Abstract

The existence of solution for a fourth-order nonlinear partial differential equation (PDE) class involving p-biharmonic operator ฮ”(|ฮ”๐‘ข|๐‘โˆ’2ฮ”๐‘ข)=๐œ†๐œŒ(๐‘ฅ)|๐‘ข|๐‘žโˆ’2๐‘ขinฮฉ,๐‘ข=ฮ”๐‘ข=0,on๐œ•ฮฉ, is proved by applying mountain pass theorem and a local minimization.

1. Introduction and Assumptions

The goal of this paper is to investigate the existence of nontrivial solutions for a class of nonlinear partial differential equations of the fourth order of the form ฮ”๎‚€||||ฮ”๐‘ข๐‘โˆ’2๎‚ฮ”๐‘ข=๐œ†๐œŒ|๐‘ข|๐‘žโˆ’2๐‘ขinฮฉ,๐‘ข=ฮ”๐‘ข=0on๐œ•ฮฉ,(๐ธ) where ฮฉโŠ‚โ„๐‘ is a smooth bounded domain in โ„๐‘, ๐œ†โˆˆโ„+ is a parameter which plays the role of eigenvalue, and ๐‘ and ๐‘ž are real numbers such that ๐‘>1 and 1<๐‘ž<๐‘โˆ—โˆ—if๐‘1<๐‘<2,๐‘ž<+โˆžif๐‘๐‘โ‰ฅ2,(1.1) where ๐‘โˆ—โˆ— is the critical Sobolev exponent defined by ๐‘โˆ—โˆ—=๐‘๐‘/(๐‘โˆ’2๐‘) if 1<๐‘<๐‘/2 and +โˆž if ๐‘โ‰ฅ๐‘/2, and ๐œŒ is an indefinite weight in ๐ฟ๐‘Ÿ(ฮฉ) with ๐‘Ÿ being so that (i)if๐‘1<๐‘<2,thenโŽงโŽชโŽจโŽชโŽฉ๐‘๐‘Ÿ>2๐‘žfor1<๐‘žโ‰ค๐‘,๐‘Ÿ>๐‘โˆ—โˆ—๎€ท๐‘โˆ—โˆ—๎€ธโˆ’๐‘žโˆ’1for๐‘<๐‘ž<๐‘โˆ—โˆ—,(ii)๐‘Ÿ>๐‘žif๐‘๐‘=2,(iii)๐‘Ÿ=1if๐‘๐‘>2,(1.2) and (the Lebesgue measure) mes({๐‘ฅโˆˆฮฉโˆถ๐œŒ(๐‘ฅ)>0})โ‰ 0.(1.3)ฮ”2๐‘๐‘ขโˆถ=ฮ”(|ฮ”๐‘ข|๐‘โˆ’2ฮ”๐‘ข) is an operator of the fourth order called the ๐‘-biharmonic operator. For ๐‘=2, the linear operator ฮ”2=ฮ”ฮ” is the iterated Laplace that multiplied with positive constant occurs often in Navier-Stokes equations as being a viscosity coefficient. Its reciprocal operator denoted (ฮ”2)โˆ’1 is the celebrated Green operator [1]. The boundary condition in ๐ธ is of the compatibility type when ๐‘=๐‘ž which can be considered as the following Hamiltonian system of the two coupled equations: โˆ’ฮ”๐‘ข=๐œ™๐‘(๐‘ฃ)inฮฉ,โˆ’ฮ”๐‘ฃ=๐œ†๐œŒ๐œ™๐‘(๐‘ข)inฮฉ,๐‘ข=๐‘ฃ=0(1.4) with ๐œ™๐‘(๐‘ก)=|๐‘ก|๐‘โˆ’2๐‘ก, and ๐‘๎…ž=๐‘/(๐‘โˆ’1) is the Hรถlder conjugate exponent of ๐‘, by a transformation of a problem to a known Poisson's problem and using the properties of the operator-solution stated by Agmon-Douglis-Nirenberg; see [2]. Notice that a similar system as was considered recently by [3] in the restrictive case ๐œŒโ‰ก1. Our approach it quite different. Note that, in the case ๐‘=๐‘ž, ๐ธ is (๐‘โˆ’1)-homogeneous, so we are dealing a quasilinear eigenvalue problem which is considered differently. This is few considered by [4] in the particular case ๐œŒโ‰ก1 and ฮฉ is smooth; and by [5, 6] with ๐‘ขโˆˆ๐‘Š02,๐‘(ฮฉ) as a boundary condition, for any bounded domain. โ€‰

Note also that the nonhomogeneous case is not considered there. Here we seek nontrivial solutions for ๐ธ by distinguishing between two subcritical cases 1<๐‘ž<๐‘ and ๐‘<๐‘ž<๐‘โˆ—โˆ— which means that the critical points of the associated energy functional1๐’œ(๐‘ข)=๐‘๎€œฮฉ||||ฮ”๐‘ข๐‘๐œ†๐‘‘๐‘ฅโˆ’๐‘ž๎€œฮฉ๐œŒ(๐‘ฅ)|๐‘ข|๐‘ž๐‘‘๐‘ฅ,(1.5)are defined in ๐‘‹=๐‘Š01,๐‘(ฮฉ)โˆฉ๐‘Š2,๐‘(ฮฉ). One solution is obtained by applying classical Mountain Pass Theorem and the other solution by a local minimization technique. The restrictive case ๐œŒโ‰ก1 and ฮ”2๐‘ is substituted by the well-known ๐‘-Laplacian โˆ’ฮ”๐‘ was studied by Azorero and Alonso [7] and Elkhalil and Touzani [8] by using the fundamental properties of the first eigenvalue of the Dirichlet ๐‘-Laplacian problem.

It is important to indicate here that condition (1.2) is optimal to ensure the Palais-Smale (PS) condition is satisfied. Notice that our results are investigated without any condition on the parameter ๐œ† related to the spectrum of ๐ธ (when ๐‘=๐‘ž). On the other hand the condition (1.3) is assumed to have eventually nontrivial solutions.

The rest of this paper is divided in two sections as follows. In Section 2, we introduce some preliminary results and we give some technical lemmas, and in Section 3, we establish our main results.

2. Preliminaries

First, we introduce some preliminary results that we will need and some lemmas that are the key point of our results. We solve the problem ๐ธ in the space ๐‘‹=๐‘Š01,๐‘(ฮฉ)โˆฉ๐‘Š2,๐‘(ฮฉ) endowed with the norm โ€–๎‚ต๎€œ๐‘ขโ€–=ฮฉ||||ฮ”๐‘ข๐‘๎‚ถ๐‘‘๐‘ฅ1/๐‘.(2.1)๐‘‹ equipped with this norm is an uniformly convex Banach space for 1<๐‘<โˆž. Hereafter, โ€–โ‹…โ€–๐‘ is the ๐ฟ๐‘-norm, โŸจโ‹…,โ‹…โŸฉ will denote the duality between ๐‘‹ and its dual ๐‘‹๎…ž.

Definition 2.1. ๐‘ข is a weak solution of ๐ธ if, and only if, for all ๐‘ฃโˆˆ๐‘Š01,๐‘(ฮฉ)โˆฉ๐‘Š2,๐‘(ฮฉ) we have ๎€œฮฉ||||ฮ”๐‘ข๐‘โˆ’2๎€œฮ”๐‘ขฮ”๐‘ฃ๐‘‘๐‘ฅ=๐œ†ฮฉ๐œŒ|๐‘ข|๐‘žโˆ’2๐‘ข๐‘ฃ๐‘‘๐‘ฅ.(2.2)

That is, ๐‘ข is a critical point of the energy functional associated to ๐ธ defined on ๐‘‹ by 1๐’œ(๐‘ข)=๐‘๎€œฮฉ||||ฮ”๐‘ข๐‘๐œ†๐‘‘๐‘ฅโˆ’๐‘ž๎€œฮฉ๐œŒ|๐‘ข|๐‘ž๐‘‘๐‘ฅ.(2.3)

Lemma 2.2. For any ๐‘Ÿ verifying (1.2) and ๐‘ž satisfying (1.1) there exists a constant ๐‘=๐‘(๐‘,๐‘ž,๐‘Ÿ)>0 such that ||||๎€œฮฉ๐œŒ|๐‘ข|๐‘ž||||๐‘‘๐‘ฅโ‰ค๐‘โ€–๐œŒโ€–๐‘Ÿโ€–๐‘ขโ€–๐‘ž(2.4) and the map ๐‘ขโ†’๐œŒ|๐‘ข|๐‘โˆ’2๐‘ข is strongly continuous from ๐‘‹ into ๐‘‹๎…ž.

Proof. To establish (2.4), we will divide the proof to three steps with respect to exponents ๐‘,๐‘ž and ๐‘.Step 1 (1<๐‘<๐‘). Fixing ๐‘ขโˆˆ๐‘Š01,๐‘(ฮฉ)โˆฉ๐‘Š2,๐‘(ฮฉ) and using Hรถlder's inequality we have ||||๎€œ๐œŒ|๐‘ข|๐‘ž||||๐‘‘๐‘ฅโ‰คโ€–๐œŒโ€–๐‘Ÿโ€–๐‘ขโ€–๐‘ ๐‘žโˆ’1โ€–๐‘ขโ€–๐‘โˆ—โˆ—,(2.5) where ๐‘žโˆ’1๐‘ 1=1โˆ’๐‘Ÿโˆ’1๐‘โˆ—โˆ—.(2.6) Such exponent ๐‘  exists. Indeed: if 1<๐‘žโ‰ค๐‘, we obtain ๐‘โˆ’1๐‘ โ‰ฅ๐‘žโˆ’1๐‘ 1=1โˆ’๐‘Ÿโˆ’1๐‘โˆ—โˆ—โ‰ฅ1โˆ’2๐‘ž๐‘โˆ’1๐‘โˆ—โˆ—โ‰ฅ1โˆ’2๐‘๐‘โˆ’1๐‘โˆ—โˆ—=๐‘โˆ’1๐‘โˆ—โˆ—.(2.7) Thus, it suffices to take ๐‘  so that max(1,๐‘žโˆ’1)<๐‘ <๐‘โˆ—โˆ—.(2.8) If ๐‘<๐‘ž<๐‘โˆ—โˆ—, we have ๐‘Ÿ>๐‘โˆ—โˆ—(๐‘โˆ—โˆ—โˆ’๐‘ž)โˆ’1. So, 1๐‘Ÿ๐‘ž<1โˆ’๐‘โˆ—โˆ—.(2.9) Hence, ๐‘žโˆ’1๐‘ 1=1โˆ’๐‘Ÿโˆ’1๐‘โˆ—โˆ—>๐‘žโˆ’1๐‘โˆ—โˆ—.(2.10) Therefore, it suffices to take ๐‘  such that max(1,๐‘žโˆ’1)<๐‘ <๐‘โˆ—โˆ—.(2.11)Step 2 (๐‘=๐‘/2). In this case, for any ๐‘ >1, ๐‘Š01,๐‘โˆฉ๐‘Š2,๐‘(ฮฉ)โ†ช๐ฟ๐‘ (ฮฉ). Thus, for ๐‘ก=1/(1โˆ’(๐‘Ÿ+๐‘ž๎…ž)/๐‘Ÿ๐‘ž๎…ž) (some ๐‘ก exists because ๐‘Ÿ>๐‘ž=๐‘ž๎…ž/(๐‘ž๎…žโˆ’1)), we get 1๐‘ก+1๐‘ž๎…ž+1๐‘Ÿ=1.(2.12) Hรถlder's inequality yields ||||๎€œ๐œŒ|๐‘ข|๐‘ž||||โ‰คโ€–๐œŒโ€–๐‘Ÿโ€–๐‘ขโ€–๐‘กโ€–๐‘ขโ€–๐‘žโ€ฒ.(2.13)Step 3 (๐‘>๐‘/2). In this case we have ๐‘Š01,๐‘(ฮฉ)โˆฉ๐‘Š2,๐‘(ฮฉ)โ†ช๐ฟโˆž(ฮฉ) and ๐‘Ÿ=1. Thus, ๎€œฮฉ๐œŒ|๐‘ข|๐‘ž๐‘‘๐‘ฅโ‰คโ€–๐‘ขโ€–๐‘žโˆžโ€–๐œŒโ€–1โ‰ค๐‘โ€–๐‘ขโ€–๐‘žโ€–๐œŒโ€–1.(2.14) To prove the continuity of ๐‘ขโ†’๐œŒ|๐‘ข|๐‘žโˆ’2๐‘ข, we argue as follows.
Let (๐‘ข๐‘›)๐‘›โ‰ฅ0โŠ‚๐‘‹ such that ๐‘ข๐‘›โ‡€๐‘ข in ๐‘‹. Thus, ๐œŒ|๐‘ข๐‘›|๐‘žโˆ’2๐‘ข๐‘›โ†’๐œŒ|๐‘ข|๐‘žโˆ’2๐‘ข in ๐‘‹๎…ž, that is, sup๐‘ฃโˆˆ๐‘‹,โ€–๐‘ขโ€–โ‰ค1||||๎€œฮฉ๐œŒ๎‚ƒ||๐‘ข๐‘›||๐‘žโˆ’2๐‘ข๐‘›โˆ’|๐‘ข|๐‘žโˆ’2๐‘ข๎‚„||||๐‘ฃ๐‘‘๐‘ฅ=๐‘œ(1).(2.15) We prove it in the case 1<๐‘<๐‘/2, 1<๐‘ž<๐‘โˆ—โˆ— and ๐œŒโˆˆ๐ฟ๐‘Ÿ(ฮฉ) with ๐‘Ÿ satisfying (i).
Using (2.6) or (2.10), we obtain by calculation sup๐‘ฃโˆˆ๐‘‹,โ€–๐‘ฃโ€–1,๐‘โ‰ค1||||๎€œฮฉ๐œŒ๎‚ƒ||๐‘ข๐‘›||๐‘žโˆ’2๐‘ข๐‘›โˆ’|๐‘ข|๐‘žโˆ’2๐‘ข๎‚„||||๐‘ฃ๐‘‘๐‘ฅโ‰คsup๐‘ฃโˆˆ๐‘‹,โ€–๐‘ฃโ€–1,๐‘โ‰ค1๎‚ธโ€–๐œŒโ€–๐‘Ÿโ€–โ€–๎‚€||๐‘ข๐‘›||๐‘žโˆ’2๐‘ข๐‘›โˆ’|๐‘ข|๐‘žโˆ’2๐‘ข๎‚โ€–โ€–๐‘ /(๐‘žโˆ’1)โ€–๐‘ฃโ€–๐‘โˆ—โˆ—๎‚นโ‰ค๐‘โ€–๐œŒโ€–๐‘Ÿโ€–โ€–๎‚€||๐‘ข๐‘›||๐‘žโˆ’2๐‘ข๐‘›โˆ’|๐‘ข|๐‘žโˆ’2๐‘ข๎‚โ€–โ€–๐‘ /(๐‘žโˆ’1).(2.16) Therefore, the desired result can be obtained since the limit โ€–โ€–๎‚€||๐‘ข๐‘›||๐‘žโˆ’2๐‘ข๐‘›โˆ’|๐‘ข|๐‘žโˆ’2๐‘ข๎‚โ€–โ€–๐‘ /(๐‘žโˆ’1)=๐‘œ(1)(2.17) holds by using the continuity of the Nemytskii operator ๐‘ขโ†’|๐‘ข|๐‘žโˆ’2๐‘ข from ๐ฟ๐‘ (ฮฉ)โ†’๐ฟ๐‘ /(๐‘žโˆ’1)(ฮฉ) and the right embedding of Sobolev space.

Remark 2.3. If ๐‘ข is a solution of ๐ธ associated to ๐œ†=1, then, for any ๐›ผ>0, ๐›ผ1/(๐‘โˆ’๐‘ž)๐‘ข is also a weak solution of ๐ธ associated to ๐›ผ. Hence, we can reduce the problem to ๐œ†=1.

Lemma 2.4. For ๐‘โˆˆ(1,+โˆž) we have the following assertions (i)if 1<๐‘ž<๐‘ then ๐’œ is bounded from below, (ii)if ๐‘<๐‘ž<๐‘โˆ—โˆ— thus, there exist two reel ๐œŽ>0 and ๐›ฟ>0 such that:๐ด(๐‘ข)>๐›ฟ if 0<โ€–๐‘ขโ€–<๐œŽ,๐ด(๐‘ข)โ‰ฅ0 if โ€–๐‘ขโ€–=๐œŽ.

Proof. Step 1 (1<๐‘ž<๐‘). We have1๐’œ(๐‘ข)=๐‘โ€–๐‘ขโ€–๐‘โˆ’1๐‘ž๎€œฮฉ๐œŒ|๐‘ข|๐‘žโ‰ฅ1๐‘โ€–๐‘ขโ€–๐‘โˆ’๐‘๐‘žโ€–๐œŒโ€–๐‘Ÿโ€–๐‘ขโ€–๐‘žโ‰ฅโ€–๐‘ขโ€–๐‘ž๎‚ธ1๐‘โ€–๐‘ขโ€–๐‘โˆ’๐‘žโˆ’๐‘๐‘žโ€–๐œŒโ€–๐‘Ÿ๎‚น,(2.18) for a positive constant ๐‘.
If โ€–๐‘ขโ€–โ‰ฅ((๐‘๐‘/๐‘ž)โ€–๐œŒโ€–๐‘Ÿ)1/(๐‘โˆ’๐‘ž), then ๐’œ(๐‘ข)โ‰ฅ0.(2.19)
If โ€–๐‘ขโ€–<((๐‘๐‘/๐‘ž)โ€–๐œŒโ€–๐‘Ÿ)1/(๐‘โˆ’๐‘ž), then๐’œ(๐‘ข)โ‰ฅ๐‘๎…žwith๐‘๎…ž๐‘=โˆ’๐‘žโ€–๐œŒโ€–๐‘Ÿ๎‚ต๐‘๐‘๐‘žโ€–๐œŒโ€–๐‘Ÿ๎‚ถ1/(๐‘โˆ’๐‘ž).(2.20)
Step 2 (๐‘<๐‘ž<๐‘โˆ—โˆ—). From (2.18) we deduce that 1๐ด(๐‘ข)โ‰ฅ๐‘โ€–๐‘ขโ€–๐‘ž๎‚ธ1โˆ’๐‘๐‘๐‘žโ€–๐œŒโ€–๐‘Ÿโ€–๐‘ขโ€–๐‘žโˆ’๐‘๎‚น.(2.21) If โ€–๐‘ขโ€–โ‰ค((๐‘ž/๐‘๐‘)(1/โ€–๐œŒโ€–๐‘Ÿ))1/(๐‘žโˆ’๐‘), then there exists ๐›ฟ>0 such that ๐’œ(๐‘ข)>๐›ฟ.(2.22) If โ€–๐‘ขโ€–=((๐‘ž/๐‘๐‘)(1/โ€–๐œŒโ€–๐‘Ÿ))1/(๐‘žโˆ’๐‘), we get ๐’œ(๐‘ข)>0.(2.23) The estimation above completes the proof.

Proposition 2.5. If the pair (๐‘,๐‘ž) satisfies (1.1) with ๐‘โ‰ ๐‘ž, then ๐’œ satisfies the (PS) condition.

Proof. Let (๐‘ข๐‘—)๐‘— be a sequence of Palais-Smale of ๐’œ in ๐‘‹. Thus there exists ๐‘€>0 such that ||๐’œ๎€ท๐‘ข๐‘—๎€ธ||(โ‰ค๐‘€PS)1 and for any ๐œ€>0 there is ๐‘—0>0 such that ||๎ซ๐’œ๎…ž๎€ท๐‘ข๐‘—๎€ธ,๐‘ข๐‘—๎ฌ||โ€–โ€–๐‘ขโ‰ค๐œ€๐‘—โ€–โ€–,โˆ€๐‘—โ‰ฅ๐‘—0.(PS)2 Claim that (๐‘ข๐‘—)๐‘— is a bounded sequence in ๐‘‹.Step 1 (1<๐‘<๐‘ž). By (2.18) we deduce that ๐’œ is coercive, then the claim follows.Step 2 (๐‘<๐‘ž<๐‘โˆ—โˆ—). Equation (PS)2 implies that, for all ๐‘—>๐‘—0, โ€–โ€–๐‘ขโˆ’๐œ€๐‘—โ€–โ€–โ‰ค๎ซ๐’œ๎…ž๎€ท๐‘ข๐‘—๎€ธ,๐‘ข๐‘—๎ฌโ€–โ€–๐‘ขโ‰ค๐œ€๐‘—โ€–โ€–.(2.24) Thanks to (PS)1, we obtain, 1โˆ’๐‘€โ‰ค๐‘๎€œฮฉ||ฮ”๐‘ข๐‘—||๐‘1๐‘‘๐‘ฅโˆ’๐‘ž๎€œ๐œŒ||๐‘ข๐‘—||๐‘ž๐‘‘๐‘ฅโ‰ค๐‘€.(2.25) Multiplying (2.24) by (โˆ’1/๐‘ž) and adding with (2.18), we obtain, ๎‚ต1๐‘โˆ’1๐‘ž๎‚ถโ€–โ€–๐‘ข๐‘—โ€–โ€–๐‘๐œ€โ‰ค๐‘€+๐‘žโ€–โ€–๐‘ข๐‘—โ€–โ€–.(2.26) Hence, there exists a positive constant ๐‘>0 such that โ€–โ€–๐‘ข๐‘—โ€–โ€–โ‰ค๐‘โˆ€๐‘—โ‰ฅ๐‘—0.(2.27) So (๐‘ข๐‘—) is bounded in the two cases in ๐‘‹ and the claim is concluded. Consequently, there exists a subsequence still denoted (๐‘ข๐‘—)๐‘— converges weakly for some ๐‘ขโˆˆ๐‘‹ and strongly in ๐ฟ๐‘(ฮฉ) and in ๐ฟ๐‘ž(ฮฉ) for all (๐‘,๐‘ž) satisfies (1.2).
Let ๎€œโŸจ๐ฝ๐‘ข,๐‘ฃโŸฉ=ฮฉ||||ฮ”๐‘ข๐‘โˆ’2ฮ”๐‘ขฮ”๐‘ฃ๐‘‘๐‘ฅ.(2.28) Thus ๎ซ๐ด๎…ž๎€ท๐‘ข๐‘—๎€ธโˆ’๐ด๎…ž(๐‘ข),๐‘ข๐‘—๎ฌ+๎€œโˆ’๐‘ขฮฉ๐œŒ๎‚€||๐‘ข๐‘—||๐‘žโˆ’2๐‘ข๐‘—โˆ’|๐‘ข|๐‘žโˆ’2๐‘ข๎‚๎€ท๐‘ข๐‘—๎€ธ=๎ซโˆ’๐‘ข๐ฝ๐‘ข๐‘—โˆ’๐ฝ๐‘ข,๐‘ข๐‘—๎ฌ.โˆ’๐‘ข(2.29) Since ๐‘ขโ†’๐œŒ|๐‘ข|๐‘žโˆ’2๐‘ข is strongly continuous from ๐‘‹ into ๐‘‹๎…ž, we deduce from (PS)2, as ๐‘—โ†’+โˆž in (2.29), that lim๐‘—โ†’+โˆž๎ซ๐ฝ๐‘ข๐‘—โˆ’๐ฝ๐‘ข,๐‘ข๐‘—๎ฌโˆ’๐‘ข=0.(2.30) On the other hand, we have ๎ซ๐ฝ๐‘ข๐‘—โˆ’๐ฝ๐‘ข,๐‘ข๐‘—๎ฌโ‰ฅ๎‚€โ€–โ€–โˆ’๐‘ขฮ”๐‘ข๐‘—โ€–โ€–๐‘๐‘โˆ’1โˆ’โ€–ฮ”๐‘ขโ€–๐‘๐‘โˆ’1โ€–โ€–๎‚๎‚€ฮ”๐‘ข๐‘—โ€–โ€–๐‘โˆ’โ€–ฮ”๐‘ขโ€–๐‘๎‚.โ‰ฅ0.(2.31) This and (2.30) imply that โ€–โ€–ฮ”๐‘ข๐‘—โ€–โ€–๐‘โŸถโ€–ฮ”๐‘ขโ€–๐‘as๐‘—โŸถ+โˆž.(2.32) Finally, since ๐‘Š01,๐‘(ฮฉ)โˆฉ๐‘Š2,๐‘(ฮฉ) is uniformly convex, the proof is achieved.

3. Main Results

3.1. The Case 1<๐‘ž<๐‘: Local Minimization Technique

In this subsection, we show that the problem ๐ธ has a sequence of weak solution by using the results of Lusternik-Shnirleman [9]. In other words, we use a local minimization for the corresponding energy functional.

Let ฮ“๐‘›={๐ตโŠ‚๐‘Š01,๐‘(ฮฉ)โˆฉ๐‘Š2,๐‘(ฮฉ),compactsymmetricand๐›พ(๐ต)โ‰ฅ๐‘›} and set ๐‘๐‘›=inf๐ตโˆˆฮ“๐‘›๎‚ตsup๐‘ขโˆˆ๐ต๎‚ถ๐’œ(๐‘ข),โˆ€๐‘›โˆˆโ„•โˆ—.(3.1) We will show that the sequence ๐‘๐‘›, defined by (3.1) is critical values of ๐’œ. Here and in the following ๐›พ(๐ต)=๐‘˜ is the genus of ๐ต, that is, the smallest integer ๐‘˜ such that there is an odd continuous map from ๐ต into โ„๐‘˜โงต{0}.

Lemma 3.1. For any ๐‘˜โˆˆโ„•โˆ—, ฮ“๐‘˜โ‰ โˆ….(3.2)

Proof. ๐‘Š01,๐‘(ฮฉ)โˆฉ๐‘Š2,๐‘(ฮฉ) is separable. Therefore, for any ๐‘˜โˆˆโ„•โˆ—, there exists a finite sequence of functions ๐‘ข1,โ€ฆ,๐‘ข๐‘˜ in ๐‘Š01,๐‘(ฮฉ)โˆฉ๐‘Š2,๐‘(ฮฉ) linearly independent such that supp๐‘ข๐‘–โˆฉsupp๐‘ข๐‘—=โˆ… for ๐‘–โ‰ ๐‘— and thanks to (1.3) we can choose ๐‘ข๐‘– such that โˆซฮฉ๐‘”|๐‘ข๐‘–|๐‘ž๐‘‘๐‘ฅ=1. Let ๐น๐‘˜=span(๐‘ข1,โ€ฆ,๐‘ข๐‘˜) be a subspace in ๐‘Š01,๐‘(ฮฉ)โˆฉ๐‘Š2,๐‘(ฮฉ) spend by ๐‘ข๐‘– of dimension ๐‘˜.
If ๐‘ฃโˆˆ๐น๐‘˜, then, there exist ๐›ฝ1,โ€ฆ,๐›ฝ๐‘˜ real numbers such that โˆ‘๐‘ฃ=๐‘–=๐‘˜๐‘–=1๐›ฝ๐‘–๐‘ข๐‘–.
Thus, โˆซฮฉ๐œŒ|๐‘ฃ|๐‘žโˆ‘๐‘‘๐‘ฅ=๐‘–=๐‘˜๐‘–=1|๐›ฝ๐‘–|๐‘ž. Hence, the map๎‚ต๎€œ๐‘ฃโŸถฮฉ๐œŒ|๐‘ข|๐‘ž๎‚ถ๐‘‘๐‘ฅ1/๐‘ž(3.3) is a norm in ๐น๐‘˜. Consequently, there exists a constant ๐‘>0 such that ๎‚ต๎€œ๐‘โ€–๐‘ขโ€–โ‰ค๐œŒ|๐‘ข|๐‘ž๎‚ถ๐‘‘๐‘ฅ1/๐‘žโ‰ค1๐‘โ€–๐‘ขโ€–,โˆ€๐‘ฃโˆˆ๐น๐‘˜.(3.4) Set ๐‘ˆ๐‘˜=๐น๐‘˜โˆฉ๎‚ป๐œƒ๐‘ฃโˆˆ๐‘‹โˆถ2โ‰ค๎€œฮฉ๐œŒ|๐‘ฃ|๐‘ž๎‚ผ๐‘‘๐‘ฅโ‰ค๐œƒ(3.5) with ๐œƒ=(๐‘/๐‘ž๐‘๐‘)๐‘ž/(๐‘โˆ’1). It is clear that ๐‘ˆ๐‘˜ is a closed neighborhood, symmetric, compact not containing 0. Finally, by the property of genus we get ๐›พ(๐‘ˆ๐‘˜)=๐‘˜ and ฮ“๐‘˜โ‰ โˆ….

Theorem 3.2. Let ๐‘๐‘› be a sequence defined by (3.1). Then, we have the following statements: (i)For any ๐‘›โˆˆโ„•โˆ—, there exist ๐‘› distinct pairs critical points of the functional ๐’œ. (ii)If โˆ’โˆž<๐‘=๐‘๐‘›=๐‘๐‘›+1=โ‹ฏ=๐‘๐‘›+๐‘˜(3.6) then ๐›พ๎€ท๐พ๐‘๎€ธโ‰ฅ๐‘˜+1,(3.7) where ๐พ๐‘=๎‚†๐‘ขโˆˆ๐‘Š01,๐‘(ฮฉ)โˆฉ๐‘Š2,๐‘(ฮฉ)suchthat๐’œ๎…ž๎‚‡.(๐‘ข)=0,๐’œ(๐‘ข)=๐‘(3.8)

Proof. From the result of [10], it suffices to prove (i).
Recall that the functional ๐ด is even, bounded from below and sup๐‘‹๐ด(๐‘ข)<0.
In view of Lemma 2.4, ๐ด is of class ๐ถ1 on ๐‘‹; satisfying the (PS) condition.
Hence, these properties confirm the hypotheses of Clark's Lemma cf. [11] which proves (i).

Remark 3.3. The set ๐พ={๐‘ขโˆˆ๐‘Š01,๐‘(ฮฉ)โˆฉ๐‘Š1,๐‘(ฮฉ)โˆถ๐’œ๎…ž(๐‘ข)=0} is compact. Indeed, let (๐‘ข๐‘›)๐‘› be a sequence in ๐พ, that is, ๐’œ๎…ž๎€ท๐‘ข๐‘›๎€ธ=0,โˆ€๐‘›โˆˆโ„•.(3.9) It is clear that, for ๐‘>๐‘ž, ๐’œ๎€ท๐‘ข๐‘›๎€ธโ‰ค๎ซ๐’œ๎…ž๎€ท๐‘ข๐‘›๎€ธ,๐‘ข๐‘›๎ฌ=0,โˆ€๐‘›.(3.10) Since ๐ด is bounded from below, by Lemma 2.4, (๐‘ข๐‘›)๐‘› is a sequence of Palais-Smale (PS). Thus, (๐‘ข๐‘›)๐‘› possesses a convergent subsequence.
Consequently, ๐พ is compact in ๐‘Š01,๐‘(ฮฉ)โˆฉ๐‘Š2,๐‘(ฮฉ) and the functional ๐’œ has an infinity of critical points.

3.2. The Case ๐‘<๐‘ž<๐‘โˆ—โˆ—: Mountain Pass Theorem

Here, we prove the existence of solutions of problem ๐ธ, by using Mountain Pass theorem [11].

Lemma 3.4. Suppose that ๐‘<๐‘ž<๐‘โˆ—โˆ— and ๐œŒโˆˆ๐ฟ๐‘Ÿ(ฮฉ) with ๐‘Ÿ satisfying (1.2). Hence there exists ๐‘’โˆˆ๐‘‹โงต{0} such that ๐’œ(๐‘’)โ‰ค0.(3.11)

Proof. We have for any ๐‘ขโˆˆ๐‘‹ and ๐‘กโˆˆโ„, ๐‘ก๐’œ(๐‘ก๐‘ข)=๐‘๐‘๎€œฮฉ||||ฮ”๐‘ข๐‘๐‘ก๐‘‘๐‘ฅโˆ’๐‘ž๐‘ž๎€œฮฉ๐œŒ|๐‘ข|๐‘ž๐‘‘๐‘ฅ.(3.12) From (1.3), there exists ๐‘ข0โˆˆ๐‘‹ such that โˆซฮฉ๐œŒ|๐‘ข0|๐‘ž๐‘‘๐‘ฅ=1. Thus, lim๐‘กโ†’+โˆž๐’œ๎€ท๐‘ก๐‘ข0๎€ธ=โˆ’โˆž,because๐‘<๐‘ž.(3.13) Hence, there is ๐‘ก0>0 large enough so that ๐’œ(๐‘ก0๐‘ข0)<0. To achieve the proof, it suffices to take ๐‘’=๐‘ก0๐‘ข0.

Consequently, we conclude the following statements. (a)๐’œ is ๐ถ1 of class ๐ถ1, even and ๐’œ(0)=0. (b)๐’œ satisfies the (PS) condition.(c)There exist two positive reel ๐‘™>0, ๐›ฟ>0 such that ๐’œ(๐‘ข)>๐›ฟif๐’œ0<โ€–๐‘ขโ€–<๐‘™,(๐‘ข)โ‰ฅ0ifโ€–๐‘ขโ€–=๐‘™.(3.14)(d)There exists ๐‘’โˆˆ๐‘‹โงต{0} such that ๐’œ(๐‘’)โ‰ค0.

Now, we can establish the following theorem.

Theorem 3.5. If ๐‘<๐‘ž<๐‘โˆ—โˆ—, then the value ๐‘ defined by ๐‘=inf๐›พโˆˆ๐’ขmax๐‘กโˆˆ[0,1]๐’œ(๐›พ(๐‘ก))(3.15) is a critical value of ๐’œ.
Here, ๎‚†๎‚€[]๐’ข=๐›พโˆˆ๐ถ0,1;๐‘Š01,๐‘(ฮฉ)โˆฉ๐‘Š2,๐‘๎‚๎‚‡.(ฮฉ),๐›พ(0)=0,๐›พ(1)=๐‘’(3.16)

Proof. In view of Lemma 2.4., Proposition 2.5, and properties (a)โ€“(d), ๐‘ is a critical value of ๐ด by applying the Mountain Pass Theorem due to [11].

Acknowledgment

The author gratefully acknowledges the financial support provided by Al-Imam Muhammed Ibn Saud Islamic University during this research.