Abstract

We discuss the existence of solutions for a boundary value problem of second-order differential inclusions with three-point integral boundary conditions involving convex and nonconvex multivalued maps. Our results are based on the nonlinear alternative of Leray-Schauder type and some suitable theorems of fixed point theory.

1. Introduction

Boundary value problems for nonlinear differential equations arise in a variety of areas of applied mathematics, physics, and variational problems of control theory. A point of central importance in the study of nonlinear boundary value problems is to understand how the properties of nonlinearity in a problem influence the nature of the solutions to the boundary value problems. The topic of multipoint nonlocal boundary conditions, initiated by Bicadze and Samarski [1], has been addressed by many authors, for instance, [2–13]. The multi-point boundary conditions appear in certain problems of thermodynamics, elasticity, and wave propagation; see [5] and the references therein. The multi-point boundary conditions may be understood in the sense that the controllers at the end points dissipate or add energy according to censors located at intermediate positions. However, much of the literature dealing with three-point boundary value problems involves the three-point boundary condition restrictions on the solution or gradient of the solution of the problem.

In this paper, we consider the following second-order differential inclusion with three-point integral boundary conditions:βˆ’π‘₯ξ…žξ…žξ€œ(𝑑)∈𝐹(𝑑,π‘₯(𝑑)),0<𝑑<1,π‘₯(0)=0,π‘₯(1)=π›Όπœ‚0π‘₯(𝑠)𝑑𝑠,0<πœ‚<1,(1.1) where π›Όβˆˆβ„ is such that  𝛼≠2/πœ‚2,β€‰β€‰πΉβˆΆ[0,𝑇]×ℝ→𝒫(ℝ)   is a multivalued map, and 𝒫(ℝ) is the family of all subsets of ℝ. We emphasize that the present work is motivated by [14], where the authors discussed the existence of positive solutions for the problem (1.1) with 𝐹(𝑑,π‘₯(𝑑)) as a single-valued map (i.e., 𝐹(𝑑,π‘₯(t))=π‘Ž(𝑑)𝑓(π‘₯(𝑑)). Note that the three-point boundary condition in (1.1) corresponds to the area under the curve of solutions π‘₯(𝑑) from 𝑑=0 to 𝑑=πœ‚.

Differential inclusions arise in the mathematical modelling of certain problems in economics, optimal control, stochastic analysis, and so forth and are widely studied by many authors, see [15–21] and the references therein.

The aim of our paper is to present existence results for the problem (1.1), when the right-hand side is convex as well as nonconvex valued. The first result relies on the nonlinear alternative of Leray-Schauder type. In the second result, we will combine the nonlinear alternative of Leray-Schauder type for single-valued maps with a selection theorem due to Bressan and Colombo for lower semicontinuous multivalued maps with nonempty closed and decomposable values, while, in the third result, we will use the fixed point theorem for contraction multivalued maps due to Covitz and Nadler. The methods used are standard; however, their exposition in the framework of problem (1.1) is new.

The paper is organized as follows. In Section 2 we recall some preliminary facts that we need in the sequel, and in Section 3 we prove our main results.

2. Preliminaries

Let us recall some basic definitions on multivalued maps [22, 23].

For a normed space (𝑋,β€–β‹…β€–), let 𝑃cl(𝑋)={π‘Œβˆˆπ’«(𝑋)βˆΆπ‘Œisclosed}, 𝑃𝑏(𝑋)={π‘Œβˆˆπ’«(𝑋)βˆΆπ‘Œisbounded}, 𝑃cp(𝑋)={π‘Œβˆˆπ’«(𝑋)βˆΆπ‘Œiscompact}, and 𝑃cp,𝑐(𝑋)={π‘Œβˆˆπ’«(𝑋)βˆΆπ‘Œiscompactandconvex}. A multi-valued map πΊβˆΆπ‘‹β†’π’«(𝑋) is convex (closed) valued if 𝐺(π‘₯) is convex (closed) for all π‘₯βˆˆπ‘‹. The map 𝐺 is bounded on bounded sets if 𝐺(𝔹)=βˆͺπ‘₯βˆˆπ”ΉπΊ(π‘₯) is bounded in 𝑋 for all π”Ήβˆˆπ‘ƒπ‘(𝑋) (i.e., supπ‘₯βˆˆπ”Ή{sup{|𝑦|βˆΆπ‘¦βˆˆπΊ(π‘₯)}}<∞).𝐺 is called upper semicontinuous (u.s.c.) on 𝑋 if for each π‘₯0βˆˆπ‘‹, the set 𝐺(π‘₯0) is a nonempty closed subset of 𝑋 and if, for each open set 𝑁 of 𝑋 containing 𝐺(π‘₯0), there exists an open neighborhood 𝒩0 of π‘₯0 such that 𝐺(𝒩0)βŠ†π‘.  𝐺 is said to be completely continuous if 𝐺(𝔹) is relatively compact for every π”Ήβˆˆπ‘ƒπ‘(𝑋). If the multi-valued map 𝐺 is completely continuous with nonempty compact values, then 𝐺 is u.s.c. if and only if 𝐺 has a closed graph, that is, π‘₯𝑛→π‘₯βˆ—,π‘¦π‘›β†’π‘¦βˆ—,β€‰β€‰π‘¦π‘›βˆˆπΊ(π‘₯𝑛) imply that π‘¦βˆ—βˆˆπΊ(π‘₯βˆ—).𝐺 has a fixed point if there is π‘₯βˆˆπ‘‹ such that π‘₯∈𝐺(π‘₯). The fixed point set of the multivalued operator 𝐺 will be denoted by Fix𝐺. A multivalued map 𝐺∢[0;1]→𝑃cl(ℝ) is said to be measurable if, for every π‘¦βˆˆβ„, the function ξ€½||||ξ€Ύπ‘‘βŸΌπ‘‘(𝑦,𝐺(𝑑))=infπ‘¦βˆ’π‘§βˆΆπ‘§βˆˆπΊ(𝑑)(2.1) is measurable.

Let 𝐢([0,1]) denote a Banach space of continuous functions from [0,1] into ℝ with the norm β€–π‘₯β€–βˆž=supπ‘‘βˆˆ[0,1]|π‘₯(𝑑)|. Let 𝐿1([0,1],ℝ) be the Banach space of measurable functions π‘₯∢[0,1]→ℝ which are Lebesgue integrable and normed by β€–π‘₯‖𝐿1=∫10|π‘₯(𝑑)|𝑑𝑑.

Definition 2.1. A multivalued map 𝐹∢[0,𝑇]×ℝ→𝒫(ℝ) is said to be CarathΓ©odory if (i)𝑑↦𝐹(𝑑,π‘₯) is measurable for each π‘₯βˆˆβ„,(ii)π‘₯↦𝐹(𝑑,π‘₯) is upper semicontinuous for almost all π‘‘βˆˆ[0,𝑇], and further a CarathΓ©odory function 𝐹 is called 𝐿1βˆ’CarathΓ©odory if(iii)for each 𝛼>0, there exists πœ‘π›ΌβˆˆπΏ1([0,𝑇],ℝ+) such that ‖𝐹(𝑑,π‘₯)β€–=sup{|𝑣|βˆΆπ‘£βˆˆπΉ(𝑑,π‘₯)}β‰€πœ‘π›Ό(𝑑)(2.2) for all β€–π‘₯β€–βˆžβ‰€π›Ό and for a.e. π‘‘βˆˆ[0,𝑇].
For each π‘¦βˆˆπΆ([0,1],ℝ), define the set of selections of 𝐹 by 𝑆𝐹,π‘¦ξ€½βˆΆ=π‘£βˆˆπΏ1([][]ξ€Ύ.0,1,ℝ)βˆΆπ‘£(𝑑)∈𝐹(𝑑,𝑦(𝑑))fora.e.π‘‘βˆˆ0,1(2.3)
Let 𝑋 be a nonempty closed subset of a Banach space 𝐸 and πΊβˆΆπ‘‹β†’π’«(𝐸) a multivalued operator with nonempty closed values. 𝐺 is lower semi-continuous (l.s.c.) if the set {π‘¦βˆˆπ‘‹βˆΆπΊ(𝑦)βˆ©π΅β‰ βˆ…} is open for any open set 𝐡 in 𝐸. Let 𝐴 be a subset of [0,1]×ℝ. 𝐴 is β„’βŠ—β„¬ measurable if 𝐴 belongs to the 𝜎-algebra generated by all sets of the form π’₯Γ—π’Ÿ, where π’₯ is Lebesgue measurable in [0,1] and π’Ÿ is Borel measurable in ℝ. A subset π’œ of 𝐿1([0,1],ℝ) is decomposable if, for all 𝑒,π‘£βˆˆπ’œ and measurable π’₯βŠ‚[0,1]=𝐽, the function π‘’πœ’π’₯+π‘£πœ’π½βˆ’π’₯βˆˆπ’œ, where πœ’π’₯ stands for the characteristic function of π’₯.

Definition 2.2. Let π‘Œ be a separable metric space and let π‘βˆΆπ‘Œβ†’π’«(𝐿1([0,1],ℝ)) be a multivalued operator. One says that 𝑁 has a property (BC) if 𝑁 is lower semi-continuous (l.s.c.) and has nonempty closed and decomposable values.
Let 𝐹∢[0,1]×ℝ→𝒫(ℝ) be a multivalued map with nonempty compact values.
Define a multivalued operator β„±βˆΆπΆ([0,1]×ℝ)→𝒫(𝐿1([0,1],ℝ)) associated with 𝐹 as ξ€½β„±(π‘₯)=π‘€βˆˆπΏ1([][]ξ€Ύ,0,1,ℝ)βˆΆπ‘€(𝑑)∈𝐹(𝑑,π‘₯(𝑑))fora.e.π‘‘βˆˆ0,1(2.4) which is called the Nemytskii operator associated with 𝐹.

Definition 2.3. Let 𝐹∢[0,1]×ℝ→𝒫(ℝ) be a multivalued function with nonempty compact values. One says that 𝐹 is of lower semi-continuous type (l.s.c. type) if its associated Nemytskii operator β„± is lower semi-continuous and has nonempty closed and decomposable values.
Let (𝑋,𝑑) be a metric space induced from the normed space (𝑋;β€–β‹…β€–). Consider π»π‘‘βˆΆπ’«(𝑋)×𝒫(𝑋)→ℝβˆͺ{∞} given by 𝐻𝑑(𝐴,𝐡)=maxsupπ‘Žβˆˆπ΄π‘‘(π‘Ž,𝐡),supπ‘βˆˆπ΅ξ‚Ό,𝑑(𝐴,𝑏)(2.5) where 𝑑(𝐴,𝑏)=infπ‘Žβˆˆπ΄π‘‘(π‘Ž;𝑏) and 𝑑(π‘Ž,𝐡)=infπ‘βˆˆπ΅π‘‘(π‘Ž;𝑏). Then (𝑃𝑏,cl(𝑋),𝐻𝑑) is a metric space and (𝑃cl(𝑋),𝐻𝑑) is a generalized metric space (see [24]).

Definition 2.4. A multivalued operator π‘βˆΆπ‘‹β†’π‘ƒcl(𝑋) is called (a)𝛾-Lipschitz if and only if there exists 𝛾>0 such that 𝐻𝑑(𝑁(π‘₯),𝑁(𝑦))≀𝛾𝑑(π‘₯,𝑦)foreachπ‘₯,π‘¦βˆˆπ‘‹,(2.6)(b)a contraction if and only if it is 𝛾-Lipschitz with 𝛾<1.

The following lemmas will be used in the sequel.

Lemma 2.5 (see [25]). Let 𝑋 be a Banach space. Let 𝐹∢[0,𝑇]×ℝ→𝒫cp,𝑐(𝑋) be an 𝐿1βˆ’CarathΓ©odory multivalued map and let Θ be a linear continuous mapping from 𝐿1([0,1],𝑋) to 𝐢([0,1],𝑋). Then the operator Ξ˜βˆ˜π‘†πΉ([]∢𝐢0,1,𝑋)βŸΆπ‘ƒcp,𝑐[]ξ€·(𝐢(0,1,𝑋)),π‘₯βŸΌΞ˜βˆ˜π‘†πΉξ€Έξ€·π‘†(π‘₯)=Θ𝐹,π‘₯ξ€Έ(2.7) is a closed graph operator in 𝐢([0,1],𝑋)×𝐢([0,1],𝑋).

Lemma 2.6 (see [26]). Let π‘Œ be a separable metric space, and let π‘βˆΆπ‘Œβ†’π’«(𝐿1([0,1],ℝ)) be a multivalued operator satisfying the property (BC). Then 𝑁 has a continuous selection, that is, there exists a continuous function (single valued) π‘”βˆΆπ‘Œβ†’πΏ1([0,1],ℝ) such that 𝑔(π‘₯)βˆˆπ‘(π‘₯) for every π‘₯βˆˆπ‘Œ.

Lemma 2.7 (see [27]). Let (𝑋,𝑑) be a complete metric space. If π‘βˆΆπ‘‹β†’π‘ƒπ‘π‘™(𝑋) is a contraction, then 𝐹𝑖π‘₯π‘β‰ βˆ….
In order to define the solution of (1.1), we consider the following lemma whose proof is given in [14].

Lemma 2.8. Assume that π›Όπœ‚2β‰ 2. For a given π‘¦βˆˆπΆ[0,1], the unique solution of the boundary value problem π‘₯ξ…žξ…žξ€œ(𝑑)+𝑦(𝑑)=0,0<𝑑<1,1<π‘žβ‰€2,π‘₯(0)=0,π‘₯(1)=π›Όπœ‚0π‘₯(𝑠)𝑑𝑠(2.8) is given by π‘₯(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10(1βˆ’π‘ )𝑦(𝑠)π‘‘π‘ βˆ’π›Όπ‘‘2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2ξ€œπ‘¦(𝑠)π‘‘π‘ βˆ’π‘‘0(π‘‘βˆ’π‘ )𝑦(𝑠)𝑑𝑠.(2.9)

Definition 2.9. A function π‘₯∈𝐢2([0,1],ℝ) is a solution of the problem (1.1) if there exists a function π‘“βˆˆπΏ1([0,1],ℝ) such that 𝑓(𝑑)∈𝐹(𝑑,π‘₯(𝑑)) a.e. on [0,1] and π‘₯(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10(1βˆ’π‘ )𝑓(𝑠)π‘‘π‘ βˆ’π›Όπ‘‘2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2ξ€œπ‘“(𝑠)π‘‘π‘ βˆ’π‘‘0(π‘‘βˆ’π‘ )𝑓(𝑠)𝑑𝑠.(2.10)

3. Main Results

Theorem 3.1. Assume that (𝐻1)𝐹∢[0,1]×ℝ→𝒫(ℝ) is CarathΓ©odory and has convex values,(𝐻2) there exists a continuous nondecreasing functionβ€‰β€‰πœ“βˆΆ[0,∞)β†’(0,∞)   and a function π‘βˆˆπΏ1([0,1],ℝ+) such that ‖‖𝐹(𝑑,π‘₯)𝒫||𝑦||ξ€Ύξ€·βˆΆ=supβˆΆπ‘¦βˆˆπΉ(𝑑,π‘₯)≀𝑝(𝑑)πœ“β€–π‘₯β€–βˆžξ€Έ[]foreach(𝑑,π‘₯)∈0,1×ℝ,(3.1)(𝐻3) there exists a number 𝑀>0 such that 𝑀1+2+|𝛼|πœ‚2/||2βˆ’π›Όπœ‚2||ξ€Έξ€Έπœ“(𝑀)‖𝑝‖𝐿1>1.(3.2) Then the boundary value problem (1.1) has at least one solution on [0,1].

Proof. Define the operator Ω∢𝐢([0,1],ℝ)→𝒫(𝐢([0,1],ℝ)) by =⎧βŽͺβŽͺ⎨βŽͺβŽͺ⎩[]⎧βŽͺβŽͺ⎨βŽͺβŽͺ⎩Ω(π‘₯)β„ŽβˆˆπΆ(0,1,ℝ)βˆΆβ„Ž(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10βˆ’(1βˆ’π‘ )𝑓(𝑠)𝑑𝑠𝛼𝑑2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2ξ€œπ‘“(𝑠)π‘‘π‘ βˆ’π‘‘0[]⎫βŽͺβŽͺ⎬βŽͺβŽͺ⎭(π‘‘βˆ’π‘ )𝑓(𝑠)𝑑𝑠,π‘‘βˆˆ0,1(3.3) for π‘“βˆˆπ‘†πΉ,π‘₯. We will show that Ξ© satisfies the assumptions of the nonlinear alternative of Leray-Schauder type. The proof consists of several steps. As a first step, we show that Ξ© is convex for each π‘₯∈𝐢([0,1],ℝ). For that, let β„Ž1,β„Ž2∈Ω(π‘₯). Then there exist 𝑓1,𝑓2βˆˆπ‘†πΉ,π‘₯ such that, for each π‘‘βˆˆ[0,1], we have β„Žπ‘–(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10(1βˆ’π‘ )𝑓𝑖(𝑠)π‘‘π‘ βˆ’π›Όπ‘‘2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2π‘“π‘–ξ€œ(𝑠)π‘‘π‘ βˆ’π‘‘0(π‘‘βˆ’π‘ )𝑓𝑖(𝑠)𝑑𝑠,𝑖=1,2.(3.4) Let 0β‰€πœ”β‰€1. Then, for each π‘‘βˆˆ[0,1], we have ξ€Ίπœ”β„Ž1+(1βˆ’πœ”)β„Ž2ξ€»(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10ξ€Ί(1βˆ’π‘ )πœ”π‘“1(𝑠)+(1βˆ’πœ”)𝑓2ξ€»βˆ’(𝑠)𝑑𝑠𝛼𝑑2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2ξ€Ίπœ”π‘“1(𝑠)+(1βˆ’πœ”)𝑓2ξ€»βˆ’ξ€œ(𝑠)𝑑𝑠𝑑0ξ€Ί(π‘‘βˆ’π‘ )πœ”π‘“1(𝑠)+(1βˆ’πœ”)𝑓2ξ€»(𝑠)𝑑𝑠.(3.5) Since 𝑆𝐹,π‘₯ is convex (𝐹 has convex values), it follows that πœ”β„Ž1+(1βˆ’πœ”)β„Ž2∈Ω(π‘₯).
Next, we show that Ξ© maps bounded sets (balls) into bounded sets in 𝐢([0,1],ℝ). For a positive number π‘Ÿ, let π΅π‘Ÿ={π‘₯∈𝐢([0,1],ℝ)βˆΆβ€–π‘₯β€–βˆžβ‰€π‘Ÿ} be a bounded ball in 𝐢([0,1],ℝ). Then, for each β„ŽβˆˆΞ©(π‘₯),π‘₯βˆˆπ΅π‘Ÿ, there exists π‘“βˆˆπ‘†πΉ,π‘₯ such that β„Ž(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10(1βˆ’π‘ )𝑓(𝑠)π‘‘π‘ βˆ’π›Όπ‘‘2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2ξ€œπ‘“(𝑠)π‘‘π‘ βˆ’π‘‘0||β„Ž||ξ€·(π‘‘βˆ’π‘ )𝑓(𝑠)𝑑𝑠,(𝑑)β‰€πœ“β€–π‘₯β€–βˆžξ€Έξ‚΅21+||2βˆ’π›Όπœ‚2||ξ‚Άξ€œ10𝑝(𝑠)𝑑𝑠+|𝛼|πœ‚2πœ“ξ€·β€–π‘₯β€–βˆžξ€Έ||2βˆ’π›Όπœ‚2||ξ€œπœ‚0𝑝(𝑠)𝑑𝑠.(3.6) Thus, β€–β„Žβ€–βˆžξ€·β‰€πœ“β€–π‘₯β€–βˆžξ€Έξ‚΅21+||2βˆ’π›Όπœ‚2||ξ‚Άξ€œ10𝑝(𝑠)𝑑𝑠+|𝛼|πœ‚2πœ“ξ€·β€–π‘₯β€–βˆžξ€Έ||2βˆ’π›Όπœ‚2||ξ€œπœ‚0𝑝(𝑠)𝑑𝑠.(3.7) Now we show that Ξ© maps bounded sets into equicontinuous sets of 𝐢([0,1],ℝ). Let π‘‘ξ…ž,π‘‘ξ…žξ…žβˆˆ[0,1] with π‘‘ξ…ž<π‘‘ξ…žξ…ž and π‘₯βˆˆπ΅π‘Ÿ, where π΅π‘Ÿ is a bounded set of 𝐢([0,1],ℝ). For each β„ŽβˆˆΞ©(π‘₯), we obtain ||β„Žξ€·π‘‘ξ…žξ…žξ€Έξ€·π‘‘βˆ’β„Žξ…žξ€Έ||=||||2ξ€·π‘‘ξ…žξ…žβˆ’π‘‘ξ…žξ€Έ2βˆ’π›Όπœ‚2ξ€œ10𝛼𝑑(1βˆ’π‘ )𝑓(𝑠)π‘‘π‘ βˆ’ξ…žξ…žβˆ’π‘‘ξ…žξ€Έ2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2+ξ€œπ‘“(𝑠)𝑑𝑠𝑑′′0ξ€·π‘‘ξ…žξ…žξ€Έξ€œβˆ’π‘ π‘“(𝑠)𝑑𝑠+𝑑′0ξ€·π‘‘ξ…žξ€Έ||||≀||||2ξ€·π‘‘βˆ’π‘ π‘“(𝑠)π‘‘π‘ ξ…žξ…žβˆ’π‘‘ξ…žξ€Έπœ“ξ€·β€–π‘₯β€–βˆžξ€Έ2βˆ’π›Όπœ‚2ξ€œ10ξ€œ(1βˆ’π‘ )𝑝(𝑠)𝑑𝑠10||||+||||𝛼𝑑(1βˆ’π‘ )π‘‘π‘ ξ…žξ…žβˆ’π‘‘ξ…žξ€Έπœ“ξ€·β€–π‘₯β€–βˆžξ€Έ2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2𝑝||||+||||πœ“ξ€·(𝑠)𝑑𝑠‖π‘₯β€–βˆžξ€Έξ€œπ‘‘β€²0ξ€·π‘‘ξ…žξ…žβˆ’π‘‘ξ…žξ€Έ||||+||||πœ“ξ€·π‘(𝑠)𝑑𝑠‖π‘₯β€–βˆžξ€Έξ€œπ‘‘β€²β€²π‘‘β€²ξ€·π‘‘ξ…žξ…žξ€Έ||||.βˆ’π‘ π‘(𝑠)𝑑𝑠(3.8) Obviously the right-hand side of the above inequality tends to zero independently of π‘₯βˆˆπ΅π‘Ÿξ…ž as π‘‘ξ…žξ…žβˆ’π‘‘ξ…žβ†’0. As Ξ© satisfies the above three assumptions, it follows by the Ascoli-ArzelΓ‘ theorem that Ω∢𝐢([0,1],ℝ)→𝒫(𝐢([0,1],ℝ)) is completely continuous.
In our next step, we show that Ξ© has a closed graph. Let π‘₯𝑛→π‘₯βˆ—,β„Žπ‘›βˆˆΞ©(π‘₯𝑛) and β„Žπ‘›β†’β„Žβˆ—. Then we need to show that β„Žβˆ—βˆˆΞ©(π‘₯βˆ—). Associated with β„Žπ‘›βˆˆΞ©(π‘₯𝑛), there exists π‘“π‘›βˆˆπ‘†πΉ,π‘₯𝑛 such that, for each π‘‘βˆˆ[0,1], β„Žπ‘›(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10(1βˆ’π‘ )𝑓𝑛(𝑠)π‘‘π‘ βˆ’π›Όπ‘‘2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2π‘“π‘›ξ€œ(𝑠)π‘‘π‘ βˆ’π‘‘0(π‘‘βˆ’π‘ )𝑓𝑛(𝑠)𝑑𝑠.(3.9) Thus we have to show that there exists π‘“βˆ—βˆˆπ‘†πΉ,π‘₯βˆ— such that, for each π‘‘βˆˆ[0,1], β„Žβˆ—(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10(1βˆ’π‘ )π‘“βˆ—(𝑠)π‘‘π‘ βˆ’π›Όπ‘‘2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2π‘“βˆ—ξ€œ(𝑠)π‘‘π‘ βˆ’π‘‘0(π‘‘βˆ’π‘ )π‘“βˆ—(𝑠)𝑑𝑠.(3.10) Let us consider the continuous linear operator Θ∢𝐿1([0,1],ℝ)→𝐢([0,1],ℝ) given by π‘“βŸΌΞ˜(𝑓)(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10βˆ’(1βˆ’π‘ )𝑓(𝑠)𝑑𝑠𝛼𝑑2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2ξ€œπ‘“(𝑠)π‘‘π‘ βˆ’π‘‘0(π‘‘βˆ’π‘ )𝑓(𝑠)𝑑𝑠.(3.11) Observe that β€–β€–β„Žπ‘›(𝑑)βˆ’β„Žβˆ—β€–β€–=β€–β€–β€–(𝑑)2𝑑2βˆ’π›Όπœ‚2ξ€œ10𝑓(1βˆ’π‘ )𝑛(𝑠)βˆ’π‘“βˆ—ξ€Έ(𝑠)π‘‘π‘ βˆ’π›Όπ‘‘2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2𝑓𝑛(𝑠)βˆ’π‘“βˆ—ξ€Έβˆ’ξ€œ(𝑠)𝑑𝑠𝑑0𝑓(π‘‘βˆ’π‘ )𝑛(𝑠)βˆ’π‘“βˆ—ξ€Έβ€–β€–β€–(𝑠)π‘‘π‘ βŸΆ0asπ‘›βŸΆβˆž.(3.12) Thus, it follows by Lemma 2.5 that Ξ˜βˆ˜π‘†πΉ is a closed graph operator. Further, we have β„Žπ‘›(𝑑)∈Θ(𝑆𝐹,π‘₯𝑛). Since π‘₯𝑛→π‘₯βˆ—, therefore, we have β„Žβˆ—(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10(1βˆ’π‘ )π‘“βˆ—(𝑠)π‘‘π‘ βˆ’π›Όπ‘‘2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2π‘“βˆ—ξ€œ(𝑠)π‘‘π‘ βˆ’π‘‘0(π‘‘βˆ’π‘ )π‘“βˆ—(𝑠)𝑑𝑠,(3.13) for some π‘“βˆ—βˆˆπ‘†πΉ,π‘₯βˆ—.
Finally, we discuss a priori bounds on solutions. Let π‘₯ be a solution of (1.1). Then there exists π‘“βˆˆπΏ1([0,1],ℝ) with π‘“βˆˆπ‘†πΉ,π‘₯ such that, for π‘‘βˆˆ[0,1], we have π‘₯(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10(1βˆ’π‘ )𝑓(𝑠)π‘‘π‘ βˆ’π›Όπ‘‘2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2ξ€œπ‘“(𝑠)π‘‘π‘ βˆ’π‘‘0(π‘‘βˆ’π‘ )𝑓(𝑠)𝑑𝑠.(3.14) In view of (𝐻2), for each π‘‘βˆˆ[0,1], we obtain ||||≀2π‘₯(𝑑)1+||2βˆ’π›Όπœ‚2||ξ‚Άξ€œ10𝑓(𝑠)𝑑𝑠+|𝛼|πœ‚2||2βˆ’π›Όπœ‚2||ξ€œπœ‚0≀𝑓(𝑠)𝑑𝑠1+2+|𝛼|πœ‚2/||2βˆ’π›Όπœ‚2||πœ“ξ€·ξ€Έξ€Έβ€–π‘₯β€–βˆžξ€Έξ€œ10𝑝(𝑠)𝑑𝑠.(3.15) Consequently, we have β€–π‘₯β€–βˆžξ€·ξ€·1+2+|𝛼|πœ‚2/||2βˆ’π›Όπœ‚2||πœ“ξ€·ξ€Έξ€Έβ€–π‘₯β€–βˆžξ€Έβ€–π‘β€–πΏ1≀1.(3.16)
In view of (𝐻3), there exists 𝑀 such that β€–π‘₯β€–βˆžβ‰ π‘€. Let us set ξ€½([]π‘ˆ=π‘₯∈𝐢0,1,ℝ)βˆΆβ€–π‘₯β€–βˆžξ€Ύ<𝑀+1.(3.17)
Note that the operator Ξ©βˆΆπ‘ˆβ†’π’«(𝐢([0,1],ℝ)) is upper semicontinuous and completely continuous. From the choice of π‘ˆ, there is no π‘₯βˆˆπœ•π‘ˆ such that π‘₯βˆˆπœ‡Ξ©(π‘₯) for some πœ‡βˆˆ(0,1). Consequently, by the nonlinear alternative of Leray-Schauder type [28], we deduce that Ξ© has a fixed point π‘₯βˆˆπ‘ˆ which is a solution of the problem (1.1). This completes the proof.

As a next result, we study the case when 𝐹 is not necessarily convex valued. Our strategy to deal with this problem is based on the nonlinear alternative of Leray-Schauder type together with the selection theorem of Bressan and Colombo [26] for lower semi-continuous maps with decomposable values.

Theorem 3.2. Assume that (𝐻2),(𝐻3), and the following conditions hold: (𝐻4)𝐹∢[0,1]×ℝ→𝒫(ℝ) is a nonempty compact-valued multivalued map such that (a)(𝑑,π‘₯)↦𝐹(𝑑,π‘₯) is β„’βŠ—β„¬ measurable, (b)π‘₯↦𝐹(𝑑,π‘₯) is lower semicontinuous for each π‘‘βˆˆ[0,1], (𝐻5) for each 𝜎>0, there exists πœ‘πœŽβˆˆπΏ1([0,1],ℝ+) such that ξ€½||𝑦||‖𝐹(𝑑,π‘₯)β€–=supβˆΆπ‘¦βˆˆπΉ(𝑑,π‘₯)β‰€πœ‘πœŽ(𝑑)βˆ€β€–π‘₯β€–βˆž[]β‰€πœŽfora.e.π‘‘βˆˆ0,1.(3.18) Then the boundary value problem (1.1) has at least one solution on [0,1].

Proof. It follows from (𝐻4) and (𝐻5) that 𝐹 is of l.s.c. type. Then, from Lemma 2.6, there exists a continuous function π‘“βˆΆπΆ([0,1],ℝ)→𝐿1([0,1],ℝ) such that 𝑓(π‘₯)βˆˆβ„±(π‘₯) for all π‘₯∈𝐢([0,1],ℝ).
Consider the problem βˆ’π‘₯ξ…žξ…žξ€œ(𝑑)=𝑓(π‘₯(𝑑)),0<𝑑<1,π‘₯(0)=0,π‘₯(1)=π›Όπœ‚0π‘₯(𝑠)𝑑s,0<πœ‚<1,𝛼≠2/πœ‚2.(3.19)
Observe that, if π‘₯∈𝐢2([0,1]) is a solution of (3.19), then π‘₯ is a solution to the problem (1.1). In order to transform the problem (3.19) into a fixed point problem, we define the operator Ξ© as Ξ©π‘₯(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10(1βˆ’π‘ )𝑓(π‘₯(𝑠))π‘‘π‘ βˆ’π›Όπ‘‘2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2ξ€œπ‘“(π‘₯(𝑠))π‘‘π‘ βˆ’π‘‘0(π‘‘βˆ’π‘ )𝑓(π‘₯(𝑠))𝑑𝑠.(3.20) It can easily be shown that Ξ© is continuous and completely continuous. The remaining part of the proof is similar to that of Theorem 3.1. So we omit it. This completes the proof.

Now we prove the existence of solutions for the problem (1.1) with a nonconvex-valued right-hand side by applying a fixed point theorem for multivalued map due to Covitz and Nadler [27].

Theorem 3.3. Assume that the following conditions hold: (𝐻6)𝐹∢[0,1]×ℝ→𝑃cp(ℝ) is such that 𝐹(β‹…,π‘₯)∢[0,1]→𝑃𝑐𝑝(ℝ) is measurable for each π‘₯βˆˆβ„.(𝐻7)𝐻𝑑(𝐹(𝑑,π‘₯),𝐹(𝑑,π‘₯))β‰€π‘š(𝑑)|π‘₯βˆ’π‘₯| for almost all π‘‘βˆˆ[0,1] and π‘₯,π‘₯βˆˆβ„ with π‘šβˆˆπΏ1([0,1],ℝ+) and 𝑑(0,𝐹(𝑑,0))β‰€π‘š(𝑑) for almost all π‘‘βˆˆ[0,1]. Then the boundary value problem (1.1) has at least one solution on [0,1] if ξ€·ξ€·1+2+|𝛼|πœ‚2/||2βˆ’π›Όπœ‚2||ξ€Έξ€Έβ€–π‘šβ€–πΏ1<1.(3.21)

Proof. Observe that the set 𝑆𝐹,π‘₯ is nonempty for each π‘₯∈𝐢([0,1],ℝ) by the assumption (𝐻6), so 𝐹 has a measurable selection (see Theorem III.6 [29]). Now we show that the operator Ξ© satisfies the assumptions of Lemma 2.7. To show that Ξ©(π‘₯)βˆˆπ‘ƒcl((𝐢[0,1],ℝ)) for each π‘₯∈𝐢([0,1],ℝ), let {𝑒𝑛}𝑛β‰₯0∈Ω(π‘₯) be such that 𝑒𝑛→𝑒(π‘›β†’βˆž) in 𝐢([0,1],ℝ). Then π‘’βˆˆπΆ([0,1],ℝ) and there exists π‘£π‘›βˆˆπ‘†πΉ,π‘₯ such that, for each π‘‘βˆˆ[0,1], 𝑒𝑛(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10(1βˆ’π‘ )𝑣𝑛(𝑠)π‘‘π‘ βˆ’π›Όπ‘‘2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2π‘£π‘›ξ€œ(𝑠)π‘‘π‘ βˆ’π‘‘0(π‘‘βˆ’π‘ )𝑣𝑛(𝑠)𝑑𝑠.(3.22) As 𝐹 has compact values, we pass onto a subsequence to obtain that 𝑣𝑛 converges to 𝑣 in 𝐿1([0,1],ℝ). Thus, π‘£βˆˆπ‘†πΉ,π‘₯ and, for each π‘‘βˆˆ[0,1], 𝑒𝑛(𝑑)βŸΆπ‘’(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10βˆ’(1βˆ’π‘ )𝑣(𝑠)𝑑𝑠𝛼𝑑2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2ξ€œπ‘£(𝑠)π‘‘π‘ βˆ’π‘‘0(π‘‘βˆ’π‘ )𝑣(𝑠)𝑑𝑠.(3.23) Hence, π‘’βˆˆΞ©(π‘₯).
Next we show that there exists 𝛾<1 such that 𝐻𝑑Ω(π‘₯),Ξ©π‘₯‖‖≀𝛾π‘₯βˆ’π‘₯β€–β€–βˆžforeachπ‘₯,([]π‘₯∈𝐢0,1,ℝ).(3.24) Let π‘₯,π‘₯∈𝐢([0,1],ℝ) and β„Ž1∈Ω(π‘₯). Then there exists 𝑣1(𝑑)∈𝐹(𝑑,π‘₯(𝑑)) such that, for each π‘‘βˆˆ[0,1], β„Ž1(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10(1βˆ’π‘ )𝑣1(𝑠)π‘‘π‘ βˆ’π›Όπ‘‘2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2𝑣1ξ€œ(𝑠)π‘‘π‘ βˆ’π‘‘0(π‘‘βˆ’π‘ )𝑣1(𝑠)𝑑𝑠.(3.25) By (𝐻7), we have 𝐻𝑑𝐹(𝑑,π‘₯),𝐹𝑑,π‘₯||π‘₯ξ€Έξ€Έβ‰€π‘š(𝑑)(𝑑)βˆ’π‘₯||(𝑑).(3.26) So, there exists π‘€βˆˆπΉ(𝑑,π‘₯(𝑑)) such that ||𝑣1||||(𝑑)βˆ’π‘€β‰€π‘š(𝑑)π‘₯(𝑑)βˆ’||[]π‘₯(𝑑),π‘‘βˆˆ0,1.(3.27) Define π‘ˆβˆΆ[0,1]→𝒫(ℝ) by π‘ˆξ€½||𝑣(𝑑)=π‘€βˆˆβ„βˆΆ1||||π‘₯(𝑑)βˆ’π‘€β‰€π‘š(𝑑)(𝑑)βˆ’π‘₯||ξ€Ύ(𝑑).(3.28) Since the multivalued operator 𝑉(𝑑)∩𝐹(𝑑,π‘₯(𝑑)) is measurable (Proposition III.4 [29]), there exists a function 𝑣2(𝑑) which is a measurable selection for 𝑉. So 𝑣2(𝑑)∈𝐹(𝑑,π‘₯(𝑑)), and, for each π‘‘βˆˆ[0,1], we have |𝑣1(𝑑)βˆ’π‘£2(𝑑)|β‰€π‘š(𝑑)|π‘₯(𝑑)βˆ’π‘₯(𝑑)|.
For each π‘‘βˆˆ[0,1], let us define β„Ž2(𝑑)=2𝑑2βˆ’π›Όπœ‚2ξ€œ10(1βˆ’π‘ )𝑣2(𝑠)π‘‘π‘ βˆ’π›Όπ‘‘2βˆ’π›Όπœ‚2ξ€œπœ‚0(πœ‚βˆ’π‘ )2𝑣2ξ€œ(𝑠)π‘‘π‘ βˆ’π‘‘0(π‘‘βˆ’π‘ )𝑣2(𝑠)𝑑𝑠.(3.29) Thus, ||β„Ž1(𝑑)βˆ’β„Ž2||≀||||(𝑑)2𝑑2βˆ’π›Όπœ‚2||||ξ€œ10||||||𝑣1βˆ’π‘ 1(𝑠)βˆ’π‘£2||+||||(𝑠)𝑑𝑠𝛼𝑑2βˆ’π›Όπœ‚2||||ξ€œπœ‚0|πœ‚βˆ’π‘ |2||𝑣1(𝑠)βˆ’π‘£2(||ξ€œπ‘ )𝑑𝑠+𝑑0|||π‘£π‘‘βˆ’π‘ |1(𝑠)βˆ’π‘£2(||≀𝑠)𝑑𝑠1+2+|𝛼|πœ‚2/||2βˆ’π›Όπœ‚2||ξ€œξ€Έξ€Έ10β€–β€–π‘š(𝑠)π‘₯βˆ’π‘₯‖‖𝑑𝑠.(3.30) Hence, β€–β„Ž1βˆ’β„Ž2β€–βˆžβ‰€ξ€·ξ€·1+2+|𝛼|πœ‚2/||2βˆ’π›Όπœ‚2||ξ€Έξ€Έβ€–π‘šβ€–πΏ1β€–π‘₯βˆ’π‘₯β€–βˆž.(3.31) Analogously, interchanging the roles of π‘₯ and π‘₯, we obtain 𝐻𝑑Ω(π‘₯),Ξ©π‘₯‖‖≀𝛾π‘₯βˆ’π‘₯β€–β€–βˆžβ‰€ξ€·ξ€·1+2+|𝛼|πœ‚2/||2βˆ’π›Όπœ‚2||ξ€Έξ€Έβ€–π‘šβ€–πΏ1β€–β€–π‘₯βˆ’π‘₯β€–β€–βˆž.(3.32)
Since Ξ© is a contraction, it follows by Lemma 2.7 that Ξ© has a fixed point π‘₯ which is a solution of (1.1). This completes the proof.

Remark 3.4. By fixing the functions and parameters involved in the problem (1.1), we obtain some interesting results: (i)if we take 𝐹(𝑑,π‘₯)={𝑓(𝑑,π‘₯)}, where π‘“βˆΆ[0,1]×ℝ→ℝ is a continuous function, then our results correspond to the ones for a single-valued problem, which are new results in the present configuration;(ii)in the limit πœ‚β†’1, our results correspond to an inclusion problem with integral boundary condition (see [30]) of the type ξ€œπ‘₯(1)=𝛼10π‘₯(𝑠)𝑑𝑠.(3.33) In this case, the solution defined by (2.10) takes the form ξ€œπ‘₯(𝑑)=10[]𝑑(1βˆ’π‘ )2βˆ’π›Ό(1βˆ’π‘ )ξ€œ2βˆ’π›Όπ‘“(𝑠)π‘‘π‘ βˆ’π‘‘0(π‘‘βˆ’π‘ )𝑓(𝑠)𝑑𝑠.(3.34)(iii)By fixing 𝛼=0 in (1.1), our results reduce to the ones for a second-order inclusion problem with Dirichlet boundary conditions (π‘₯(0)=0,π‘₯(1)=0).

Acknowledgments

The authors thank the editors for their useful comments. The research of B. Ahmad and A. Alsaedi was partially supported by Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia.