Abstract

We consider the partial metric on a set 𝑋, define πœ–-fixed point for maps, and obtain some sufficient and necessary conditions on that, also we obtain some sufficient and necessary theorems on πœ–-fixed point.

1. Introduction

The partial metric spaces were introduced in [1] as a part of the study of denotational semantics of dataflow networks. In particular, he established the precise rela- tionship between partial metric spaces and the so-called weightable quasimetric spaces and proved a partial metric generalization of Banach contraction mapping theorem.

A partial metric [1] on a set 𝑋 is a function π‘βˆΆπ‘‹Γ—π‘‹β†’[0,∞) such that, for all π‘₯,𝑦,π‘§βˆˆπ‘‹(1)π‘₯=𝑦⇔𝑝(π‘₯,π‘₯)=𝑝(π‘₯,𝑦)=𝑝(𝑦,𝑦); (2)𝑝(π‘₯,π‘₯)≀𝑝(π‘₯,𝑦); (3)𝑝(π‘₯,𝑦)≀𝑝(𝑦,π‘₯); (4)𝑝(π‘₯,𝑧)≀𝑝(π‘₯,𝑦)+𝑝(𝑦,𝑧)βˆ’π‘(𝑦,𝑦).

A partial metric space is a pair (𝑋,𝑝), where 𝑝 is a partial metric on 𝑋. Each partial metric 𝑝 on 𝑋 induces a 𝑇0 topology πœπ‘ on 𝑋 which has as a base the family of open balls {𝐡𝑝(π‘₯,πœ–)π‘₯βˆˆπ‘‹,πœ–>0}, where 𝐡𝑝(π‘₯,πœ–)={π‘¦βˆˆπ‘‹βˆΆπ‘(π‘₯,y)<𝑝(π‘₯,π‘₯)+πœ–} for all π‘₯βˆˆπ‘‹ and πœ–>0.

If 𝑝 is a partial metric on 𝑋, then the function π‘π‘ βˆΆπ‘‹Γ—π‘‹β†’[0,∞) given by 𝑝𝑠(π‘₯,𝑦)=2𝑝(π‘₯,𝑦)βˆ’π‘(π‘₯,π‘₯)βˆ’π‘(𝑦,𝑦) is a metric on 𝑋.

A sequence{π‘₯𝑛}π‘›βˆˆπ‘ in a partial metric space (𝑋,𝑝) is called a Cauchy sequence if there exists (and is finite) lim𝑛,π‘šπ‘(π‘₯𝑛,π‘₯π‘š) [1, Definition 5.2].

Note that {π‘₯𝑛}π‘›βˆˆπ‘ is a Cauchy sequence in (𝑋,𝑝) if and only if it is a Cauchy sequence in the metric space (𝑋,𝑝𝑠) [1, page 194].

A partial metric space (𝑋,𝑝) is said to be complete if every Cauchy sequence {π‘₯𝑛}π‘›βˆˆπ‘ in 𝑋 converges, with respect to πœπ‘, to a point π‘₯βˆˆπ‘‹ such that 𝑝(π‘₯,π‘₯)=lim𝑛,π‘šπ‘(π‘₯𝑛,π‘₯π‘š) [1, Definition 5.3].

It is well known and easy to see that a partial metric space (𝑋,𝑝) is complete if and only if the metric space (𝑋,𝑝𝑠) is complete.

In [2], S. J. O’Neill proposed one significant change to Matthews definition of the partial metrics, and that was to extend their range from 𝑅+ to 𝑅. In the following, partial metrics in the O’Neill sense will be called dualistic partial metrics and a pair (𝑋,𝑝) such that 𝑋 is a nonempty set and 𝑝 is a dualistic partial metric on 𝑋 will be called a dualistic partial metric space.

2. 𝝐-Fixed Point

Our basic references for quasi-metric spaces are [3, 4]. In our context, by a quasi-metric on a set 𝑋 we mean a nonnegative real-valued function d on 𝑋×𝑋 such that, for all π‘₯,𝑦,π‘§βˆˆπ‘‹:(i)𝑑(π‘₯,𝑦)=𝑑(𝑦,π‘₯)=0⇔π‘₯=𝑦, (ii)𝑑(π‘₯,𝑦)≀𝑑(π‘₯,𝑧)+𝑑(𝑧,𝑦).

A quasi-metric space is a pair (𝑋,𝑑) such that 𝑋 is a (nonempty) set and d is a quasi-metric on 𝑋.

Each quasi-metric 𝑑 on 𝑋 generates a 𝑇0-topology 𝑇(𝑑) on 𝑋 which has as a base the family of open 𝑑-balls 𝐡𝑑(π‘₯,πœ–)={π‘₯βˆˆπ‘‹βˆΆπœ–>0}, where 𝐡𝑑(π‘₯,πœ–)={π‘¦βˆˆπ‘‹βˆΆπ‘‘(π‘₯,𝑦)<πœ–>0} for all π‘₯βˆˆπ‘‹ and πœ–>0.

If 𝑑 is a quasi-metric on 𝑋, then the function 𝑑𝑠 defined on 𝑋×𝑋 by 𝑑𝑠(π‘₯,𝑦)=max{𝑑(π‘₯,𝑦),𝑑(𝑦,π‘₯)} is a metric on 𝑋.

Lemma 2.1. If (𝑋,𝑝) is a dualistic partial metric space, then the function π‘‘π‘βˆΆπ‘‹Γ—π‘‹β†’π‘…+ defined by 𝑑𝑝(π‘₯,𝑦)=𝑝(π‘₯,𝑦)βˆ’π‘(π‘₯,π‘₯), is a quasi-metric on 𝑋 such that 𝜏(𝑝)=𝜏(𝑑𝑝).

Definition 2.2. Let (𝑋,𝑝)be a dualistic partial metric space and let π‘‡βˆΆπ‘‹β†’,𝑋be a map. Then π‘₯0βˆˆπ‘‹ is πœ–-fixed point for 𝑇 if 𝑑𝑝𝑇π‘₯0,π‘₯0ξ€Έβ‰€πœ–.(2.1)

Theorem 2.3. Let (𝑋,𝑝) be a dualistic partial metric space and let π‘‡βˆΆπ‘‹β†’π‘‹ be a map, π‘₯0βˆˆπ‘‹, and πœ–>0. If 𝑑𝑝(𝑇𝑛(π‘₯0),𝑇𝑛+π‘˜(π‘₯0))β†’0 as π‘›β†’βˆž for some π‘˜>0, then π‘‡π‘˜ has an πœ–-fixed point.

Proof. Since 𝑑𝑝(𝑇𝑛(π‘₯0),𝑇𝑛+π‘˜(π‘₯0))β†’0 as π‘›β†’βˆž, πœ–>0, βˆƒπ‘›0>0s.t.βˆ€π‘›β‰₯𝑛0𝑑𝑝𝑇𝑛π‘₯0ξ€Έ,𝑇𝑛+π‘˜ξ€·π‘₯0ξ€Έξ€Έ<πœ–.(2.2) Then 𝑑𝑝(𝑇𝑛0(π‘₯0),π‘‡π‘˜(𝑇𝑛0(π‘₯0)))<πœ–. Therefore 𝑇𝑛0(π‘₯0) is an πœ–-fixed point of π‘‡π‘˜.

Theorem 2.4. Let (𝑋,𝑝) be a dualistic partial metric space and let π‘‡βˆΆπ‘‹β†’π‘‹ be a map also for all π‘₯,π‘¦βˆˆπ‘‹, 𝑑𝑝(𝑇π‘₯,𝑇𝑦)≀𝑐𝑑𝑝(π‘₯,𝑦)0<𝑐<1,(2.3) then 𝑇 has an πœ–-fixed point in partial metric. Moreover, if π‘₯,π‘¦βˆˆπ‘‹ are πœ–-fixed points of 𝑇, then 𝑑𝑝(π‘₯,𝑦)≀2πœ–/(1βˆ’π‘).

Proof. Suppose π‘₯βˆˆπ‘‹, then 𝑑𝑝𝑇𝑛(π‘₯),𝑇𝑛+1ξ€Έ(π‘₯)=π‘‘π‘ξ€·π‘‡ξ€·π‘‡π‘›βˆ’1ξ€Έ(π‘₯),𝑇(𝑇𝑛(π‘₯))β‰€π‘π‘‘π‘ξ€·π‘‡π‘›βˆ’1(π‘₯),𝑇𝑛(π‘₯)β‰€β‹―β‰€π‘π‘›βˆ’1𝑑𝑝𝑇(π‘₯),𝑇2(ξ€Έπ‘₯)≀𝑐𝑛𝑑𝑝(π‘₯,𝑇π‘₯).(2.4) Therefore 𝑑𝑝(𝑇𝑛(π‘₯),𝑇𝑛+1(π‘₯))β†’0 as π‘›β†’βˆž. From Theorem 2.3, 𝑇 has an πœ–-fixed point and Since 𝑑𝑝(π‘₯,𝑦)≀𝑑𝑝(π‘₯,𝑇π‘₯)+𝑑𝑝(𝑇π‘₯,𝑇𝑦)+𝑑𝑝(𝑦,𝑇𝑦)≀2πœ–+𝑐𝑑𝑝(π‘₯,𝑦).(2.5) Then 𝑑𝑝(π‘₯,𝑦)≀2πœ–/(1βˆ’π‘).

Theorem 2.5. Let 𝑇 be a mapping of a dualistic partial metric space (𝑋,𝑝) into itself such that ||||||||𝑝(𝑇π‘₯,𝑇𝑦)≀𝑐𝑝(π‘₯,𝑦)0<𝑐<1(2.6) for all π‘₯,π‘¦βˆˆπ‘‹. Then π‘‡π‘˜ has an πœ–-fixed point, for all π‘˜.

Proof. Fix π‘₯βˆˆπ‘‹, then it is clear that, for each π‘₯βˆˆπ‘, ||𝑝(𝑇𝑛π‘₯,𝑇𝑛||π‘₯)≀𝑐𝑛||||,||𝑝𝑇𝑝(π‘₯,π‘₯)𝑛π‘₯,𝑇𝑛+1π‘₯ξ€Έ||≀𝑐𝑛||||,𝑝(π‘₯,𝑇π‘₯)(2.7) also 𝑑𝑝𝑇𝑛π‘₯,𝑇𝑛+1π‘₯ξ€Έ+𝑝(𝑇𝑛π‘₯,𝑇𝑛𝑇π‘₯)=𝑝𝑛π‘₯,𝑇𝑛+1π‘₯ξ€Έ.(2.8) We deduce that 𝑑𝑝𝑇𝑛π‘₯,𝑇𝑛+1π‘₯ξ€Έβˆ£+𝑝(𝑇𝑛π‘₯,𝑇𝑛π‘₯)≀𝑐𝑛||||𝑝(π‘₯,𝑇π‘₯).(2.9) Hence 𝑑𝑝𝑇𝑛(π‘₯),𝑇𝑛+1ξ€Έ(π‘₯)=𝑐𝑛||||βˆ’||𝑝(π‘₯,𝑇π‘₯)𝑝(𝑇𝑛π‘₯,𝑇𝑛||π‘₯)≀𝑐𝑛||||+||𝑝(π‘₯,𝑇π‘₯)𝑝(𝑇𝑛π‘₯,𝑇𝑛||π‘₯)≀𝑐𝑛||||βˆ’||||ξ€Έ.𝑝(π‘₯,𝑇π‘₯)𝑝(π‘₯,π‘₯)(2.10)
Therefore, for π‘˜,π‘›βˆˆπ‘, 𝑑𝑝𝑇𝑛(π‘₯),𝑇𝑛+π‘˜ξ€Έ(π‘₯)≀𝑑𝑝𝑇𝑛(π‘₯),𝑇𝑛+1ξ€Έ(π‘₯)+β‹―+𝑑𝑝𝑇𝑛+π‘˜βˆ’1(π‘₯),𝑇𝑛+π‘˜ξ€Έβ‰€ξ€·π‘(π‘₯)𝑛+β‹―+𝑐𝑛+π‘˜βˆ’1||||+||||≀𝑐𝑝(π‘₯,𝑇π‘₯)𝑝(π‘₯,π‘₯)𝑛||||+||||ξ€Έ.1βˆ’π‘π‘(π‘₯,𝑇π‘₯)𝑝(π‘₯,π‘₯)(2.11)
Similarly, we obtain that 𝑑𝑝𝑇𝑛+π‘˜(π‘₯),𝑇𝑛≀𝑐(π‘₯)𝑛||||+||||ξ€Έ.1βˆ’π‘π‘(π‘₯,𝑇π‘₯)𝑝(π‘₯,π‘₯)(2.12) Then limπ‘›β†’βˆžπ‘‘π‘ξ€·π‘‡π‘›+π‘˜(π‘₯),𝑇𝑛(π‘₯)=0.(2.13) Therefore, π‘‡π‘˜ has an πœ–-fixed point.

Example 2.6. Let 𝑋=(βˆ’βˆž,βˆ’2], and let p be the dualistic metric on 𝑋 given by 𝑝(π‘₯,𝑦)=π‘₯βˆ¨π‘¦,(2.14) for all π‘₯,π‘¦βˆˆπ‘‹.

Let 𝑇 be the mapping from 𝑋 into itself defined by 𝑇(π‘₯)=π‘₯+1, for all 𝑋=(βˆ’βˆž,βˆ’2]. It is immediate to see that 1𝑝(𝑇(π‘₯),𝑇(𝑦))≀2𝑝(π‘₯,𝑦),(2.15) for all π‘₯β‹…π‘¦βˆˆπ‘‹. However, 𝑇 has no fixed point, of course. But by the Theorem 2.5, for every πœ–>0, 𝑇 has an πœ–-fixed point. That is, there exists π‘₯π‘œβˆˆπ‘‹ such that 𝑑𝑝𝑇π‘₯0ξ€Έ,π‘₯0ξ€Έβ‰€πœ–,πœ–>0,(2.16) since 𝑑𝑝𝑇π‘₯0ξ€Έ,π‘₯0𝑇π‘₯=𝑝0ξ€Έ,π‘₯0𝑇π‘₯βˆ’π‘0ξ€Έ,𝑇π‘₯0ξ€Έξ€·π‘₯=𝑝0+1,π‘₯0ξ€Έξ€·π‘₯βˆ’π‘0+1,π‘₯0ξ€Έ+1=π‘₯0ξ€·π‘₯+1βˆ’0ξ€Έ+1=0β‰€πœ–.(2.17)

Theorem 2.7. Let 𝑇 be a mapping of a dualistic partial metric space (𝑋,𝑝) into itself such that 𝑑𝑝(𝑇π‘₯,𝑇𝑦)βˆ£β‰€π›½(𝑑𝑝(π‘₯,𝑇π‘₯)+𝑑𝑝(𝑦,𝑇𝑦)) where 2𝛽<1.
If π‘₯0 is an πœ–-fixed point for 𝑇, then 𝑇π‘₯0 is an πœ–-fixed point for 𝑇2.

Proof. We have 𝑑𝑝𝑇π‘₯,𝑇2π‘₯𝑑≀𝛽𝑝(π‘₯,𝑇π‘₯)+𝑑𝑝𝑇π‘₯,𝑇2π‘₯,ξ€Έξ€Έ(2.18) therefore 𝑑𝑝𝑇π‘₯,𝑇2π‘₯≀𝛽𝑑1βˆ’π›½π‘(π‘₯,𝑇π‘₯).(2.19) Since 2𝛽<1, 𝑑𝑝𝑇π‘₯,𝑇2π‘₯≀𝑑𝑝(π‘₯,𝑇π‘₯).(2.20) Since π‘₯0 is an πœ–-fixed point for 𝑇, then 𝑑𝑝(𝑇π‘₯0,𝑇2π‘₯0)β‰€πœ–. So 𝑇π‘₯0 is an πœ–-fixed point for 𝑇2.

Theorem 2.8. Let (𝑋,𝑝) be a dualistic partial metric, and let π‘‡βˆΆπ‘‹β†’π‘‹ be a mapping and πœ–>0. If 𝑑𝑝(𝑇π‘₯,𝑇𝑦)≀𝛼𝑑𝑝(π‘₯,𝑇π‘₯)+𝛽𝑑𝑝(𝑦,𝑇𝑦) and 𝛼+𝛽<1. then 𝑇 has πœ–-fixed point. Moreover, if π‘₯,π‘¦βˆˆπ‘‹ are πœ–-fixed points of 𝑇, then 𝑑𝑝(π‘₯,𝑦)≀(2+𝛼+𝛽)πœ–.

Proof. We have 𝑑𝑝𝑇π‘₯,𝑇2π‘₯≀𝛼𝑑𝑝(π‘₯,𝑇π‘₯)+𝛽𝑑𝑝𝑇π‘₯,𝑇2π‘₯ξ€Έ.(2.21) Therefore 𝑑𝑝𝑇π‘₯,𝑇2π‘₯≀𝛼𝑑1βˆ’π›½π‘(π‘₯,𝑇π‘₯),(2.22) also 𝑑𝑝𝑇2π‘₯,𝑇3π‘₯≀𝛼𝑑𝑝𝑇π‘₯,𝑇2π‘₯ξ€Έ+𝛽𝑑𝑝𝑇2π‘₯,𝑇3π‘₯ξ€Έ,(2.23) so 𝑑𝑝𝑇2π‘₯,𝑇3π‘₯≀𝛼1βˆ’π›½2𝑑𝑝𝑇π‘₯,𝑇2π‘₯ξ€Έ(2.24) and for every 𝑛β‰₯1, we have 𝑑𝑝𝑇𝑛π‘₯,𝑇𝑛+1π‘₯≀𝛼1βˆ’π›½π‘›π‘‘π‘π›Ό(π‘₯,𝑇π‘₯),1βˆ’π›½<1.(2.25) Thus, since 𝛼/(1βˆ’π›½)<1,   𝑑𝑝(𝑇𝑛π‘₯,𝑇𝑛+1π‘₯)β†’0 as π‘›β†’βˆž. Now, by Theorem 2.3, 𝑇 has an πœ–-fixed point and since 𝑑𝑝(π‘₯,𝑦)≀𝑑𝑝(π‘₯,𝑇π‘₯)+𝑑𝑝(𝑇π‘₯,𝑇𝑦)+𝑑𝑝(𝑦,𝑇𝑦)≀(1+𝛼)𝑑𝑝(π‘₯,𝑇π‘₯)+(1+𝛽)𝑑𝑝(𝑦,𝑇𝑦).(2.26) Then 𝑑𝑝(π‘₯,𝑦)≀(2+𝛼+𝛽)πœ–.

Corollary 2.9. Let (𝑋,𝑝) be a dualistic partial metric, and let π‘‡βˆΆπ‘‹β†’π‘‹ be a mapping and πœ–>0. If 𝑑𝑝(𝑇π‘₯,𝑇𝑦)βˆ£β‰€π›½(𝑑𝑝(π‘₯,𝑇π‘₯)+𝑑𝑝(𝑦,𝑇𝑦)) and 2𝛽<1, then 𝑇 has an πœ–-fixed point.