nonlinear ๐‘ž-difference equation: ๐ถ๐ท๐›ผ๐‘ž๐‘ข+๐‘Ž(๐‘ก)๐‘“(๐‘ข(๐‘ก))=0,0โ‰ค๐‘กโ‰ค1,2<๐›ผโ‰ค3,(1.4) with the boundary conditions ๐‘ข(0)=๐ท2๐‘ž๐‘ข(0)=0,๐›พ๐ท๐‘ž๐‘ข(1)+๐›ฝ๐ท2๐‘ž๐‘ข(1)=0,(1.5) where ๐›พ,๐›ฝโ‰ฅ0 and ๐ถ๐ท๐›ผ๐‘ž is the fractional ๐‘ž-derivative of the Caputo type.

2. Preliminaries of Fractional ๐‘ž-Calculus

Let ๐‘žโˆˆ(0,1) and define [8] [๐›ผ]๐‘ž=๐‘ž๐‘Žโˆ’1๐‘žโˆ’1=๐‘ž๐‘Žโˆ’1+โ‹ฏ+1,๐‘Žโˆˆโ„œ.(2.1) The ๐‘ž-analogue of the power (๐‘Žโˆ’๐‘)๐‘› is (๐‘Žโˆ’๐‘)(0)=1,(๐‘Žโˆ’๐‘)(๐‘›)=๐‘›โˆ’1๎‘๐‘˜=0๎€ท๐‘Žโˆ’๐‘๐‘ž๐‘˜๎€ธ,๐‘Ž,๐‘โˆˆโ„œ,๐‘›โˆˆ๐‘.(2.2) If ๐›ผ is not a positive integer, then (๐‘Žโˆ’๐‘)(๐›ผ)=๐‘Ž๐›ผโˆž๎‘๐‘–=0๎€ท1โˆ’(๐‘/๐‘Ž)๐‘ž๐‘–๎€ธ(1โˆ’(๐‘/๐‘Ž)๐‘ž๐›ผ+๐‘–).(2.3) Note that if ๐‘=0, then ๐‘Ž(๐›ผ)=๐‘Ž๐›ผ. The ๐‘ž-gamma function is defined byฮ“๐‘ž(๐‘ฅ)=(1โˆ’๐‘ž)(๐‘ฅโˆ’1)(1โˆ’๐‘ž)๐‘ฅโˆ’1,๐‘ฅโˆˆโ„œโงต{0,โˆ’1,โˆ’2,โ€ฆ},0<๐‘ž<1(2.4) and satisfies ฮ“๐‘ž(๐‘ฅ+1)=[๐‘ฅ]๐‘žฮ“๐‘ž(๐‘ฅ).

The ๐‘ž-derivative of a function ๐‘“ is here defined by ๐ท๐‘ž๐‘‘๐‘“(๐‘ฅ)=๐‘ž๐‘“(๐‘ฅ)๐‘‘๐‘ž๐‘ฅ=๐‘“(๐‘ž๐‘ฅ)โˆ’๐‘“(๐‘ฅ)(๐‘žโˆ’1)๐‘ฅ(2.5) and ๐‘ž-derivatives of higher order by๐ท๐‘›๐‘ž๎ƒฏ๐‘“(๐‘ฅ)=๐‘“(๐‘ฅ)if๐ท๐‘›=0,๐‘ž๐ท๐‘ž๐‘›โˆ’1๐‘“(๐‘ฅ)if๐‘›โˆˆ๐‘.(2.6) The ๐‘ž-integral of a function ๐‘“ defined in the interval [0,๐‘] is given by๎€œ๐‘ฅ0๐‘“(๐‘ก)๐‘‘๐‘ž๐‘ก=๐‘ฅ(1โˆ’๐‘ž)โˆž๎“๐‘›=0๐‘“(๐‘ฅ๐‘ž๐‘›)๐‘ž๐‘›||๐‘ž||[].,0โ‰ค<1,๐‘ฅโˆˆ0,๐‘(2.7) If ๐‘Žโˆˆ[0,๐‘] and ๐‘“ is defined in the interval [0,๐‘], its integral from ๐‘Ž to ๐‘ is defined by ๎€œ๐‘๐‘Ž๐‘“(๐‘ก)๐‘‘๐‘ž๎€œ๐‘ก=๐‘0๐‘“(๐‘ก)๐‘‘๐‘ž๎€œ๐‘กโˆ’๐‘Ž0๐‘“(๐‘ก)๐‘‘๐‘ž๐‘ก.(2.8) Similarly as done for derivatives, an operator ๐ผ๐‘›๐‘ž can be defined, namely,๎€ท๐ผ0๐‘ž๐‘“๎€ธ๎€ท๐ผ(๐‘ฅ)=๐‘“(๐‘ฅ),๐‘›๐‘ž๐‘“๎€ธ(๐‘ฅ)=๐ผ๐‘ž๎€ท๐ผ๐‘ž๐‘›โˆ’1๐‘“๎€ธ(๐‘ฅ),๐‘›โˆˆ๐‘.(2.9) The fundamental theorem of calculus applies to these operators ๐ผ๐‘ž and ๐ท๐‘ž, that is, ๎€ท๐ท๐‘ž๐ผ๐‘ž๐‘“๎€ธ(๐‘ฅ)=๐‘“(๐‘ฅ),(2.10) and if ๐‘“ is continuous at ๐‘ฅ=0, then ๎€ท๐ผ๐‘ž๐ท๐‘ž๐‘“๎€ธ(๐‘ฅ)=๐‘“(๐‘ฅ)โˆ’๐‘“(0).(2.11) Basic properties of the two operators can be found in the book mentioned in [8]. We now point out three formulas that will be used later (๐‘–๐ท๐‘ž denotes the derivative with respect to variable ๐‘–) [13] []๐‘Ž(๐‘กโˆ’๐‘ )(๐›ผ)=๐‘Ž๐›ผ(๐‘กโˆ’๐‘ )(๐›ผ),(2.12)๐‘ก๐ท๐‘ž(๐‘กโˆ’๐‘ )(๐›ผ)=[๐›ผ]๐‘ž(๐‘กโˆ’๐‘ )(๐›ผโˆ’1),(2.13)๎‚ต๐‘ฅ๐ท๐‘ž๎€œ๐‘ฅ0๐‘“(๐‘ฅ,๐‘ก)๐‘‘๐‘ž๐‘ก๎‚ถ๎€œ(๐‘ฅ)=๐‘ฅ0๐‘ฅ๐ท๐‘ž๐‘“(๐‘ฅ,๐‘ก)๐‘‘๐‘ž๐‘ก+๐‘“(๐‘ž๐‘ฅ,๐‘ฅ).(2.14)

Remark 2.1. We note that if ๐›ผ>0 and ๐‘Žโ‰ค๐‘โ‰ค๐‘ก, then (๐‘กโˆ’๐‘Ž)(๐›ผ)โ‰ฅ(๐‘กโˆ’๐‘)(๐›ผ) [13].
The following definition was considered first in [10].

Definition 2.2. Let ๐›ผโ‰ฅ0 and ๐‘“ be a function defined on [0,1]. The fractional ๐‘ž-integral of the Riemann-Liouville type is (RL๐ผ0๐‘ž๐‘“)(๐‘ฅ)=๐‘“(๐‘ฅ) and ๎‚€RL๐ผ๐›ผ๐‘ž๐‘“๎‚1(๐‘ฅ)=ฮ“๐‘ž(๎€œ๐›ผ)๐‘ฅ๐‘Ž(๐‘ฅโˆ’๐‘ž๐‘ก)(๐›ผโˆ’1)๐‘“(๐‘ก)๐‘‘๐‘ž๐‘ก,๐›ผโˆˆโ„œ+[].,๐‘ฅโˆˆ0,1(2.15)

Definition 2.3 (see [15]). The fractional ๐‘ž-derivative of the Riemann-Liouville type of order ๐›ผโ‰ฅ0 is defined by (RL๐ท0๐‘ž๐‘“)(๐‘ฅ)=๐‘“(๐‘ฅ) and ๎‚€RL๐ท๐›ผ๐‘ž๐‘“๎‚๎€ท๐ท(๐‘ฅ)=๐‘ž[๐›ผ]๐ผ๐‘ž[๐›ผ]โˆ’๐›ผ๐‘“๎€ธ(๐‘ฅ),๐›ผ>0,(2.16) where [๐›ผ] is the smallest integer greater than or equal to ๐›ผ.

Definition 2.4 (see [15]). The fractional ๐‘ž-derivative of the Caputo type of order ๐›ผโ‰ฅ0 is defined by ๎‚€๐ถ๐ท๐›ผ๐‘ž๐‘“๎‚๎€ท๐ผ(๐‘ฅ)=๐‘ž[๐›ผ]โˆ’๐›ผ๐ท๐‘ž[๐›ผ]๐‘“๎€ธ(๐‘ฅ),๐›ผ>0,(2.17) where [๐›ผ] is the smallest integer greater than or equal to ๐›ผ.

Lemma 2.5. Let ๐›ผ,๐›ฝโ‰ฅ0 and let ๐‘“ be a function defined on [0,1]. Then, the next formulas hold: (1)(๐ผ๐›ฝ๐‘ž๐ผ๐›ผ๐‘ž๐‘“)(๐‘ฅ)=(๐ผ๐‘ž๐›ผ+๐›ฝ๐‘“)(๐‘ฅ), (2)(๐ท๐›ผ๐‘ž๐ผ๐›ผ๐‘ž๐‘“)(๐‘ฅ)=๐‘“(๐‘ฅ).

The next result is important in the sequel. It was proved in a recent work by the author of [13].

Theorem 2.6. Let ๐›ผ>0 and ๐‘›โˆˆ๐‘. Then, the following equality holds: ๎‚€RL๐ผ๐›ผ๐‘žRL๐ท๐‘›๐‘ž๐‘“๎‚(๐‘ฅ)=RL๐ท๐‘›๐‘žRL๐ผ๐›ผ๐‘ž๎“๐‘“(๐‘ฅ)โˆ’๐›ผโˆ’1๐‘˜=0๐‘ฅ๐›ผโˆ’๐‘›+๐‘˜ฮ“๐‘ž๎€ท๐ท(๐›ผ+๐‘˜โˆ’๐‘›+1)๐‘˜๐‘ž๐‘“๎€ธ(0).(2.18)

Theorem 2.7 (see [15]). Let ๐›ผ>0 and ๐‘›โˆˆโ„œ+โงต๐‘. Then, the following equality holds: ๎‚€๐ผ๐›ผ๐‘ž๐ถ๐ท๐›ผ๐‘ž๐‘“๎‚๎“(๐‘ฅ)=๐‘“(๐‘ฅ)โˆ’[๐›ผ]โˆ’1๐‘˜=0๐‘ฅ๐‘˜ฮ“๐‘ž๎€ท๐ท(๐‘˜+1)๐‘˜๐‘ž๐‘“๎€ธ(0).(2.19)

3. Fractional Boundary Value Problem

We will consider now the question of existence of positive solutions to the following problem:๐ถ๐ท๐›ผ๐‘ž๐‘ข(๐‘ก)+๐‘Ž(๐‘ก)๐‘“(๐‘ข(๐‘ก))=0,0โ‰ค๐‘กโ‰ค1,2<๐›ผโ‰ค3,๐‘ข(0)=๐ท2๐‘ž๐‘ข(0)=0,๐›พ๐ท๐‘ž๐‘ข(1)+๐›ฝ๐ท2๐‘ž๐‘ข(1)=0,(3.1) where ๐›พ,๐›ฝโ‰ฅ0,๐ถ๐ท๐›ผ๐‘ž is the fractional ๐‘ž-derivative of the Caputo type, and ๐‘“โˆˆ๐ถ([0,โˆž),[0,โˆž)),๐‘Žโˆˆ๐ถ([0,1],[0,โˆž)) such that โˆซ10๐‘Ž(๐‘ )๐‘‘๐‘ž๐‘ >0. To that end, we need the following theorem.

Theorem 3.1 (see [16, 17]). Let ๐‘‹ be a Banach space, and ๐‘ƒโŠ‚๐‘‹ is a cone in ๐‘‹. Assume that ฮฉ1 and ฮฉ2 are open subsets of ๐‘‹ with 0โˆˆฮฉ1 and ฮฉ1โŠ‚ฮฉ2.
Let๐‘‡โˆถ๐‘ƒโˆฉ(ฮฉ2โงตฮฉ1)โ†’๐‘ƒ be completely continuous operator. In addition suppose either: P1:โ€–๐‘‡๐‘ขโ€–โ‰คโ€–๐‘ขโ€–,๐‘ขโˆˆ๐‘ƒโˆฉ๐œ•ฮฉ1 and โ€–๐‘‡๐‘ขโ€–โ‰ฅโ€–๐‘ขโ€–,๐‘ขโˆˆ๐‘ƒโˆฉ๐œ•ฮฉ2 or P2:โ€–๐‘‡๐‘ขโ€–โ‰คโ€–๐‘ขโ€–,๐‘ขโˆˆ๐‘ƒโˆฉ๐œ•ฮฉ2 and โ€–๐‘‡๐‘ขโ€–โ‰ฅโ€–๐‘ขโ€–,๐‘ขโˆˆ๐‘ƒโˆฉ๐œ•ฮฉ1,holds. Then, ๐‘‡ has a fixed point in ๐‘ƒโˆฉ(ฮฉ2โงตฮฉ1).

Lemma 3.2. Let ๐‘ฆโˆˆ๐ถ[0,1]; then the boundary value problem ๐ถ๐ท๐›ผ๐‘ž๐‘ข(๐‘ก)+๐‘ฆ(๐‘ก)=0,0โ‰ค๐‘กโ‰ค1,2<๐›ผโ‰ค3,๐‘ข(0)=๐ท2๐‘ž๐‘ข(0)=0,๐›พ๐ท๐‘ž๐‘ข(1)+๐›ฝ๐ท2๐‘ž๐‘ข(1)=0(3.2) has a unique solution ๎€œ๐‘ข(๐‘ก)=10๐บ(๐‘ก,๐‘ž๐‘ )๐‘ฆ(๐‘ )๐‘‘๐‘ž๐‘ ,(3.3) where โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๐บ(๐‘ก,๐‘ )=๐‘ก(1โˆ’๐‘ )(๐›ผโˆ’2)ฮ“๐‘ž+๐›ฝ(๐›ผโˆ’1)๐›พ๐‘ก(1โˆ’๐‘ )(๐›ผโˆ’3)ฮ“๐‘ž๐‘ก(๐›ผโˆ’2)0โ‰ค๐‘กโ‰ค๐‘ โ‰ค1,(1โˆ’๐‘ )(๐›ผโˆ’2)ฮ“๐‘ž+๐›ฝ(๐›ผโˆ’1)๐›พ๐‘ก(1โˆ’๐‘ )(๐›ผโˆ’3)ฮ“๐‘žโˆ’(๐›ผโˆ’2)(๐‘กโˆ’๐‘ )(๐›ผโˆ’1)ฮ“๐‘ž(๐›ผ)0โ‰ค๐‘ โ‰ค๐‘กโ‰ค1.(3.4)

Proof. We may apply Lemma 2.5 and Theorem 2.7; we see that ๐ท๐‘ข(๐‘ก)=๐‘ข(0)+๐‘ž๐‘ข(0)ฮ“๐‘ž๐ท(2)๐‘ก+2๐‘ž๐‘ข(0)ฮ“๐‘ž๐‘ก(3)2โˆ’๐ผ๐›ผ๐‘ž๐‘ฆ(๐‘ก).(3.5) By using the boundary conditions ๐‘ข(0)=๐ท2๐‘ž๐‘ข(0)=0, we get ๎€œ๐‘ข(๐‘ก)=๐ด๐‘กโˆ’๐‘ก0(๐‘กโˆ’๐‘ž๐‘ )(๐›ผโˆ’1)ฮ“๐‘ž(๐›ผ)๐‘ฆ(๐‘ )๐‘‘๐‘ž๐‘ .(3.6) Differentiating both sides of (3.6), one obtains, with the help of (2.13), and (2.14) ๎€ท๐ท๐‘ž๐‘ข๎€ธ๎€œ(๐‘ก)=๐ดโˆ’๐‘ก0[]๐›ผโˆ’1๐‘ž(๐‘กโˆ’๐‘ž๐‘ )(๐›ผโˆ’2)ฮ“๐‘ž(๐›ผ)๐‘ฆ(๐‘ )๐‘‘๐‘ž๎€ท๐ท๐‘ ,2๐‘ž๐‘ข๎€ธ๎€œ(๐‘ก)=โˆ’๐‘ก0[]๐›ผโˆ’1๐‘ž[]๐›ผโˆ’2๐‘ž(๐‘กโˆ’๐‘ž๐‘ )(๐›ผโˆ’3)ฮ“๐‘ž(๐›ผ)๐‘ฆ(๐‘ )๐‘‘๐‘ž๐‘ .(3.7) Then, by the condition ๐›พ๐ท๐‘ž๐‘ข(1)+๐›ฝ๐ท2๐‘ž๐‘ข(1)=0, we have ๎€œ๐ด=10(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’2)ฮ“๐‘ž(๐›ผโˆ’1)๐‘ฆ(๐‘ )๐‘‘๐‘ž๐›ฝ๐‘ +๐›พ๎€œ10(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’3)ฮ“๐‘ž(๐›ผโˆ’2)๐‘ฆ(๐‘ )๐‘‘๐‘ž๐‘ .(3.8) The proof is complete.

Lemma 3.3. Function ๐บ defined above satisfies the following conditions: ๐บ(๐‘ก,๐‘ž๐‘ )โ‰ฅ0,๐บ(1,๐‘ž๐‘ )โ‰ฅ๐บ(๐‘ก,๐‘ž๐‘ ),0โ‰ค๐‘ก,๐‘ โ‰ค1,(3.9)๐บ(๐‘ก,๐‘ž๐‘ )โ‰ฅ๐‘”(๐‘ก)๐บ(1,๐‘ž๐‘ ),0โ‰ค๐‘ก,๐‘ โ‰ค1with๐‘”(๐‘ก)=๐‘ก.(3.10)

Proof. We start by defining two functions ๐‘”1(๐‘ก,๐‘ )=๐‘ก(1โˆ’๐‘ )(๐›ผโˆ’2)ฮ“๐‘ž+๐›ฝ(๐›ผโˆ’1)๐›พ๐‘ก(1โˆ’๐‘ )(๐›ผโˆ’3)ฮ“๐‘žโˆ’(๐›ผโˆ’2)(๐‘กโˆ’๐‘ )(๐›ผโˆ’1)ฮ“๐‘ž๐‘”(๐›ผ),0โ‰ค๐‘ โ‰ค๐‘กโ‰ค1,2(๐‘ก,๐‘ )=๐‘ก(1โˆ’๐‘ )(๐›ผโˆ’2)ฮ“๐‘ž+๐›ฝ(๐›ผโˆ’1)๐›พ๐‘ก(1โˆ’๐‘ )(๐›ผโˆ’3)ฮ“๐‘ž(๐›ผโˆ’2),0โ‰ค๐‘กโ‰ค๐‘ โ‰ค1.(3.11) It is clear that ๐‘”2(๐‘ก,๐‘ž๐‘ )โ‰ฅ0. Now, ๐‘”1(0,๐‘ž๐‘ )=0 and, in view of Remark 2.1, for ๐‘กโ‰ 0๐‘”1(๐‘ก,๐‘ž๐‘ )=๐‘ก(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’2)ฮ“๐‘ž+๐›ฝ(๐›ผโˆ’1)๐›พ๐‘ก(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’3)ฮ“๐‘žโˆ’(๐›ผโˆ’2)(๐‘กโˆ’๐‘ž๐‘ )(๐›ผโˆ’1)ฮ“๐‘žโ‰ฅ(๐›ผ)๐‘ก(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’2)ฮ“๐‘ž+๐›ฝ(๐›ผโˆ’1)๐›พ๐‘ก(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’3)ฮ“๐‘žโˆ’๐‘ก(๐›ผโˆ’2)๐›ผโˆ’1(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’1)ฮ“๐‘žโ‰ฅ(๐›ผ)๐‘ก(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’2)ฮ“๐‘ž+๐›ฝ(๐›ผโˆ’1)๐›พ๐‘ก(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’3)ฮ“๐‘žโˆ’(๐›ผโˆ’2)๐‘ก(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’1)ฮ“๐‘ž=๐‘ก(๐›ผ)ฮ“๐‘ž๎€บ[](๐›ผ)๐›ผโˆ’1๐‘ž(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’2)โˆ’(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’1)๎€ปโ‰ฅ0.(3.12) Therefore, ๐บ(๐‘ก,๐‘ž๐‘ )โ‰ฅ0. Moreover, for fixed ๐‘ โˆˆ[0,1], ๐‘ก๐ท๐‘ž๐‘”1(๐‘ก,๐‘ž๐‘ )=(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’2)ฮ“๐‘ž+๐›ฝ(๐›ผโˆ’1)๐›พ(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’3)ฮ“๐‘žโˆ’[](๐›ผโˆ’2)๐›ผโˆ’1๐‘ž(๐‘กโˆ’๐‘ž๐‘ )(๐›ผโˆ’2)ฮ“๐‘žโ‰ฅ1(๐›ผ)ฮ“๐‘ž๎€บ[](๐›ผ)๐›ผโˆ’1๐‘ž(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’2)โˆ’[]๐›ผโˆ’1๐‘ž(๐‘กโˆ’๐‘ž๐‘ )(๐›ผโˆ’2)๎€ป=1ฮ“๐‘ž๎€บ(๐›ผโˆ’1)(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’2)โˆ’(๐‘กโˆ’๐‘ž๐‘ )(๐›ผโˆ’2)๎€ปโ‰ฅ0,(3.13) that is, ๐‘”1(๐‘ก,๐‘ž๐‘ ) is an increasing function of ๐‘ก. Obviously, ๐‘”2(๐‘ก,๐‘ž๐‘ ) is increasing in ๐‘ก, therefore; ๐บ(๐‘ก,๐‘ž๐‘ ) is an increasing function of ๐‘ก for fixed ๐‘ โˆˆ[0,1]. This concludes the proof of (3.9).
Suppose now that ๐‘กโ‰ฅ๐‘ž๐‘ . Then, ๐บ(๐‘ก,๐‘ž๐‘ )=๐›พ[]๐บ(1,๐‘ž๐‘ )๐›ผโˆ’1๐‘ž๐‘ก(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’2)[]+๐›ฝ๐›ผโˆ’1๐‘ž[]๐›ผโˆ’2๐‘ž๐‘ก(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’3)โˆ’๐›พ(๐‘กโˆ’๐‘ž๐‘ )(๐›ผโˆ’1)๐›พ[]๐›ผโˆ’1๐‘ž(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’2)[]+๐›ฝ๐›ผโˆ’1๐‘ž[]๐›ผโˆ’2๐‘ž(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’3)โˆ’๐›พ(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’1)โ‰ฅ๐›พ[]๐›ผโˆ’1๐‘ž๐‘ก(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’2)[]+๐›ฝ๐›ผโˆ’1๐‘ž[]๐›ผโˆ’2๐‘ž๐‘ก(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’3)โˆ’๐›พ๐‘ก(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’1)๐›พ[]๐›ผโˆ’1๐‘ž(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’2)[]+๐›ฝ๐›ผโˆ’1๐‘ž[]๐›ผโˆ’2๐‘ž(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’3)โˆ’๐›พ(1โˆ’๐‘ž๐‘ )(๐›ผโˆ’1)=๐‘ก.(3.14) If ๐‘กโ‰ค๐‘ž๐‘ , Then ๐บ(๐‘ก,๐‘ž๐‘ )๐บ(1,๐‘ž๐‘ )=๐‘ก,(3.15) and this finishes the proof of (3.10).

Remark 3.4. If we let 0<๐œ<1, then min[]๐‘กโˆˆ๐œ,1๐บ(๐‘ก,๐‘ž๐‘ )โ‰ฅ๐œ๐บ(1,๐‘ž๐‘ ),for[].๐‘ โˆˆ0,1(3.16) Let ๐‘‹=๐ถ[0,1] be the Banach space endowed with norm โ€–๐‘ขโ€–=sup๐‘กโˆˆ[๐œ,1]|๐‘ข(๐‘ก)|. Let ๐œ=๐‘ž๐‘› [18] for a given ๐‘›โˆˆ๐‘ and define the cone ๐‘ƒโŠ‚๐‘‹ by ๎‚ป๐‘ƒ=๐‘ขโˆˆ๐‘‹โˆถ๐‘ข(๐‘ก)โ‰ฅ0,min[]๐‘กโˆˆ๐œ,1๎‚ผ,๐‘ข(๐‘ก)โ‰ฅ๐œโ€–๐‘ขโ€–(3.17) and the operator ๐‘‡โˆถ๐‘ƒโ†’๐‘‹ is defined by ๎€œ๐‘‡๐‘ข(๐‘ก)=10๐บ(๐‘ก,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘“(๐‘ข(๐‘ ))๐‘‘๐‘ž๐‘ .(3.18)

Remark 3.5. It follows from the nonnegativeness and continuity of ๐บ,๐‘Ž, and ๐‘“ that the operator ๐‘‡โˆถ๐‘ƒโ†’๐‘‹ is completely continuous [3]. Moreover, for๐‘ขโˆˆ๐‘ƒ,๐‘‡๐‘ข(๐‘ก)โ‰ฅ0 on [0,1] and min๐‘กโˆˆ[๐œ,1]๐‘‡๐‘ข(๐‘ก)=min๐‘กโˆˆ[๐œ,1]๎€œ10๐บ(๐‘ก,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘“(๐‘ข(๐‘ ))๐‘‘๐‘ž๐‘ ๎€œโ‰ฅ๐œ10๐บ(1,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘“(๐‘ข(๐‘ ))๐‘‘๐‘ž๐‘ =๐œโ€–๐‘‡๐‘ขโ€–(3.19) that is, ๐‘‡(๐‘ƒ)โŠ‚๐‘ƒ.
Throughout this section, we will use the following notations:ฮ›1=๎‚ต๎€œ10๐บ(1,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ž๐‘ ๎‚ถโˆ’1,ฮ›2=๎‚ต๐œ2๎€œ1๐œ๐บ(1,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ž๐‘ ๎‚ถโˆ’1.(3.20) It is obvious that ฮ›1,ฮ›2>0. Also, we define ๐‘“0=lim๐‘ขโ†’0+max0โ‰ค๐‘กโ‰ค1๐‘“(๐‘ข)๐‘ข,๐‘“โˆž=lim๐‘ขโ†’+โˆžmax0โ‰ค๐‘กโ‰ค1๐‘“(๐‘ข)๐‘ข.(3.21)

Theorem 3.6. Let ๐œ=๐‘ž๐‘› with ๐‘›โˆˆ๐‘. And assume that the following assumptions are satisfied: (H1)๐‘“0=๐‘“โˆž=0; (H2)There exist constant ๐‘˜>0 and ๐‘€โˆˆ(ฮ›2,โˆž) such that ๐‘“(๐‘ข)โ‰ฅ๐‘€๐‘˜,for[].๐‘ขโˆˆ๐œ๐‘˜,๐‘˜(3.22) Then, the BVP (3.1) has at least two positive solutions ๐‘ข1,๐‘ข2, such that โ€–โ€–๐‘ข๐‘Ÿ<1โ€–โ€–โ€–โ€–๐‘ข<๐‘˜<2โ€–โ€–<๐‘….(3.23)

Proof. First, since ๐‘“0=0, for any ๐œ€โˆˆ(0,ฮ›1) there exists ๐‘Ÿโˆˆ(0,๐‘˜) such that ๐‘“(๐‘ข)โ‰ค๐œ€๐‘ข,for[].๐‘ขโˆˆ0,๐‘Ÿ(3.24) Letting ฮฉ1={๐‘ขโˆˆ๐‘ƒโˆถโ€–๐‘ขโ€–<๐‘Ÿ}, for any ๐‘ขโˆˆ๐œ•ฮฉ1, we get โ€–๐‘‡๐‘ขโ€–=max[]๐‘กโˆˆ0,1๎€œ10๐บ(๐‘ก,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘“(๐‘ข(๐‘ ))๐‘‘๐‘ž๐‘ ๎€œโ‰ค๐œ€๐‘Ÿ10๐บ(1,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ž๐‘ <๐‘Ÿ=โ€–๐‘ขโ€–,(3.25) which yields โ€–๐‘‡๐‘ขโ€–โ‰คโ€–๐‘ขโ€–,โˆ€๐‘ขโˆˆ๐œ•ฮฉ1.(3.26) Thus, ๐‘–๎€ท๐‘‡,ฮฉ1๎€ธ,๐‘ƒ=1.(3.27) Second, in view of ๐‘“โˆž=0, then for any ๐œ€โˆˆ(0,ฮ›1), there exists ๐‘™>๐‘˜ such that ๐‘“(๐‘ข)โ‰ค๐œ€๐‘ข,for[๐‘ขโˆˆ๐‘™,โˆž)(3.28) and we consider two cases.Case 1 (2.12). Suppose that ๐‘“(๐‘ข) is unbounded; then from ๐‘“โˆˆ๐ถ([0,โˆž),[0,โˆž)), there is ๐‘…>๐‘™ such that ๐‘“(๐‘ข)โ‰ค๐‘“(๐‘…),for[],๐‘ขโˆˆ0,๐‘…(3.29) then, from (3.28) and (3.29), one has ๐‘“(๐‘ข)โ‰ค๐‘“(๐‘…)โ‰ค๐œ€๐‘…,for[].๐‘ขโˆˆ0,๐‘…(3.30) For ๐‘ขโˆˆ๐œ•ฮฉ2, we get โ€–๐‘‡๐‘ขโ€–=max[]๐‘กโˆˆ0,1๎€œ10๐บ(๐‘ก,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘“(๐‘ข(๐‘ ))๐‘‘๐‘ž๐‘ โ‰ค๎€œ10๐บ(1,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘“(๐‘…)๐‘‘๐‘ž๐‘ ๎€œโ‰ค๐œ€๐‘…10๐บ(1,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ž๐‘ <๐‘…=โ€–๐‘ขโ€–.(3.31)Case 2 (2.13). Suppose that ๐‘“(๐‘ข) is bounded and ๐ฟ=max0โ‰ค๐‘กโ‰ค1,0โ‰ค๐‘ขโ‰ค๐‘…|๐‘“(๐‘ก,๐‘ข(๐‘ก))|. Taking ๐‘…=max{๐ฟ/๐œ€,๐‘˜}, for ๐‘ขโˆˆ๐œ•ฮฉ2, we get โ€–๐‘‡๐‘ขโ€–=max[]๐‘กโˆˆ0,1๎€œ10๐บ(๐‘ก,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘“(๐‘ข(๐‘ ))๐‘‘๐‘ž๐‘ ๎€œโ‰ค๐ฟ10๐บ(1,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ž๐‘ ๎€œโ‰ค๐œ€๐‘…10๐บ(1,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ž๐‘ <๐‘…=โ€–๐‘ขโ€–.(3.32) Hence, in either case, we always may set ฮฉ2={๐‘ขโˆˆ๐‘ƒโˆถโ€–๐‘ขโ€–<๐‘…} such that โ€–๐‘‡๐‘ขโ€–โ‰คโ€–๐‘ขโ€–,โˆ€๐‘ขโˆˆ๐œ•ฮฉ2.(3.33) Thus, ๐‘–๎€ท๐‘‡,ฮฉ2๎€ธ,๐‘ƒ=1.(3.34) Finally, set ฮฉ={๐‘ขโˆˆ๐‘ƒโˆถโ€–๐‘ขโ€–<๐‘˜}, for ๐‘ขโˆˆ๐œ•ฮฉ, since min๐‘กโˆˆ[๐œ,1]๐‘ข(๐‘ก)โ‰ฅ๐œโ€–๐‘ขโ€–=๐œ๐‘˜ for ๐‘ขโˆˆ๐‘ƒ, and hence, for any ๐‘ขโˆˆ๐œ•ฮฉ, from (H2), we can get โ€–๐‘‡๐‘ขโ€–=max[]๐‘กโˆˆ0,1๎€œ10๐บ(๐‘ก,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘“(๐‘ข(๐‘ ))๐‘‘๐‘ž๐‘ ๎€œโ‰ฅ๐œ10๐บ(1,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘“(๐‘ข(๐‘ ))๐‘‘๐‘ž๐‘ โ‰ฅ๐œ2๎€œ๐‘€๐‘˜1๐œ๐บ(1,๐‘ž๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ž๐‘ >๐‘˜=โ€–๐‘ขโ€–,(3.35) which implies โ€–๐‘‡๐‘ขโ€–โ‰ฅโ€–๐‘ขโ€–,โˆ€๐‘ขโˆˆ๐œ•ฮฉ.(3.36) Thus, ๐‘–(๐‘‡,ฮฉ,๐‘ƒ)=0.(3.37) Hence, since ๐‘Ÿ<๐‘˜<๐‘… and from (3.27), (3.34), and (3.37), it follows from the additivity of the fixed point index that ๐‘–๎‚€๐‘‡,ฮฉ2โงต๎‚๐‘–๎‚€ฮฉ,๐‘ƒ=1,๐‘‡,ฮฉโงตฮฉ1๎‚,๐‘ƒ=โˆ’1.(3.38) Thus, ๐‘‡ has two positive solutions ๐‘ข1,๐‘ข2 such that ๐‘Ÿ<โ€–๐‘ข1โ€–<๐‘˜<โ€–๐‘ข2โ€–<๐‘… for ๐‘กโˆˆ(0,1]. So, the proof is complete.