Abstract

This paper is interested in a free boundary problem modelling a phenomenon of cavitation in hydrodynamic lubrication. We reformulate the problem (see Boukrouche, (1993)) in a large context by introducing two positive parameters, namely, ๐‘0 and ๐‘Ž. We build a weak formulation and establish the existence of the solution to the problem.

1. Introduction

The lubrication fields have many applications; one example is the study of the rotary mechanisms such as the bearing, joints. The study is concerned in looking for a moving free boundary problem related to the cavitation modelling in lubrication (see [1โ€“4]). The experimental results make evidence of the occurrence of two distinct zones, one full of the fluid, namely, the saturated zone ฮฉ(๐‘ก); the other ฮฉ๐‘ (ฮฉ๐‘=ฮฉโงตฮฉ(๐‘ก), where ฮฉ is the global domain), is the cavitated zone (e.g., the mixture of fluid and air). Two approaches have been used to cope with phenomena. One of them [5] homogenizes the phenomena and considers it as a 2D phenomena, so introducing ๐œƒ the saturation variable (lubricant concentration); the other one [6] takes full account of the three-dimensional character of this phenomena, with appearance of air bubbles and introduces in ฮฉ๐‘ the relative height as supplementary unknown (for more details, see [1, 3]). We use here the first approach but both approaches lead to the same mathematical problem. In this paper, we take the problem studied in [1โ€“3] and rewrite it, here, in a large context, by introducing two positive parameters, namely, ๐‘0 and ๐‘Ž. This formulation of the problem gives as advantages a proportionality relation between ๐‘0 and the pressure ๐‘, and the parameter ๐‘Ž which allows the control of a squeezing effects. The mathematical modelling is made according to the model of Jakobsson-Floberg (see [1, 3]), where the lubricant is not defined only by a pressure ๐‘ but also by a saturation variable ๐œƒ. This variable ๐œƒ characterizes the cavitation phenomena, where ๐œƒโ‰ก1 in ฮฉ(๐‘ก) and 0โ‰ค๐œƒ<1 in ฮฉ๐‘. The interface between ฮฉ(๐‘ก) and ฮฉ๐‘ constitutes the moving free boundary denoted by ฮ“(๐‘ก). The problem is a convection-diffusion problem type, and the Reynolds equation is elliptic in the saturated zone and hyperbolic in the other one. We note that the study of existence and uniqueness point of views to the problem has been established in [3] in the particular case of the ๐‘0=0 and ๐‘Ž=1. For this, the author proved the existence of solution for this kind of problem by way of an approximation by an elliptic problem. In our work, we followed, exactly the same way, and the aim of this study is to construct a weak formulation and establish the existence of solution to the problem.

The plan of the paper is as follows. Section 2 proposes a state of the problem and a weak formulation. Section 3 introduces an elliptic nonlinear problem and gives the existence and uniqueness of the solution to this problem. Section 4 proposes an approximation of the elliptic nonlinear problem by a family of linear problems and proves a priori estimate. Last section gives a theorem of existence of the solution to the problem.

2. Notations and State of the Problem

2.1. Description of the Phenomenon

We consider a global domain ฮฉ with border ๐œ•ฮฉ. The fluid is injected at a given rate ๐‘ค over the fixed (internal) boundary ฮ“๐ผ (ฮ“ex=๐œ•ฮฉโงตฮ“๐ผ). For each ๐‘กโˆˆ]0;๐‘‡[, the experimental results make evidence of the occurrence of two distinct zones: one full of the fluid is the saturated zone ฮฉ(๐‘ก), where the pressure ๐‘ (๐‘>0) and the saturation variable ๐œƒ(๐œƒโ‰ก1), and the other ฮฉ๐‘(ฮฉ๐‘=ฮฉโงตฮฉ(๐‘ก)) is the cavitated zone, where the pressure is constant (๐‘=0) and 0โ‰ค๐œƒ<1 (e.g., the mixture of fluid and air). The free boundary of the region ฮฉ(๐‘ก) containing fluid is ฮ“(๐‘ก) and the region ฮฉ(0), with border ฮ“๐ผ, occupied by the fluid at ๐‘ก=0 being given (see Figure 1).

2.2. State of the Problem

The strong formulation of the problem described the phenomenon is written as follows.

For each ๐‘กโ‰ฅ0, find a pair (๐‘,๐œƒ)โˆˆ๐ฟ2(0,๐‘‡;๐ป1(ฮฉ))ร—๐ฟโˆž(๐‘„)โˆฉ๐ป1(0,๐‘‡;๐ปโˆ’1(ฮฉ)) and ฮ“(๐‘ก) such thatโˆ‡๎€ท๐พ๎€ทโ„Ž,๐‘ก,๐‘0๎€ธ๎€ธโˆ‡๐‘=โˆ‡(๐‘‰โ„Ž๐œƒ)+๐‘Ž๐œ•(โ„Ž๐œƒ)๐œ•๐œ•๐‘ก,(๐œƒโ‰ก1)inฮฉ(๐‘ก),(2.1)โˆ‡(๐‘‰โ„Ž๐œƒ)+๐‘Ž(โ„Ž๐œƒ)๐œ•๐‘ก=0inฮฉ๐‘๐พ๎€ท,(2.2)โ„Ž,๐‘ก,๐‘0๎€ธ๐œ•๐‘๐พ๎€ท๐œ•๐‘›=โ„Ž(1โˆ’๐œƒ)(๐‘‰โˆ’๐‘Ž๐œ)๐‘›onฮ“(๐‘ก),(2.3)๐‘=0onฮ“(๐‘ก),(2.4)โ„Ž,๐‘ก,๐‘0๎€ธ๐œ•๐‘๐œ•๐‘›โˆ’โ„Ž๐œƒ๐‘‰๐‘›=๐‘คonฮ“๐ผ,(2.5)๐‘=0onฮ“ex๐œƒ,(2.6)๐‘(1โˆ’๐œƒ)=0inฮฉ,(2.7)|๐‘ก=0=๐œƒ0,(2.8) where๐พ๎€ทโ„Ž,๐‘ก,๐‘0๎€ธ=โ„Ž31โˆ’๐‘20ฮฆ๎€ทโ„Ž,๐‘ก,๐‘0๎€ธwith0โ‰ค๐‘0ฮฆ๎€ท<1,โ„Ž,๐‘ก,๐‘0๎€ธ=1+1124โ„Ž2๎€ท1โˆ’๐‘20๎€ธโˆ’1๎„ถ๎„ต๎„ตโŽท4โ„Ž๐‘201โˆ’๐‘20๎‚ต๐‘coth0โ„Ž๎”1โˆ’๐‘20๎‚ถ.(2.9) โ€‰โ„Ž(๐‘ก,๐‘ฅ) is the thickness of the thin film supposed a regular and given function of the problem. ๐‘‰ is the speed of the axis supposed being given. ๐œ is the moving free boundary (with ๐œ=0 on ฮ“๐ผ). ๐‘› (resp., ๐‘›) is the normal vector along ฮ“(๐‘ก) (resp., ฮ“๐ผ) exterior to ฮฉ(๐‘ก) (resp., ฮฉ(0)). The saturation variable ๐œƒ can be represented by a graph (see, Figure 2).

In (2.1)โ€“(2.3), there are the diffusion term โˆ‡(๐พ(โ„Ž,๐‘ก,๐‘0)โˆ‡๐‘), the shearing term โˆ‡(โ„Ž๐‘‰), and the squeezing term ๐œ•โ„Ž/๐œ•๐‘ก.

2.3. Weak Formulation

Before starting the construction of a weak formulation of the problem (2.1)โ€“(2.8), we denote by][๐‘„=ฮฉร—0,๐‘‡,ฮฃ๐ผ=ฮ“๐ผร—][0,๐‘‡,ฮฃ๐‘ก][=ฮ“(๐‘ก)ร—0,๐‘‡,ฮฃex=ฮ“exร—][,๎€ฝ0,๐‘‡๐ธ=๐œ‘โˆˆ๐ป1(๐‘„)โˆถ๐œ‘=0onฮฃex๎€พ.and๐‘ก=0(2.10) Indeed, multiplying (2.1) by ๐œ‘โˆˆ๐ธ and integrating over [0,๐‘‡]ร—ฮฉ(๐‘ก), we obtainโˆ’๎€œ๐‘‡0๎€œฮฉ(๐‘ก)๎€œ๐พโˆ‡๐‘ƒโˆ‡๐œ‘๐‘‘๐‘ฅ๐‘‘๐‘ก+๐‘‡0๎€œฮ“(๐‘ก)๎€œ๐พโˆ‡๐‘ƒ๐œ‘๐‘›+๐‘‡0๎€œฮ“๐ผ๐พโˆ‡๐‘ƒ๐œ‘๐‘›๎€œ=โˆ’๐‘‡0๎€œฮฉ(๐‘ก)๎€œ๐‘‰โ„Žโˆ‡๐œ‘๐‘‘๐‘ฅ๐‘‘๐‘ก+๐‘‡0๎€œฮ“(๐‘ก)๎€œ๐‘‰โ„Ž๐œ‘๐‘›+๐‘‡0๎€œฮ“๐ผ๐‘‰โ„Ž๐œ‘๐‘›+๎€œ๐‘‡0๎€œฮ“ex๐‘‰โ„Ž๐œ‘โ‹…๐‘›ex๎‚ป๎€œ+๐‘Ž๐‘‡0๐‘‘๎€œ๐‘‘๐‘กฮฉ(๐‘ก)๎€œโ„Ž๐œ‘๐‘‘๐‘ฅ๐‘‘๐‘กโˆ’๐‘‡0๎€œฮ“(๐‘ก)๎€œ๐‘‰โ„Žฮฆโ‹…๐‘›๐‘‘๐‘กโˆ’๐‘‡0๎€œฮ“๐ผ๐‘‰โ„Ž๐œ‘๐‘›๎€œ๐‘‘๐‘กโˆ’๐‘‡0๎€œฮฉ(๐‘ก)โ„Ž๐‘‘๐œ‘๎‚ผ,๐‘‘๐‘ก๐‘‘๐‘ฅ๐‘‘๐‘ก(โˆ—) where ๐‘›ex is the normal vector along ๐œ•ฮฉ exterior to ฮฉ.

In the same way, we apply to (2.2)โˆ’๎€œ๐‘‡0๎€œฮฉ๐‘๎€œ๐‘‰โ„Žโˆ‡๐œ‘๐‘‘๐‘ฅ๐‘‘๐‘ก+๐‘‡0๎€œฮ“(๐‘ก)๎€œ๐‘‰โ„Ž๐œ‘โ‹…๐‘›+๐‘‡0๎€œฮ“๐ผ๐‘‰โ„Ž๐œ‘โ‹…๐‘›+๎€œ๐‘‡0๎€œฮ“ex๐‘‰โ„Ž๐œ‘โ‹…๐‘›ex๎‚ป๎€œ+๐‘Ž๐‘‡0๐‘‘๎€œ๐‘‘๐‘กฮฉ๐‘๎€œโ„Ž๐œ‘๐‘‘๐‘ฅ๐‘‘๐‘กโˆ’๐‘‡0๎€œฮ“(๐‘ก)๎€œ๐‘‰โ„Ž๐œ‘โ‹…๐‘›๐‘‘๐‘กโˆ’๐‘‡0๎€œฮ“๐ผ๐‘‰โ„Ž๐œ‘๐‘›๎€œ๐‘‘๐‘กโˆ’๐‘‡0๎€œฮฉ๐‘โ„Ž๐‘‘๐œ‘๎‚ผ๐‘‘๐‘ก๐‘‘๐‘ฅ๐‘‘๐‘ก=0.(โˆ—โˆ—) By adding (*) and (**) in all ฮฉ=ฮฉ(๐‘ก)โˆชฮฉ๐‘, and using (2.3)โ€“(2.6) then the weak formulation can be written as follows.

Find a pair (๐‘,๐œƒ)โˆˆ๐ฟ2(0,๐‘‡;๐ป1(ฮฉ))๐‘ฅ๐ฟโˆž(๐‘„)โˆฉ๐ป1(0,๐‘‡;๐ปโˆ’1(ฮฉ))0โ‰ค๐œƒ<1,๐‘=0onฮฃex๎€œ,๐‘(1โˆ’๐œƒ)=0,a.e.in๐‘„,(2.11)๐‘„๎‚ป๎€œ(๐พโˆ‡๐‘โˆ’๐‘‰โ„Ž๐œƒ)โˆ‡๐œ‘+๐‘Žฮฉ(๐‘‡)๎€œโ„Ž๐œƒ๐œ‘โˆ’ฮฉ(0)๎€œโ„Ž๐œƒ๐œ‘โˆ’๐‘„โ„Ž๐œƒ๐‘‘๐œ‘๎‚ผ=๎€œ๐‘‘๐‘กฮฃ๐ผ๐œƒ๐‘ค๐œ‘,โˆ€๐œ‘๐œ–๐ธ,|๐‘ก=0=๐œƒ0โˆˆ๐ปโˆ’1(ฮฉ).(2.12) As ๐œ‘|๐‘ก=0=0 implies that โˆซฮฉ(0)โ„Ž๐œƒ๐œ‘=0.

3. An Elliptic Nonlinear Problem

To solve the problem (2.11)-(2.12), we will approximate it by an elliptic problem in the same way as Boukrouche [3] and Gilardi [7].

Let ๐›ฝ be a real function (see Figure 3) satisfying the following assumptions:๐›ฝโˆˆ๐ถโˆž(๐‘…)โˆ€๐œ‰โˆˆ๐‘…;0โ‰ค๐›ฝ(๐œ‰)โ‰ค1,with๐›ฝ๎…ž(๐œ‰)โ‰ฅ0,๐›ฝ(๐œ‰)=0for๐œ‰โ‰ค0.(3.1) Put๐œ•0๐‘„=ฮฃexโˆชฮฉ0.(3.2) consider now the problem, given ๐œ€>0, find ๐ฉโˆˆ๐ป1(๐‘„) such that๎€œ๐‘„๐œ€๐œ•๐ฉ๐œ•๐‘ก๐œ•๐œ‘+๎€œ๐œ•๐‘ก๐‘„๎‚ป๎€œ(๐พโˆ‡๐ฉโˆ’๐‘‰โ„Ž๐›ฝ(๐ฉ))โˆ‡๐œ‘+๐‘Žฮฉ(๐‘‡)๎€œโ„Ž๐›ฝ(๐ฉ)๐œ‘โˆ’๐‘„โ„Ž๐›ฝ(๐ฉ)๐‘‘๐œ‘๎‚ผ=๎€œ๐‘‘๐‘กโˆ‘๐ผ๐‘ค๐œ‘,(3.3)๐ฉ=0 on ๐œ•0๐‘„, for all ๐œ‘โˆˆ๐ป1(๐‘„) vanishing on ๐œ•0๐‘„.

Introducing the operator ๐œ is as follows:๐œโˆถ๐ป1(๐‘„)โŸถ๐ป1(๐‘„),๐ฉโŸผ๐‘ž=๐œ(๐ฉ).(3.4) If ๐ฉโˆˆ๐ป1(๐‘„),๐œ(๐ฉ) is a unique solution ๐‘ž to the linear problemโˆ€๐‘žโˆˆ๐ป1(๐‘„),๐‘ž=0,on๐œ•0๐‘„๎€œ๐‘„๐œ€๐œ•๐‘ž๐œ•๐‘ก๐œ•๐œ‘+๎€œ๐œ•๐‘ก๐‘„๎€œ๐พโˆ‡๐‘žโˆ‡๐œ‘โˆ’๐‘„๎‚ตโ„Ž๐›ฝ(๐ฉ)๐‘‰โˆ‡๐œ‘+๐‘Ž๐‘‘๐œ‘๎‚ถ๎€œ๐‘‘๐‘ก+๐‘Žฮฉ๐‘‡๎€œโ„Ž๐›ฝ(๐ฉ)๐œ‘=โˆ‘๐ผ๐‘ค๐œ‘(3.5) for every ๐œ‘โˆˆ๐ป1(๐‘„) vanishing on ๐œ•0๐‘„.

Lemma 3.1. The operator ๐œ is continuous from ๐ป1(๐‘„) with the weak topology into ๐ป1(๐‘„) with the strong topology. Moreover ๐œ(๐ป1(๐‘„)) is bounded in ๐ป1(๐‘„).

Proof. Let ๐ฉ๐‘–โˆˆ๐ป1(๐‘„) with ๐‘ž๐‘–=๐œ(๐ฉ๐‘–) for ๐‘–=1,2.
Taking ๐œ‘=(๐‘ž1โˆ’๐‘ž2)in (3.5), we have ๎€œ๐‘„๐œ€๎‚€๐œ•๎€ท๐‘ž๐œ•๐‘ก1โˆ’๐‘ž2๎€ธ๎‚2+๎€œ๐‘„๐พ||โˆ‡๎€ท๐‘ž1โˆ’๐‘ž2๎€ธ||2=๎€œ๐‘„โ„Ž๎€ท๐›ฝ๎€ท๐ฉ1๎€ธ๎€ท๐ฉโˆ’๐›ฝ2๎ƒฉ๎€ท๐‘ž๎€ธ๎€ธ๐‘‰โˆ‡1โˆ’๐‘ž2๎€ธ๐‘‘๎€ท๐‘ž+๐‘Ž1โˆ’๐‘ž2๎€ธ๎ƒช๎‚ป๎€œ๐‘‘๐‘กโˆ’๐‘Žฮฉ(๐‘‡)โ„Ž๎€ท๐›ฝ๎€ท๐ฉ1๎€ธ๎€ท๐ฉโˆ’๐›ฝ2๐‘ž๎€ธ๎€ธ๎€ท1โˆ’๐‘ž2๎€ธ๎‚ผ.(3.6) Using Cauchy-Schwarz's inequality, we obtain ๐›ผโ€–โ€–๐‘ž1โˆ’๐‘ž2โ€–โ€–2๐ป1(๐‘„)โ‰ค๐ถ1๎‚†โ€–โ€–๐‘ž1โˆ’๐‘ž2โ€–โ€–๐ป1(๐‘„)โ€–โ€–๐›ฝ๎€ท๐ฉ1๎€ธ๎€ท๐ฉโˆ’๐›ฝ2๎€ธโ€–โ€–๐ฟ2(๐‘„)๎‚‡+๐ถ2๎‚†โ€–โ€–๐‘ž1โˆ’๐‘ž2โ€–โ€–๐ฟ2(ฮฉ(๐‘‡))โ€–โ€–๐›ฝ๎€ท๐ฉ1๎€ธ๎€ท๐ฉโˆ’๐›ฝ2๎€ธโ€–โ€–๐ฟ2(ฮฉ(๐‘‡))๎‚‡,(3.7) where ๐›ผ is constant depending on โ„Ž, ๐‘0, and ๐œ€. ๐ถ1 and ๐ถ2 are two constants depending on โ„Ž, ๐‘‰, and ๐‘Ž.
As ๐ป1/2(ฮฉ(๐‘‡))โŸถ๐ฟ2(ฮฉ(๐‘‡)),๐ป1(๐‘„)โŸถ๐ป1/2๐ป(ฮฉ(๐‘‡)),1/2๎€ทฮฃ๐ผ๎€ธโŸถ๐ฟ2๎€ทฮฃ๐ผ๎€ธ,๐ป1(๐‘„)โŸถ๐ป1/2๎€ทฮฃ๐ผ๎€ธ(3.8) and ๐›ฝ is Lipschitz continuous function, there exists a constant ๐ถ depending onโ„Ž, ๐‘‰, ๐‘0, ๐‘Ž, and ๐œ€ such that โ€–โ€–๐‘ž1โˆ’๐‘ž2โ€–โ€–๐ป1(๐‘„)๎€ฝโ€–โ€–๐ฉโ‰ค๐ถ1โˆ’๐ฉ2โ€–โ€–๐ฟ2(๐‘„)+โ€–โ€–๐ฉ1โˆ’๐ฉ2โ€–โ€–๐ฟ2(ฮฉ(๐‘‡))๎€พ.(3.9) If ๐ฉ๐œ€โ†’๐ฉconverge weakly in ๐ป1(๐‘„), then ๐ฉ๐œ€โ†’๐ฉ,๐ฟ2(๐‘„) and ๐ฉ๐œ€(๐‘‡)โ†’๐ฉ(๐‘‡),๐ฟ2(ฮฉ(๐‘‡)). Thus ๐œ(๐ฉ๐œ€)โ†’๐œ(๐ฉ), then the continuity of ๐œ is shown.
Taking ๐œ‘=๐‘ž in (3.5) and using Cauchy-Schwarz's inequality, we obtain โ€–๐‘žโ€–๐ป1(๐‘„)โ‰ค๐‘˜1, where ๐‘˜1 is a constant depending on โ„Ž, ๐‘‰, ๐‘0, ๐›ฝ, ๐‘‡, ๐‘Ž, and ๐œ€.

Theorem 3.2. If the function ๐›ฝ satisfies hypothesis (3.1), then, for every ๐œ€>0, there exists a solution to the problem (3.3).

Proof. Use Lemma 3.1 and Schauder fixed-point theorem.

Theorem 3.3 (cf. [2, 3]). If the function ๐›ฝ satisfies hypothesis (3.1), then for every ๐œ€>0, the solution of the problem (3.3) is unique.

4. Approximating Problems

In order to solve the problem (2.11)-(2.12), we consider a new family of problems of type (3.3) in which the function ๐›ฝ is an approximation of the Heaviside function (see Figure 4). Therefore we consider a family of functions๐ป๐œ€โˆถ[[0,+โˆžโŸถ๐‘…โงต๐ป๐œ€โˆˆ๐ถโˆž(๐‘…),(4.1)0โ‰ค๐ป๐œ€โ‰ค1,๐ป๎…ž๐œ€๐ปโ‰ฅ0,(4.2)๐œ€(0)=0,lim๐œ€โˆ’โ†’0๎€ฝinf๐œ>0โˆถ๐ป๐œ€๎€พ(๐œ)=1=0,(4.3)lim๐œ€โˆ’โ†’0๐ฟ๐œ€โˆš๐œ€=0,where๐ฟ๐œ€๎€ฝ๐ป=sup๎…ž๐œ€๎€พ.(๐œ)โˆถ๐œ>0(4.4) Consider now the following approximating problem.

For fixed ๐œ€ and ๐‘Ž (where ๐œ€, ๐‘Žโˆˆ]0;1[), find ๐‘๐œ€ such that๐‘๐œ€โˆˆ๐ป1(๐‘„),๐‘๐œ€=0on๐œ•0๎€œ๐‘„,๐‘„๐œ€๐œ•๐‘๐œ€๐œ•๐‘ก๐œ•๐œ‘+๎€œ๐œ•๐‘ก๐‘„๐พโˆ‡๐‘๐œ€๎€œโˆ‡๐œ‘โˆ’๐‘„โ„Ž๐ป๐œ€๎€ท๐‘๐œ€๎€ธ๎‚ต๐‘‰โˆ‡๐œ‘+๐‘Ž๐‘‘๐œ‘๎‚ถ๎€œ๐‘‘๐‘ก+๐‘Žฮฉ(๐‘‡)โ„Ž๐ป๐œ€๎€ท๐‘๐œ€๎€ธ๎€œ๐œ‘=โˆ‘๐ผ๐‘ค๐œ‘(4.5) for every ๐œ‘โˆˆ๐ป1(๐‘„) vanishing on ๐œ•0๐‘„.

From Theorems 3.2 and 3.3, we deduce the following theorem.

Theorem 4.1 (cf., [3]). For every ๐œ€ and ๐‘Žโˆˆ]0,1[, there exists at least one solution to the problem (4.5). Moreover if โ„Ž and ๐‘‰ are sufficiently regular, every solution belongs to ๐ป1(๐‘„)โˆฉ๐ฟโˆž(๐‘„).

Lemma 4.2. If the function ๐ป๐œ€ verifies (4.1)-(4.2) and ๐‘‘โ„Ž/๐‘‘๐‘กโ‰ฅ0, then one has ๎€œฮฉ(๐‘‡)โ„Ž๐ป๐œ€๎€ท๐‘๐œ€๎€ธ๐‘๐œ€โˆ’๎€œ๐‘„โ„Ž๐ป๐œ€๎€ท๐‘๐œ€๎€ธ๐‘‘๐‘๐œ€๐‘‘๐‘กโ‰ฅ0.(4.6)

Proof. Putting ๎‚๐ป๐œ€โˆซ(๐œ)=๐œ0๐ป๐œ€(๐œ)๐‘‘๐œ, we have then ๎‚๐ป๐œ€(๐œ)โ‰ค๐œ๐ป๐œ€(๐œ) and โˆซฮฉ(๐‘‡)โ„Ž๐ป๐œ€(๐‘๐œ€)๐‘๐œ€โˆ’โˆซ๐‘„โ„Ž๐ป๐œ€(๐‘๐œ€)(๐‘‘๐‘๐œ€โˆซ/๐‘‘๐‘ก)=ฮฉ(๐‘‡)โ„Ž๐ป๐œ€(๐‘๐œ€)๐‘๐œ€โˆ’โˆซ๐‘„๎‚๐ปโ„Ž(๐‘‘/๐‘‘๐‘ก)(๐œ€(๐‘๐œ€)).
Using the integration by parts, we obtain ๎€œฮฉ(๐‘‡)โ„Ž๐ป๐œ€๎€ท๐‘๐œ€๎€ธ๐‘๐œ€โˆ’๎€œ๐‘„โ„Ž๐‘‘๎‚€๎‚๐ป๐‘‘๐‘ก๐œ€๎€ท๐‘๐œ€๎€ธ๎‚=๎€œฮฉ(๐‘‡)โ„Ž๎‚ƒ๐ป๐œ€๎€ท๐‘๐œ€๎€ธ๐‘๐œ€โˆ’๎‚๐ป๐œ€๎€ท๐‘๐œ€๎€ธ๎‚„+๎€œ๐‘„๐‘‘โ„Ž๎‚๐ป๐‘‘๐‘ก๐œ€(๐œ)(4.7) as ๐ป๐œ€(๐‘๐œ€)๐‘๐œ€โˆ’๎‚๐ป๐œ€(๐‘๐œ€)โ‰ฅ0, then Lemma 4.2 is shown.

The following proposition gives some a priori estimates for pressure ๐‘๐œ€.

Proposition 4.3. There exists a constant ๐ถ independent of ๐œ€, ๐‘Ž,๐‘0, and ๐‘๐œ€๎€œ๐‘„๐œ€||||๐œ•๐‘๐œ€||||๐œ•๐‘ก2+๎€œ๐‘„๐พ||โˆ‡๐‘๐œ€||2๎‚ป๎€œ+๐‘Žฮฉ(๐‘‡)โ„Ž๐ป๐œ€๐‘๐œ€โˆ’๎€œ๐‘„โ„Ž๐ป๐œ€๐‘‘๐‘๐œ€๎‚ผ๐‘‘๐‘กโ‰ค๐ถ.(4.8)

Proof. Taking ๐œ‘=๐‘๐œ€ in (4.5), we obtain ๎€œ๐‘„๐œ€||||๐œ•๐‘ƒ๐œ€||||๐œ•๐‘ก2+๎€œ๐‘„๐พ||โˆ‡๐‘๐œ€||2๎‚ป๎€œ+๐‘Žฮฉ(๐‘‡)๐‘‡โ„Ž๐ป๐œ€๐‘๐œ€โˆ’๎€œ๐‘„โ„Ž๐ป๐œ€๐‘‘๐‘๐œ€๎‚ผ=๎€œ๐‘‘๐‘ก๐‘„โ„Ž๐‘‰๐ป๐œ€๎€ท๐‘๐œ€๎€ธโˆ‡๐‘๐œ€+๎€œฮฃ๐ผ๐‘ค๐‘๐œ€.(4.9) By using Lemma 4.2, we have ๎€œ๐‘„๐œ€||||๐œ•๐‘๐œ€||||๐œ•๐‘ก2+๎€œ๐‘„๐พ||โˆ‡๐‘๐œ€||2โ€–โ€–โ‰คmes(๐‘„)๐›ฝโˆ‡๐‘๐œ€โ€–โ€–๐ฟ2(๐‘„)โ€–๐‘‰โ€–(๐ฟโˆž)2+โ€–โ€–๐‘๐œ€โ€–โ€–๐ฟ2(ฮฃ๐ผ)โ€–๐‘คโ€–๐ฟ2(ฮฃ๐ผ).(4.10) Applying Poincare's inequality, we have โ€–โ€–๐‘๐œ€โ€–โ€–2๐ฟ2(๐‘„)=๎€œ๐‘‡0๎€œฮฉ||๐‘๐œ€||2โ‰ค๐›ผ1โ€–โ€–โˆ‡๐‘๐œ€โ€–โ€–2๐ฟ2(๐‘„),(4.11) where ๐›ผ1 is constant depending on ฮฉ.
Asโ€–๐‘๐œ€โ€–๐ฟ2(ฮฃ๐ผ)โ‰ค๐›ผ2โ€–โˆ‡๐‘๐œ€โ€–2๐ฟ2(ฮฃ๐ผ), we finally deduce the result.

Proposition 4.4. For every ๐œ‘nonnegative and ๐œ‘โˆˆ๐ท(ฮฉ), there exists a constant ๐ถ(๐œ‘) such that ๎€œฮฉ๐œ‘||||๐œ€๐œ•๐‘๐œ€(0,๐‘ฅ)||||๐œ•๐‘ก2๎€ทโ‰ค๐ถ(๐œ‘)1+๐ฟ๐œ€๎€ธโˆš๐œ€.(4.12)

Proof. From (4.5), we have ๐œ€๐œ•2๐‘ƒ๐œ€๐œ•๐‘ก2๎€ท+โˆ‡โ‹…๐พโˆ‡๐‘๐œ€๎€ธ๎€ท=โˆ‡โ‹…๐‘‰โ„Ž๐ป๐œ€๎€ท๐‘๐œ€๐œ•๎€ธ๎€ธ+๐‘Ž๎€ท๐œ•๐‘กโ„Ž๐ป๐œ€๎€ท๐‘๐œ€๐พ๎€ท๎€ธ๎€ธinฮฉ,โ„Ž,๐‘ก,๐‘0๎€ธโˆ‡๐‘๐œ€๐‘›โˆ’โ„Ž๐ป๐œ€๐‘‰๐‘›=๐‘คonฮฃ๐ผ,๐‘๐œ€=0on๐œ•0๐‘„,๐œ•๐‘๐œ€๐œ•๐‘ก(๐‘‡)=0onฮฉ.(4.13) Multiplying (4.13) by ๐œ‘(๐œ•๐‘๐œ€/๐œ•๐‘ก) and integrating over ]0,๐‘ก[ร—ฮฉ, we have ๐œ€2๎€œฮฉ๐œ‘||||๐œ•๐‘๐œ€||||๐œ•๐‘ก(0,๐‘ฅ)2+12๎€œฮฉ||๐พ๐œ‘โˆ‡๐‘๐œ€||2+๎€œ๐‘ก0๎€œฮฉ๐œ‘โ„Ž๐ป๎…ž๐œ€๎€ท๐‘๐œ€๎€ธ||||๐œ•๐‘๐œ€||||๐œ•๐‘ก(๐‘ก)2๎€œ=โˆ’๐‘ก0๎€œฮฉ๎‚†๐พโˆ‡๐‘๐œ€๎€ทโˆ‡๐œ‘+๐œ‘โˆ‡โ„Ž๐ป๐œ€๎€ท๐‘๐œ€๎€ธ๐‘‰๎€ธ+๐‘Ž๐œ‘๐ป๐œ€๎€ท๐‘๐œ€๎€ธ๐œ•โ„Ž๎‚‡๐œ•๐‘ก๐œ•๐‘๐œ€(+๐œ€๐œ•๐‘ก๐‘ก)2๎€œฮฉ๐œ‘||||๐œ•๐‘๐œ€||||๐œ•๐‘ก(๐‘ก)2+12๎€œ๐‘ก0๎€œฮฉ๐œ‘๐œ•||๐œ•๐‘ก(๐พ)โˆ‡๐‘๐œ€||2.(4.14) Taking ๐œ€๐ด=2๎€œฮฉ๐œ‘||||๐œ•๐‘๐œ€||||๐œ•๐‘ก(๐‘ก)2+12๎€œ๐‘ก0๎€œฮฉ๐œ‘๐œ•||๐œ•๐‘ก(๐พ)โˆ‡๐‘๐œ€||2,๎€œ๐ต=โˆ’๐‘ก0๎€œฮฉ๎‚†๐พโˆ‡๐‘๐œ€๎€ทโˆ‡๐œ‘+๐œ‘โˆ‡โ„Ž๐ป๐œ€๎€ท๐‘๐œ€๎€ธ๐‘‰๎€ธ+๐‘Ž๐œ‘๐ป๐œ€๎€ท๐‘๐œ€๎€ธ๐œ•โ„Ž๎‚‡๐œ•๐‘ก๐œ•๐‘๐œ€(๐œ•๐‘ก๐‘ก),(4.15) then we have ๐œ€2๎€œฮฉ๐œ‘||||๐œ•๐‘๐œ€||||๐œ•๐‘ก(0,๐‘ฅ)2๐œ€โ‰ค๐ด+๐ต,22๐‘‡๎€œฮฉ๐œ‘||||๐œ•๐‘๐œ€||||๐œ•๐‘ก(0,๐‘ฅ)2โ‰ค๎€œ๐‘‡0๐œ€๎€œ(๐œ€๐ด+๐œ€๐ต)๐‘‘๐‘ก,๐‘‡0๐œ€๐ด๐‘‘๐‘ก=22๎€œ๐‘‡0๎€œฮฉ๐œ‘||||๐œ•๐‘๐œ€||||๐œ•๐‘ก(๐‘ก)2+๐œ€2๎€œ๐‘‡0๎€œฮฉ๐œ‘๐œ•||๐œ•๐‘ก(๐พ)โˆ‡๐‘๐œ€||2โ‰คโ€–๐œ‘โ€–๐ฟโˆž๐œ€2๎€œ๐‘„๐œ€||||๐œ•๐‘๐œ€(||||๐œ•๐‘ก๐‘ก)2โ€–โ€–โ€–๐œ•+๐œ€(โ€–โ€–โ€–๐œ•๐‘ก๐พ)๐ฟโˆžโ€–๐œ‘โ€–๐ฟโˆž๎€œ๐‘‡0๎€œฮฉ||โˆ‡๐‘๐œ€||2.(4.16) Using Proposition 4.3., we obtain ๐œ€๎€œ๐‘‡0๐ด๐‘‘๐‘กโ‰ค๐‘1โˆš(๐œ‘)๐œ€,(4.17) where ๐‘1(๐œ‘)=๐ถmax{(1/2)โ€–๐œ‘โ€–๐ฟโˆž,โ€–(๐œ•/๐œ•๐‘ก)(๐พ)โ€–๐ฟโˆžโ€–๐œ‘โ€–๐ฟโˆž} and ๐ถ is constant of Proposition 4.3: ๐œ€๎€œ๐‘‡0โˆš๐ต๐‘‘๐‘ก=โˆ’๐œ€๎ƒฏ๎€œ๐‘‡0๎€œฮฉ๐พโˆ‡๐œ‘โˆ‡๐‘๐œ€โˆš๐œ€๐œ•๐‘๐œ€๐œ•๐‘ก+๐œ‘โ„Ž๐‘‰๐ป๎…ž๐œ€๎€ท๐‘๐œ€๎€ธ||||๐œ•๐‘๐œ€||||๐œ•๐‘ก(๐‘ก)2โˆš๐œ€+๎€œ๐‘‡0๎€œฮฉ๐œ‘๐ป๐œ€๎€ท๐‘๐œ€๎€ธโˆšโˆ‡(โ„Ž๐‘‰)๐œ€๐œ•๐‘๐œ€๐œ•๐‘ก+๐‘Ž๐œ‘๐ป๐œ€๎€ท๐‘๐œ€๎€ธ๐œ•โ„Ž๐œ•๐‘ก๐œ•๐‘๐œ€โˆš๐œ•๐‘ก๐œ€๎‚ผ.(4.18) We obtain finally ๐‘‡2๎€œฮฉ๐œ‘||||๐œ€๐œ•๐‘๐œ€||||๐œ•๐‘ก(0,๐‘ฅ)2โ‰ค๎€œ๐‘‡0๎€ท(๐œ€๐ด+๐œ€๐ต)๐‘‘๐‘กโ‰ค๐ถ(๐œ‘)1+๐ฟ๐œ€๎€ธโˆš๐œ€.(4.19)

5. An Existence Theorem of the Problem (2.11)-(2.12)

Theorem 5.1. There exists at least one solution to the problem (2.11)-(2.12).

Proof. If ๐‘Žโˆˆ]0,1] and from Proposition 4.3, we can extract a subsequence of ๐‘๐œ€, still denoted by(๐‘๐œ€), such that ๐‘๐œ€๐œ€โ†’0โŸถ๐‘in๐ฟ2๎€ท0,๐‘‡;๐ป1๎€ธโˆš(ฮฉ)weakly,(5.1)๐œ€๐œ•๐‘๐œ€๐œ•๐‘ก๐œ€โ†’0โŸถ0in๐ฟ2(๐‘„)weakly.(5.2) Moreover ๐ป๐œ€(๐‘๐œ€)โˆˆ[0,1], for all ๐œ€>0, then there exists ๐œƒ๐œ–๐ฟโˆž(๐‘„) such that ๐ป๐œ€๎€ท๐‘๐œ€๎€ธโŸถ๐œƒin๐ฟ2(๐‘„)weakly.(5.3) We can now proof that the (๐‘,๐œƒ) given in (5.1) and (5.3) is solution of the problem (2.11)-(2.12).
We denote by ๎€ฝ๐•œ=๐œ‘๐œ–๐ฟ2๎€ท0,๐‘‡;๐ป1๎€ธ(ฮฉ)โˆถ๐œ‘=0onฮฃex๎€พ,๐•œand๐œ‘โ‰ฅ0in๐‘„๎…ž=๎€ฝ๐œ‘๐œ–๐ฟ2๎€พ,(๐‘„)โˆถ0โ‰ค๐œ‘โ‰ค1๐•œร—๐•œ๎…žisconvexspaceof๐ฟ2๎€ท0,๐‘‡;๐ป1๎€ธ(ฮฉ)ร—๐ฟ2(๐‘„),then๐•œร—๐•œ๎…žisweaklyclosed.(5.4) Therefore ๐‘๐œ–๐ฟ2(0,๐‘‡;๐ป1(ฮฉ)), ๐‘โ‰ฅ0 a.e. in ๐‘„ and ๐œƒ๐œ–๐ฟ2(๐‘„)โˆฉ๐ฟโˆž(๐‘„) with ๐œƒ๐œ–[0,1] a.e. in ๐‘„.
Thus if ๐œ€โ†’0 in (4.5), we find the problem (2.11)-(2.12). In order to prove 0โ‰ค๐œƒ<1 and ๐‘(1โˆ’๐œƒ)=0, a.e in ๐‘„, we give a brief demonstration (for more details, see [7, pages 1113-1114]).
First, we need to prove โˆซ๐‘„๐‘(1โˆ’๐œƒ)=0. We notice that lim โˆซ๐‘„๐‘๐œ€(1โˆ’๐ป๐œ€(๐‘๐œ€))=0๎€œsince0โ‰คlim๐‘„๐‘๐œ€๎€ท1โˆ’๐ป๐œ€๎€ท๐‘๐œ€๎€ฝ๎€ธ๎€ธโ‰คmes๐‘„โ‹…sup๐œโ‰ฅ0โˆถ๐ป๐œ€๎€ท๐‘๐œ€๎€ธ๎€พ.<1(5.5) Now we have to prove that ๎€œ๐‘„๎€œ๐‘(1โˆ’๐œƒ)=lim๐‘„๐‘๐œ€๎€ท1โˆ’๐ป๐œ€๎€ท๐‘๐œ€.๎€ธ๎€ธ(5.6) We define ๐‘ค๐œ€=๐œ€(๐œ•๐‘๐œ€/๐œ•๐‘ก)๐‘๐œ€โˆ’๐ป๐œ€(๐‘๐œ€) and use (4.13).
Then the couple (๐‘,๐œƒ) is solution of the problem (2.11)-(2.12).

Theorem 5.2. If ๐‘คโ‰ฅ0 on ฮ“๐ผร—[0,๐‘‡] and ๐œƒ0โ‰ฅ0, then ๐‘โ‰ฅ0 a.e. in ฮฉร—[0,๐‘‡].

Proof. Following [7], we construct a sequence solution of the problem ๐œ€๐œ•๐‘๐œ€๐œ•๐‘ก+๐‘๐œ€=๐‘โˆ’[],๐‘on0,๐‘‡๐œ€(๐‘‡)=0,(5.7) where ๐‘โˆ’=sup(โˆ’๐‘,0), ๐‘+=sup(๐‘,0) and ๐‘=๐‘+โˆ’๐‘โˆ’.
From the classical Cauchy-Lipschitz-Picard theorem [2], there exists a unique solution ๐‘๐œ€๐œ–๐ถ1[0,๐‘‡]. Multiplying (5.7) by ๐‘๐œ€ (resp., by ๐œ€(๐œ•๐‘๐œ€/๐œ•๐‘ก)) and integrating over ๐‘„, we obtain โ€–โ€–๐‘๐œ€โ€–โ€–๐ฟ2(๐‘„)โ‰คโ€–๐‘โˆ’โ€–๐ฟ2(๐‘„),(5.8) respectively, โ€–โ€–โ€–๐œ€๐œ•๐‘๐œ€โ€–โ€–โ€–๐œ•๐‘ก๐ฟ2(๐‘„)โ‰คโ€–๐‘โˆ’โ€–๐ฟ2(๐‘„).(5.9) Deriving (5.7) with respect to ๐‘ฅ, multiplying by โˆ‡๐‘๐œ€, and integrating over ๐‘„, we obtain โ€–โ€–โˆ‡๐‘๐œ€โ€–โ€–๐ฟ2(๐‘„)โ‰คโ€–โˆ‡๐‘โˆ’โ€–๐ฟ2(๐‘„).(5.10) We deduce that there exists ฬƒ๐‘๐œ–๐ฟ2(0,๐‘‡;๐ป1(ฮฉ)) and ๐œ๐œ–๐ฟ2(๐‘„) such that ๐‘๐œ€โŸถ๐‘โˆ’weaklyin๐ฟ2๎€ท0,๐‘‡;๐ป1๎€ธ,๐œ€(ฮฉ)(5.11)๐œ•๐‘๐œ€๐œ•๐‘กโŸถ๐œweaklyin๐ฟ2๎€ท0,๐‘‡;๐ป1๎€ธ.(ฮฉ)(5.12) From (5.11) we have ๐œ€๐‘๐œ€โŸถ0in๐ฟ2๎€ท0,๐‘‡;๐ป1๎€ธ(ฮฉ),therefore๐œ=0.(5.13) Passing to the limit in (5.7), we deduce that ฬƒ๐‘=๐‘โˆ’ a.e. in ๐‘„.
As ๐ธ=๐ป10(0,๐‘‡;๐‘‰๎…ž) is dense in ๐ฟ2(0,๐‘‡;๐ป1(ฮฉ)), (2.12) can be rewritten in the following form: ๐‘Ž๎€œ๐‘‡0<๐‘‰โ€ฒ๐œ•(๐œƒโ„Ž)๎€œ๐œ•๐‘ก,๐œ‘>๐‘‰+๐‘„๎€œ(๐พโˆ‡๐ฉโˆ’๐‘‰โ„Ž๐œƒ)โˆ‡๐œ‘=ฮฃ๐ผ[].๐‘ค๐œ‘,โˆ€๐œ‘๐œ–๐‘‰,a.e.in0,๐‘‡(5.14) Taking now ๐‘๐œ€ as test function in (5.14) and passing to the limit over ๐œ€, we deduce ๎€œ๐‘„๐พ||โˆ‡๐‘โˆ’||2โ‰ฅ๎€œฮฃ๐‘ค๐‘โˆ’(5.15) as ๐‘คโ‰ฅ0, therefore ๐‘โˆ’=0 a.e. in ๐‘„, that is, ๐‘โ‰ฅ0 a.e. in ๐‘„.

Next work will consist in finding some existence of relationship between the pressure ๐‘ and parameter ๐‘0 and in completing numerical analysis study to the problem (2.1)โ€“(2.8).

Acknowledgment

The author is grateful to Professor Boukrouche M. for a helpful discussion on this subject.