Abstract

We deal with existence results for nonlinear parabolic equations with general quadratic gradient terms and with absorption term which depend on the solution. We note that no boundedness is assumed on the data of the problem. We prove an existence result of distributional solution via test-function method. A priori estimates and compactness arguments are our main ingredient; the method of sub-supersolution does not apply her.

1. Introduction

This work is devoted to deal with existence results concerning nonlinear parabolic equations with both first-order terms having quadratic growth with respect to the gradients and superlinear absorption terms which depend on the solution. Let us consider the following Cauchy-Dirichlet problem: 𝑒𝑑||||+Λ𝑒+𝐴(π‘₯,𝑒)=𝛽(𝑒)βˆ‡π‘’2][,][,+𝑓(π‘₯,𝑑)inΩ×0,𝑇𝑒=0onπœ•Ξ©Γ—0,𝑇𝑒(π‘₯,0)=𝑒0(π‘₯)inΞ©,(1.1) where Λ𝑒=βˆ’div(π‘Ž(π‘₯,𝑑,𝑒,βˆ‡π‘’)) is a pseudomonotone, coercive, uniformly elliptic operator acting from 𝐿2(0,𝑇;𝐻10(Ξ©)) to its dual. Ξ© is a bounded open set in ℝ𝑁, 𝑁β‰₯1 and 𝑇>0. The operator 𝐴(π‘₯,𝑒) grows like |𝑒|π‘Ÿ. The unknown real function 𝑒 depends on π‘₯∈Ω and π‘‘βˆˆ]0,𝑇[. Let π‘ŽβˆΆπ‘„Γ—β„Γ—β„π‘β†’β„π‘ be a CarathΓ©odory function (i.e., π‘Ž(…,𝜎,𝜁) is measurable in 𝑄 for every (π‘₯,𝑑) in 𝑄).(A1)There exists a constant 𝛽>0 such that ||π‘Ž||ξ€Ίπ‘˜||𝜁||ξ€»(π‘₯,𝑑,𝜎,𝜁)≀𝛽(π‘₯,𝑑)+|𝜎|+,(1.2) for almost every (π‘₯,𝑑) in 𝑄 and every (𝜎,𝜁) in ℝ×ℝ𝑁, where π‘˜(β‹―) is a nonnegative function in 𝐿2(𝑄).(A2)There exists a constant 𝛼 such that ||𝜁||π‘Ž(π‘₯,𝑑,𝜎,𝜁)β‰₯𝛼2,(1.3) for almost every (π‘₯,𝑑) in 𝑄 and every (𝜎,𝜁) in ℝ×ℝ𝑁.(A3) []π‘Ž(π‘₯,𝑑,𝜎,𝜁)βˆ’π‘Ž(π‘₯,𝑑,𝜎,πœ‚)β‹…(πœβˆ’πœ‚)>0,(1.4)

for almost every (π‘₯,𝑑) in 𝑄, for every 𝜎 in ℝ, for every 𝜁,πœ‚ in ℝ𝑁,πœβ‰ πœ‚.

Let us define the differential operator 𝐴(π‘₯,𝑒) as follows: 𝐴(π‘₯,𝑒)=π‘Ž(π‘₯)𝑒|𝑒|π‘Ÿβˆ’1.(1.5)

The function 𝑓 satisfies 𝑓(π‘₯,𝑑)βˆˆπΏπ‘Ÿ(0,𝑇;πΏπ‘žπ‘(Ξ©)),withπ‘Ÿ>1,π‘ž+2π‘Ÿ<2.(1.6) The initial data satisfy the following hypothesis: πœ“ξ€·π‘’0ξ€ΈβˆˆπΏ1(Ξ©),(1.7) where ξ€œπœ“(𝑠)=𝑠0𝑒𝛾(π‘Ÿ)ξ€œπ‘‘π‘Ÿ,with𝛾(𝑠)=𝑠0𝛽(𝜎)π‘‘πœŽ.(1.8)

The source term 𝑓 satisfies the same condition considered by Aronson and Serrin in [1] to show the existence of a solution for the classical problem (πœ•π‘’/πœ•π‘‘)βˆ’Ξ”π‘’=𝑓(π‘₯,𝑑). The condition on the source term 𝑓 is optimal. Indeed, if π‘“βˆˆπΏβˆž(0,𝑇;πΏπ‘ž(Ξ©)) or if 𝑓(π‘₯,𝑑)=𝑓(π‘₯)βˆˆπΏπ‘ž(Ξ©), with π‘ž>(𝑁/2), the condition (1.6) is still satisfied.

Let us note that we studied the elliptic problem associated to (1.1) in [2]. This kind of problems has been extensively studied in the last years by many authors (see, e.g., [3–13] and the references therein). In these works, the hypothesis on the function 𝛽 implies grosso modo that 𝛽 is bounded, with some restrictions as in [4, 10, 14]. A special condition is assumed in [10], where 𝛽 is supposed to tend to +∞ for 𝑠 tending to ∞.

There is many results for particular situations of our problem (see, e.g., [4, 7, 12, 13]). All this work have studied the question of existence of distributional solutions for this problem in the case where π‘Žβ‰‘0, 𝑒0∈𝐿∞(Ξ©), and 𝑓(π‘₯,𝑑)βˆˆπΏπ‘Ÿ(0,𝑇;πΏπ‘ž(Ξ©)) with (π‘ž(π‘Ÿβˆ’1)/π‘Ÿ)>(𝑁/2) The existence has also been studied in the case where 𝑒0∈𝐿∞(Ξ©) and 𝑓(π‘₯,𝑑)=𝑓(π‘₯)βˆˆπΏπ‘š(Ω×]0,𝑇[), π‘š>1+(𝑁/2), which are special cases of our conditions.

In the case where π‘Žβ‰‘0, πœ“(𝑒0)∈𝐿2(Ξ©) and for more general condition on 𝛽, existence results of a solution for parabolic convection diffusion problems πœ•π‘’||||πœ•π‘‘βˆ’Ξ”π‘’=𝛽(𝑒)βˆ‡π‘’2+𝑓(π‘₯,𝑑)(1.9) have been given in [15], [8].

We can reduce this problem with the change of 𝑒 with the Col-Hopf change of variable ξ€œπ‘£=πœ“(𝑒)=𝑒0ξ‚΅ξ€œexpπ‘Ÿ0𝛽(𝑠)π‘‘π‘ π‘‘π‘Ÿ.(1.10) to the following πœ•π‘£πœ•π‘‘βˆ’Ξ”π‘£=fξ€·||||(π‘₯,𝑑)1+|𝑣|log|𝑣|𝛼,(1.11)

In this stage, we have an existence result of distributional solutions via test function method. That gives the a priori estimates for the approximate problem associated with (1.11) which also provide a priori estimates for the approximate problem associated with (1.9) and, therefore, an existence result of distributional solution for problem (1.9).

One cannot perform such a change of variable, when trying to extend the previous results to our more general situation, where one has a general first-order term which grows quadratically with respect to the gradient and with superlinear reaction terms which grow like |𝑒|π‘Ÿ. Therefore, we shall use some convenient test functions to prove the a priori estimates and use compactness arguments to prove an existence result of distributional solutions of (𝑃). We point out that for this class of problems, the regularity assumed on the data 𝑓 and 𝑒0, can not expect bounded solutions.

We also point out that we are interested in solutions having finite norms in 𝐿2(0,𝑇;𝐻10(Ξ©)). The techniques used in this paper are mainly based on a linear operator and on the concept of distributional solutions. These approachs allow to have, in the case of both subcritical growth and a reaction terms with 𝑒, existence results. The first ingredient of our proof consists in obtaining certain a priori bounds on the solutions of approximate problems and some suitable 𝐿1-norm of diffusion terms. A convenient use of Young's inequality will give a uniform estimate of the 𝐿2(0,𝑇;𝐻10(Ξ©))-norms and, therefore, the weak convergence up to a subsequence. We will prove that there exists 𝑒 such that, up to a subsequence the solution 𝑒𝑛 of the approximate problems converges to 𝑒, all everywhere convergence of gradient of 𝑒𝑛 to gradient of 𝑒, up to a subsequence, which is important in the study of the limiting process. Next, we will prove the convergence of the superlinear reaction term and the quadratic gradient term in 𝐿1(Ω×]0,𝑇[). Another interesting approach is in some sense the combination of the previous, in studies of the behavior of sequences of approximating solutions. Likewise, we will see that the solutions of the approximates problems converge to the solution of the model problem in 𝐢([0,𝑇];𝐿1(Ξ©)), which gives meaning to the initial condition.

2. Basic Results

Let Ξ© be a bounded domain in ℝ𝑁, 𝑁β‰₯1. We denote by 𝑄𝑇 for 𝑇>0 the set Ω×]0,𝑇[ and by Ξ“ the set πœ•Ξ©Γ—]0,𝑇[.

We consider the following nonlinear problem that we denote by (𝑃)𝑒𝑑][,][,+Λ𝑒+𝐴(π‘₯,𝑒)=𝐡(𝑒,βˆ‡π‘’)+𝑓(π‘₯,𝑑)inΩ×0,𝑇𝑒=0onπœ•Ξ©Γ—0,𝑇𝑒(π‘₯,0)=𝑒0(π‘₯)inΞ©,(2.1) where the unknown function 𝑒=𝑒(π‘₯,𝑑) is a real function depending on π‘₯∈Ω and π‘‘βˆˆ]0,𝑇[. Ξ›,𝐴 and 𝐡 are differential operators such that ||||Ξ›π‘’βˆΆ=βˆ’div(π‘Ž(π‘₯,𝑑,𝑒,βˆ‡π‘’)),𝐡(𝑒,βˆ‡π‘’)=𝛽(𝑒)βˆ‡π‘’2.(2.2)

Let us consider the following assumptions.(H1)The real function 𝛽 is such that 𝛽iscontinuousnonincreasing,with𝛽(0)=0.(2.3)(H2)The real functions 𝑒0 and 𝑓 are satisfying (1.7) and (1.6), respectively

The operator 𝐴(π‘₯,𝑒) is such that 𝐴(π‘₯,𝑒)=π‘Ž(π‘₯)𝑒|𝑒|π‘Ÿβˆ’1,(2.4) where(H3)π‘Ÿ>1 and π‘Ž(β‹―) is a real function such that π‘ŽβˆˆπΏβˆž(Ξ©),π‘Ž(π‘₯)β‰₯π‘Ž0>0π‘Ž.𝑒.π‘₯∈Ω.(2.5)

By a weak solution of the problem (1.1), we mean a function π‘’βˆˆπΏ2(0,𝑇;𝐻10(Ξ©)) such that π‘Ž(π‘₯)𝑒|𝑒|βˆˆπΏπ‘Ÿξ€·π‘„π‘‡ξ€Έ||||,𝛽(𝑒)βˆ‡π‘’2∈𝐿1𝑄𝑇(2.6) and satisfying ξ€œπ‘„π‘‡π‘’π‘‘ξ€œπœ™+π‘„π‘‡ξ€œπ‘Ž(π‘₯,𝑑,𝑒,βˆ‡π‘’)βˆ‡πœ™+π‘„π‘‡π‘Ž(π‘₯)𝑒|𝑒|π‘Ÿβˆ’1ξ€œπœ™=𝑄𝑇||||𝛽(𝑒)βˆ‡π‘’2ξ€œπœ™+π‘„π‘‡π‘“πœ™,(2.7) for any test function πœ™ in 𝐢1𝑐(𝑄𝑇) (the 𝐢1 functions with compact support).

In the sequel we denote by πœƒ a truncation function satisfying πœƒβˆˆπΆβˆž(ℝ), 0β‰€πœƒβ‰€1, πœƒ(πœ‚)=1 for |πœ‚|β‰€πœŒ, πœƒ(πœ‚)=0 for |πœ‚|β©Ύ2𝜌 and |βˆ‡πœƒ|≀(2/𝜌), where 𝜌 is a positive real. By 𝑐 we denote different constants in ℝ which may vary from line to line. The main result in this paper is the following.

Theorem 2.1. If the hypotheses (𝐴1)–(𝐴3) and (𝐻1)–(𝐻3) are satisfied, then the problem (1.1) admits at least one solution 𝑒, such that π‘’βˆˆπΏ2ξ€·0,𝑇;𝐻10ξ€Έ(Ξ©)∩𝐢0ξ€·[]0,𝑇;𝐿2ξ€Έ,(Ξ©)π‘Ž(π‘₯)𝑒|𝑒|βˆˆπΏπ‘Ÿξ€·π‘„π‘‡ξ€Έ||||,𝛽(𝑒)βˆ‡π‘’2∈𝐿1𝑄𝑇.(2.8)

To prove the main result, we approximate our problem by a sequence of regular problems and show a priori estimates of solutions. Next, we shall prove the convergence of approximating solutions to some function that solves our problem.

Let us recall the classical inequality of PoincarΓ© and Sobolev (see [16, Chapters 7.7 and 7.8]).

Lemma 2.2. Let Ξ© be an open subset of ℝ𝑁 with finite Lebesgue measure. Then, for every 𝑝 such that 1≀𝑝<∞, one has the following inequality: ‖𝑒‖𝐿𝑝(Ξ©)≀||Ξ©||πœ”π‘ξ‚Ά1/π‘β€–βˆ‡π‘’β€–πΏπ‘(Ξ©),foreveryπ‘’βˆˆπ‘Š01,𝑃(Ξ©),(2.9) where πœ”π‘ is the measure of the unit ball in ℝ𝑁. Furthermore, there exists a constant 𝑐=𝑐(𝑁,𝑝) such that, forallπ‘’βˆˆπ‘Š01,𝑃(Ξ©), β€–π‘’β€–πΏπ‘βˆ—(Ξ©)β‰€π‘β€–βˆ‡π‘’β€–πΏπ‘(Ξ©),forany𝑝<𝑁,β€–π‘’β€–πΏβˆž(Ξ©)≀||Ξ©||(1/(π‘βˆ’1))/π‘ƒβ€–βˆ‡π‘’β€–πΏπ‘(Ξ©),for𝑝>𝑁,(2.10) where π‘βˆ—=𝑁𝑝/(π‘βˆ’π‘).

Remark 2.3. By an approximation argument, the same inequality holds true if we replace |Ξ©| by |{π‘₯βˆˆΞ©βˆΆπ‘’(π‘₯)β‰ 0}|.

Let us recall next the Gagliardo-Nirenberg's inequality for evolution spaces.

Lemma 2.4 (see, e.g., [17]). Let Ξ© be a bounded open set of ℝ𝑁 and 𝑇 a real positive number. Let 𝑣(π‘₯,𝑑) be a function such that π‘£βˆˆπΏβˆž(0,𝑇;𝐿2(Ξ©))∩𝐿2(0,𝑇;𝐻10(Ξ©)). Then π‘£βˆˆπΏπœŒ(0,𝑇;𝐿𝜎(Ξ©)),where,2β‰€πœŽβ‰€2π‘π‘π‘βˆ’2,2β‰€πœŒβ‰€βˆž,𝜎+2𝜌=𝑁2,(2.11) and the following estimate holds ξ€œπ‘‡0‖𝑣(𝑑)β€–πœŒπΏπœŽ(Ξ©)𝑑𝑑≀𝑐(𝑁)β€–π‘£β€–πΏπœŒβˆ’2∞(0,𝑇;𝐿2(Ξ©))ξ€œπ‘‡0β€–βˆ‡π‘£(𝑑)β€–2𝐿2(Ξ©,ℝ𝑁)𝑑𝑑.(2.12)

We are interested in studding a sequence of regular problems approximating the model problem. We prove the existence of bounded solutions for the approximating problems, and this bound does not depend on 𝑛. We shall prove some a priori estimates on the solutions of this sequence of problems which serves in the limiting process.

3. Approximating Problems

We regularize the problem (1.1) by considering the following sequence of problems: πœ•π‘’π‘›πœ•π‘‘βˆ’Ξ›π‘’π‘›+𝐴𝑛π‘₯,𝑒𝑛=𝐡𝑛𝑒𝑛,βˆ‡π‘’π‘›ξ€Έ+𝑓𝑛(π‘₯,𝑑)in𝑄𝑛,𝑒𝑛(π‘₯,𝑑)=0onΓ𝑛,𝑒𝑛(π‘₯,0)=𝑒0𝑛(π‘₯)inΩ𝑛,(3.1) where 𝐡𝑛𝑒𝑛,βˆ‡π‘’π‘›ξ€Έ=𝛽𝑛𝑒𝑛||βˆ‡π‘’π‘›||2,π›½π‘›βŽ§βŽͺ⎨βŽͺ⎩(πœ‚)=𝑛if𝛽(πœ‚)>𝑛,𝛽(πœ‚)ifβˆ’π‘›β‰€π›½(πœ‚)≀𝑛,βˆ’π‘›if𝛽(πœ‚)<βˆ’π‘›.(3.2) Let us consider 𝐴𝑛π‘₯,𝑒𝑛=π‘Ž(π‘₯)𝑒𝑛||𝑒𝑛||π‘Ÿβˆ’1.(3.3)

Next, we consider the truncated function 𝑓𝑛||𝑓||ξ€Έ=inf,𝑛sign(𝑓).(3.4)

We denote by Ω𝑛 a strictly increasing sequence of bounded sets Ξ©βˆ©π΅π‘› invading Ξ©. Next we denote 𝑄𝑛=Ω𝑛×][,Ξ“0,𝑇𝑛=πœ•Ξ©π‘›Γ—][.0,𝑇(3.5)

From standard results (see, e.g., [14]), the following problem: πœ•π‘’π‘›πœ•π‘‘βˆ’Ξ›π‘’π‘›+Ξ₯𝑛π‘₯,𝑒𝑛,βˆ‡π‘’π‘›ξ€Έ=𝑓𝑛(π‘₯,𝑑)in𝑄𝑛,𝑒𝑛(π‘₯,𝑑)=0onΓ𝑛,𝑒𝑛(π‘₯,0)=𝑒0𝑛(π‘₯)inΩ𝑛,(3.6) where Ξ₯𝑛π‘₯,𝑒𝑛,βˆ‡π‘’π‘›ξ€Έ=𝐴𝑛π‘₯,π‘’π‘›ξ€Έβˆ’π΅π‘›ξ€·π‘’π‘›,βˆ‡π‘’π‘›ξ€Έ,(3.7) admits at least one solution 𝑒𝑛 satisfying π‘’π‘›βˆˆπΏ2ξ€·0,𝑇;𝐻10ξ€·Ξ©π‘›ξ€·ξ€Έξ€Έβˆ©πΆ0,𝑇;𝐿2Ω𝑛,π‘’ξ€Έξ€Έπ‘›π‘‘βˆˆπΏ2ξ€·0,𝑇;π»βˆ’1Ω𝑛,||𝑒𝑛||π‘ŸβˆˆπΏ1𝑄𝑛.(3.8)

Then one has the following estimates: ξ€œπ‘‡0ξ€œΞ©||βˆ‡π‘’π‘›||2+ξ€œπ‘‡0ξ€œΞ©π‘Ž(π‘₯)𝑒𝑛||𝑒𝑛||π‘Ÿβˆ’1≀𝑐(𝜌,πœ†,π‘ž,𝑇).(3.9)

Indeed, let us define the following function: ξ€œπœ™(𝑠)=𝑠0πœ™π»(𝜎)π‘‘πœŽ,for𝑠>0,(𝑠)=βˆ’πœ™(βˆ’π‘ ),for𝑠<0,(3.10) wehere 1𝐻(𝑠)=(1+𝑠)π‘ž+1,0<π‘ž<1.(3.11)

We introduce the function πœ“ defined by ξ€œπœ“(𝑠)=𝑠0πœ™(𝜎)π‘‘πœŽ.(3.12) Let us consider the following sequences: 𝐼1,𝑛=ξ€œΞ©π‘›πœ“ξ€·π‘’π‘›(ξ€Έπœƒπ‘₯,𝑇)πœ†+1,𝐼2,π‘›ξ€œ=𝛼𝑄𝑛||βˆ‡π‘’π‘›||2πœ™ξ…žξ€·π‘’π‘›ξ€Έπœƒπœ†+1,𝐼3,π‘›ξ€œ=𝛽(πœ†+1)𝑄𝑛||βˆ‡π‘’π‘›||||ξ€·π‘’βˆ‡πœƒπœ™π‘›ξ€Έ||πœƒπœ†,𝐼4,𝑛=ξ€œπ‘„π‘›π‘Ž(π‘₯)𝑒𝑛||𝑒𝑛||π‘Ÿβˆ’1πœ‰.(3.13)

Taking πœ‰=πœ™πœƒπœ†+1 with πœ†>0, we obtain 𝐼1,𝑛+𝐼2,𝑛+𝐼3,𝑛+𝐼4,π‘›β‰€ξ€œπ΅2πœŒξ€œπ‘“(π‘₯,𝑑)πœ‰+𝐡2πœŒπœ“ξ€·π‘’0(ξ€Έπœƒπ‘₯)πœ†+1.(3.14)

Applying Young's inequality, one has the following inequality: ||||πœƒβˆ‡π‘’πœ†β‰€πœ–2||||βˆ‡π‘’2πœƒπœ†+1(1+|𝑒|)π‘ž+𝑐(πœ†+1)(πœ†)πœƒ2πœ–πœ†βˆ’1(1+|𝑒|)π‘ž+1.(3.15)

We now choose π‘ž such that π‘ž<π‘Ÿ, which is possible, since π‘Ÿ>1 and π‘ž>0. We use again Young's inequality twice and we obtain ||||πœƒβˆ‡π‘’πœ†β‰€πœ–πœ™ξ…ž||||(𝑒)βˆ‡π‘’2πœƒπœ†+1+2(πœ†+1)πœ–π‘Ž0πœ†+1|𝑒|π‘Ÿβˆ’1π‘’πœ™(𝑒)πœƒπœ†+1ξ€·+π‘πœŒ,πœ†,π‘ž,π‘Ž0≀12||||βˆ‡π‘’2πœƒπœ†+1(1+|𝑒|)π‘ž+π‘Ž(π‘₯)2|𝑒|π‘Ÿβˆ’1π‘’πœ™(𝑒)πœƒπœ†+1ξ€·+π‘πœŒ,πœ†,π‘ž,π‘Ž0ξ€Έ.(3.16) Then 1𝛽𝐼3,𝑛≀12ξ€œπ‘„π‘›||βˆ‡π‘’π‘›||2πœ™ξ…žξ€·π‘’π‘›ξ€Έπœƒπœ†+1+ξ€œπ‘„π‘›π‘Ž(π‘₯)𝑒𝑛||𝑒𝑛||π‘Ÿβˆ’1πœ™(𝑒)πœƒπœ†+1+𝑐(𝜌,πœ†,π‘ž).(3.17)

From (3.14), we obtainξ€œΞ©π‘›πœ“ξ€·π‘’π‘›(ξ€Έπœƒπ‘₯,𝑇)πœ†+1+12ξ€œπ‘„π‘›||βˆ‡π‘’π‘›||2πœ™ξ…žξ€·π‘’π‘›ξ€Έπœƒπœ†+1+12ξ€œπ‘„π‘›π‘Ž(π‘₯)𝑒𝑛||𝑒𝑛||π‘Ÿβˆ’1πœ™(𝑒)πœƒπœ†+1≀𝑐(𝜌,πœ†,π‘ž,𝑇).(3.18)

In consequence, ξ€œπ‘‡0ξ€œΞ©||βˆ‡π‘’π‘›||2+ξ€œπ‘‡0ξ€œΞ©||𝑒𝑛||π‘Ÿβ‰€π‘(𝜌,πœ†,π‘ž,𝑇).(3.19)

Next, we substitute 𝑇 by 𝑑 for any 𝑑, 0≀𝑑≀𝑇 in (3.18), which is possible. We obtain ξ€œπ΅π‘›||𝑒𝑛(||π‘₯,𝑑)π‘Ÿβ‰€π‘,(3.20) where 𝑐 is a constant that does not depend on 𝑛. then, the approximate problem admits at least one solution which is bounded independently on 𝑛 in 𝐿∞(0,𝑇;πΏπ‘Ÿ(Ξ©)).

Let us now prove that the sequence 𝛽𝑛(𝑒𝑛)|βˆ‡π‘’π‘›|2 is bounded in 𝐿1(𝑄𝑇). We denote ξ€œπœ“(π‘Ÿ)=π‘Ÿ0𝑒|𝛾(𝜎)|π‘‘πœŽ,(3.21) where ξ€œπ›Ύ(π‘Ÿ)=π‘Ÿ0𝛽(𝜎)π‘‘πœŽ.(3.22)

We define, for any π‘˜>0 fixed, the functions β„Žπ‘˜(π‘Ÿ) defined as follows:β„Žπ‘˜(π‘Ÿ)=πœ’[|π‘Ÿ|>π‘˜]ξ€œ(𝑠)π‘Ÿπ‘˜π›½(𝜎)𝑒(|𝛾(𝜎)|βˆ’π›Ύ(π‘˜))πœ™π‘‘πœŽ,π‘˜ξ€œ(π‘Ÿ)=π‘Ÿ0β„Žπ‘˜(𝜎)π‘‘πœŽ.(3.23) Let us consider the following sequences: 𝑇1,𝑛=ξ€œΞ©βˆ©[|𝑒𝑛(𝑇)|>π‘˜]πœ™π‘˜ξ€·π‘’π‘›(𝑇𝑇,π‘₯)𝑑π‘₯,2,π‘›ξ€œ=𝛼[|𝑒𝑛|>π‘˜]||βˆ‡π‘’π‘›||2𝛽𝑛𝑒𝑛𝑒(|𝛾(𝑒𝑛)|βˆ’π›Ύ(π‘˜)),𝑇3,𝑛=ξ€œΞ©βˆ©[|𝑒0𝑛|>π‘˜]πœ™π‘˜ξ€·π‘’0𝑛𝑇(π‘₯)𝑑π‘₯,4,𝑛=ξ€œ[|𝑒𝑛|>π‘˜]||βˆ‡π‘’π‘›||2𝛽𝑛𝑒𝑛𝑒(|𝛾(𝑒𝑛)|βˆ’π›Ύ(π‘˜))ξ€Έ.βˆ’1(3.24)

We can choose β„Žπ‘˜(𝑒𝑛) as test function, and we obtain 𝑇1,𝑛+𝑇2,π‘›βˆ’π‘‡3,π‘›β‰€ξ€œ[|𝑒𝑛|>π‘˜]𝑒𝑓(π‘₯,𝑑)sign𝑛𝑒(|𝛾(𝑒𝑛)|βˆ’π›Ύ(π‘˜))ξ€Έβˆ’1+𝑇4,𝑛.(3.25) Then, we deduce 𝑇2,π‘›β‰€ξ€œ[|𝑒𝑛|>π‘˜]𝑒𝑓(π‘₯,𝑑)sign𝑛𝑒(|𝛾(𝑒𝑛)|βˆ’π›Ύ(π‘˜))ξ€Έ+ξ€œβˆ’1Ω∩[|𝑒0𝑛|>π‘˜]πœ™π‘˜ξ€·π‘’0𝑛(ξ€Έβ‰€βˆ«π‘₯)𝑑π‘₯[|𝑒𝑛|>π‘˜]𝑓(π‘₯,𝑑)𝑒|𝛾(𝑒𝑛)|+βˆ«ξ€Ί||π‘’Ξ©βˆ©0𝑛||ξ€»>π‘˜πœ™π‘˜ξ€·π‘’0𝑛(π‘₯)𝑑π‘₯.(3.26) In consequence,π›Όξ€œ[|𝑒𝑛|>π‘˜]||βˆ‡π‘’π‘›||2π›½π‘›ξ€·π‘’π‘›ξ€Έβ€–β€–β‰€π‘π‘“πœ’[|𝑒𝑛|>π‘˜]β€–β€–π‘Ÿ,π‘žβ€–β€–π‘’|𝛾(𝑒𝑛)|β€–β€–π‘Ÿβ€²,π‘žβ€²+ξ€œΞ©βˆ©[|𝑒0𝑛|>π‘˜]πœ“ξ€·π‘’0𝑛.(3.27)

Finally, we obtain ‖‖𝑒|𝛾(𝑒𝑛)|β€–β€–π‘Ÿβ€²,π‘žβ€²β€–β€–||πœ“ξ€·π‘’β‰€π‘1+𝑛||2β€–β€–π‘Ÿβ€²,π‘žβ€²ξ‚€β€–β€–πœ“ξ€·π‘’β‰€π‘1+𝑛‖‖22π‘Ÿβ€²,2π‘žβ€²ξ‚.(3.28) Then, the sequence 𝛽𝑛(𝑒𝑛)|βˆ‡π‘’π‘›|2 is bounded in 𝐿1(𝑄𝑇).

We require the all everywhere convergence of gradient 𝑒𝑛 to the gradient of 𝑒. Let us consider ξ‚»πœ“(𝑠)=inf(𝑠,πœ–)if𝑠β‰₯0,βˆ’inf(𝑠,πœ–)if𝑠≀0.(3.29)

Substituting 𝑒 in the approximating problem successively with 𝑒𝑛 and π‘’π‘š, we consider the following function: ξ€·π‘’πœ™=πœ“π‘›βˆ’π‘’π‘šξ€Έπœƒ.(3.30) After substraction, for 𝑛, π‘šβ‰₯4𝜌, we obtain the following inequality: ξ€œπ‘„π‘‡πœ•ξ€·π‘’π‘›βˆ’π‘’π‘šξ€Έξ€œπœ•π‘‘πœ™+𝛼𝑄𝑇||βˆ‡π‘’π‘›βˆ’βˆ‡π‘’π‘š||2ξ€œπœ™+π‘„π‘‡ξ‚€π‘’π‘Ž(π‘₯)𝑛||𝑒𝑛||π‘Ÿβˆ’1βˆ’π‘’π‘š||π‘’π‘š||π‘Ÿβˆ’1ξ‚πœ™β‰€ξ€œπ‘„π‘‡ξ‚€π›½π‘›ξ€·π‘’π‘›ξ€Έ||βˆ‡π‘’π‘›||2βˆ’π›½π‘šξ€·π‘’π‘šξ€Έ||βˆ‡π‘’π‘š||2ξ‚ξ€œπœ™+π‘„π‘‡ξ€·π‘“π‘›βˆ’π‘“π‘šξ€Έπœ™.(3.31) Let us now consider for 𝑛,π‘š sufficiently large the following sequence: ϝ𝑛=π‘“π‘›βˆ’π‘Ž(π‘₯)𝑒𝑛||𝑒𝑛||π‘Ÿβˆ’1+𝛽𝑛𝑒𝑛||βˆ‡π‘’π‘›||2.(3.32) Then we get ξ€œπ‘‡0ξ€œ[|π‘’π‘›βˆ’π‘’π‘š|β‰€πœ–]∩𝐡𝜌||βˆ‡π‘’π‘›βˆ’βˆ‡π‘’π‘š||2ξ€œβ‰€π‘πœ–π‘‡0ξ€œπ΅2πœŒξ€·||ϝ𝑛||+||Οπ‘š||𝑑π‘₯.(3.33) Since (3.20) holds, then π‘Ž(π‘₯)𝑒𝑛|𝑒𝑛|π‘Ÿβˆ’1 is in 𝐿1(𝑄𝑇). So that,ϝ𝑛 is bounded in 𝐿1(𝑄𝑇), then one has ξ€œπ‘‡0ξ€œ[|π‘’π‘›βˆ’π‘’π‘š|β‰€πœ–]∩𝐡𝜌||βˆ‡π‘’π‘›βˆ’βˆ‡π‘’π‘š||2β‰€π‘πœ–.(3.34)

Using Holder's inequality, we obtain ξ€œπ‘‡0ξ€œπ΅πœŒ||βˆ‡π‘’π‘›βˆ’βˆ‡π‘’π‘š||β‰€ξƒ©ξ€œπ‘‡0ξ€œ[|π‘’π‘›βˆ’π‘’π‘š|β‰€πœ–]∩𝐡𝜌||βˆ‡π‘’π‘›βˆ’βˆ‡π‘’π‘š||2ξƒͺ1/2𝑐+ξ€œπ‘‡0ξ€œ[|π‘’π‘›βˆ’π‘’π‘š|β‰₯πœ–]∩𝐡𝜌||βˆ‡π‘’π‘›βˆ’βˆ‡π‘’π‘š||.(3.35)

Using (3.34), one has ξ€œπ‘‡0ξ€œ[|π‘’π‘›βˆ’π‘’π‘š|β‰€πœ–]∩𝐡𝜌||βˆ‡π‘’π‘›βˆ’βˆ‡π‘’π‘š||2⟢0as𝑛,π‘šβŸΆ+∞.(3.36)

On the other hand, since the measure of [|π‘’π‘›βˆ’π‘’π‘š|β‰₯πœ–]∩𝐡𝜌 converges to 0 as 𝑛, then, as π‘š converges to +∞, then ξ€œπ‘‡0ξ€œ[|π‘’π‘›βˆ’π‘’π‘š|β‰₯πœ–]∩𝐡𝜌||βˆ‡π‘’π‘›βˆ’βˆ‡π‘’π‘š||β†’0.(3.37)

Thereforeξ€œπ‘„π‘‡||βˆ‡π‘’π‘›βˆ’βˆ‡π‘’π‘š||⟢0as𝑛,π‘šβŸΆ+∞.(3.38)

4. Limiting Process

We denote by 𝑒𝑛 the solution of the approximate problems (𝑃𝑛) on Ω𝑛 with initial condition π‘ˆ0𝑛. To prove the main result, we deal with the limiting process of the approximating problems. First of all, we will prove that there exists 𝑒 such that, up to a subsequence, (𝑒𝑛) converges to 𝑒, for almost every (π‘₯,𝑑)βˆˆπ‘„π‘‡. First, we will prove the all everywhere convergence of the gradients of 𝑒𝑛 to the gradient of 𝑒, up to a subsequence, in 𝑄𝑇. Next, we will prove the convergence of the superlinear reaction term and the quadratic gradient term in 𝐿1(𝑄𝑇). Finally, we will see that (𝑒𝑛) converges to 𝑒 in 𝐢([0,𝑇];𝐿1(Ξ©)), which gives meaning to the initial condition.

From (3.38) and up to a subsequence (𝑒𝑛), we have βˆ‡π‘’π‘›βŸΆβˆ‡π‘’a.e.in𝑄𝑇.(4.1)

By consequence, since βˆ‡π‘’π‘› is bounded in 𝐿1(𝑄𝑇), Vitali's theorem implies that βˆ‡π‘’π‘›βŸΆβˆ‡π‘’in𝐿1𝑄𝑇.(4.2)

Since one has π‘’π‘›βˆˆπΏ2ξ€·0,𝑇;𝐻10𝐡𝑛[]ξ€Έξ€Έβˆ©πΆ0,𝑇;𝐿1𝐡𝑛,ξ€Έξ€Έ(4.3)

By a diagonal process, we may select a subsequence, also denoted by {𝑒𝑛}, such that π‘’π‘›βŸΆπ‘’weaklyin𝐿2ξ€·0,𝑇;𝐻10ξ€Έ(Ξ©),(4.4) and also π‘’π‘›βŸΆπ‘’a.e.inΞ©.(4.5)

From the construction of 𝑒0𝑛 and 𝑓𝑛, we have 𝑒0π‘›βŸΆπ‘’0in𝐿1𝑓(Ξ©),π‘›βŸΆπ‘“inπΏπ‘Ÿ(0,𝑇;πΏπ‘ž(Ξ©)).(4.6) Since π‘’π‘›π‘‘βˆˆπΏ2(0,𝑇;𝐻0βˆ’1(Ω𝑛))+𝐿1(𝑄𝑛), Then using compactness arguments (see [18]), we have π‘’π‘›βŸΆπ‘’stronglyin𝐿1𝑄𝑇.(4.7)

From (4.5) and the fact that π‘Ž(π‘₯)𝑒𝑛 is bounded in πΏπ‘Ÿ(𝑄𝑇), the equi-integrability of π‘Ž(π‘₯)𝑒𝑛|𝑒𝑛|π‘Ÿβˆ’1 is derived and then from Vitali's theorem, we have π‘Ž(π‘₯)𝑒𝑛||𝑒𝑛||π‘Ÿβˆ’1βŸΆπ‘Ž(π‘₯)𝑒|𝑒|π‘Ÿβˆ’1in𝐿1𝑄𝑇.(4.8) By consequence, 𝐴𝑛π‘₯,π‘’π‘›ξ€ΈβŸΆπ΄(π‘₯,𝑒)in𝐿1𝑄𝑇.(4.9)

Since π‘’π‘›βŸΆπ‘’a.e.in𝑄𝑇,βˆ‡π‘’π‘›βŸΆβˆ‡π‘’a.e.in𝑄𝑇,(4.10) then 𝛽𝑛𝑒𝑛||βˆ‡π‘’π‘›||2||||βŸΆπ›½(𝑒)βˆ‡π‘’2a.e.in𝑄𝑇,𝐡𝑛𝑒𝑛,βˆ‡π‘’π‘›ξ€ΈβŸΆπ΅(𝑒,βˆ‡π‘’)a.e.in𝑄𝑇.(4.11) Therefore, from (4.1) and Vitali's theorem, we conclude that 𝛽𝑛𝑒𝑛||βˆ‡π‘’π‘›||2||||βŸΆπ›½(𝑒)βˆ‡π‘’2in𝐿1𝑄𝑇,𝐡𝑛𝑒𝑛,βˆ‡π‘’π‘›ξ€ΈβŸΆπ΅(𝑒,βˆ‡π‘’)in𝐿1𝑄𝑇.(4.12)

Finally, the sequence (𝑒𝑛)𝑛 belongs to 𝐢0(0,𝑇;π»βˆ’1(Ξ©)) and 𝑒𝑛(π‘₯,0)=𝑒0𝑛(π‘₯); this implies that the initial condition 𝑒(π‘₯,0)=𝑒0(π‘₯) is satisfied.