Abstract

This paper presents a simple and efficient method for determining the rational solution of Riccati differential equation with coefficients rational. In case the differential Galois group of the differential equation (𝐸𝑙)𝑦=𝑟𝑦, 𝑟(𝑥) is reducible, we look for the rational solutions of Riccati differential equation 𝜃+𝜃2=𝑟, by reducing the number of checks to be made and by accelerating the search for the partial fraction decomposition of the solution reserved for the poles of 𝜃 which are false poles of 𝑟. This partial fraction decomposition of solution can be used to code 𝑟. The examples demonstrate the effectiveness of the method.

1. Introduction

The quadratic Riccati differential equation:𝐸𝑅𝜎=𝑝2𝜎2+𝑝1𝜎+𝑝0,(1.1) where 𝑝0,𝑝1, and 𝑝2 are in a differential field 𝕂,𝑝20. The quadratic Riccati differential equation is first converted to a reduced Riccati differential equation:𝐸𝑟𝜃+𝜃2=𝑟,(1.2) where 𝜃=𝑝2𝜎(1/2)𝑎, with 𝑎=(𝑝2/𝑝2)+𝑝1 and 𝑟=(1/4)𝑎2(1/2)𝑎𝑝2𝑝0.

Furthermore, we put 𝑦/𝑦=𝜃, reduced Riccati differential equation (1.2) is converted to a second-order linear ordinary differential equation𝐸𝑙𝑦=𝑟𝑦.(1.3) If we have a particular solution nonzero of (𝐸𝑙) then general solution is 𝑦=𝑐𝑢 where 𝑐=𝜆/𝑢2, 𝜆 constant (see [15]).

In the paper, we base ourselves mainly on the work of Kovacic [2] where the differential Galois group of the differential equation (𝐸𝑙) is reducible and we take 𝕂=(𝑋).

The case where every solution of (𝐸𝑙) is Liouvillian corresponds to the case where reduced Riccati differential equation (𝐸𝑟) has algebraic solution over 𝕂. The case where differential Galois group is reducible corresponds to the case where the Riccati differential equation (𝐸𝑟) has the rational solution (𝑢/𝑢)𝑢 solution of (𝐸𝑙). The solution 𝑢 of (𝐸𝑙) is rational fraction if and only if 𝑢/𝑢 is rational fraction with simples poles, integers residues and negative degree.

The field (𝑋)[𝑢] is differential extension of (𝑋) by exponential of an integral and if 𝑣=1/𝑢2 then (𝑢,𝑣) two solutions of (𝐸𝑙) are linearly independent over field of constants . The ordinary extension (𝑋)[𝑢,𝑣] is differential extension of (𝑋)[𝑢], by an integral. (𝑋)[𝑢,𝑣] is Picard-Vessiot extension of (𝑋)[𝑢] for the differential equation (𝐸𝑙) (see [2, 3, 68]). The existence of rational solution 𝑢/𝑢 of Riccati differential equation (𝐸𝑟) and research primitive of 1/𝑢2give all solutions of (𝐸𝑟).

This paper presents a simple and efficient method for determining the solution of Riccati differential equation with coefficients rational. In case the differential Galois group of the differential equation (𝐸𝑙)𝑦=𝑟𝑦, 𝑟(𝑥) is reducible, we look for the rational solutions of Riccati differential equation 𝜃+𝜃2=𝑟, by reducing the number of checks to be made and by accelerating the search for the partial fraction decomposition of the solution reserved for the poles of 𝜃 which are false poles of 𝑟. This partial fraction decomposition of solution can be used to code 𝑟. The examples demonstrate the effectiveness of the method.

2. Form of Rational Solution of Equation: (𝐸𝑟)

Let 𝑟(𝑥),𝑟0 be rational fraction and let 𝜃(𝑥) be the rational solution of Riccati differential equation (𝐸𝑟)𝜃+𝜃2=𝑟.

2.1. Study in the Pole 𝑐 of Multiplicity 𝜈 of 𝜃

We put 𝜏𝜃=(𝑥𝑐)𝜈,where𝜏(𝑐)0.(2.1) We have𝑟=𝜃+𝜃2=(𝑥𝑐)2𝜈𝜈𝜏2(𝑥𝑐)𝜈12𝜈24(𝑥𝑐)2𝜈2+𝜏(𝑥𝑐)𝜈.(2.2) Thus 𝜈𝜏2(𝑥𝑐)𝜈12=(𝑥𝑐)2𝜈𝑟+(𝑥𝑐)𝜈𝜈24(𝑥𝑐)𝜈2𝜏.(2.3)

Case 1 (𝜈2). The function (𝑥𝑐)2𝜈𝑟 defines and is equal to 𝜏(𝑐)2 at 𝑐.
Thus 𝑐 is pole of multiplicity 2𝜈 of 𝑟 where lim𝑥𝑐(𝑥𝑐)2𝜈𝑟=lim𝑥𝑐(𝑥𝑐)𝜈𝜃2.(2.4)

Case 2 (𝜈=1). We have 1𝜏22=(𝑥𝑐)21𝑟+4(𝑥𝑐)𝜏.(2.5)
The function (𝑥𝑐)2𝑟 defines and is equal to 𝜏(𝑐)(𝜏(𝑐)1) at 𝑐.

Situation 1 (lim𝑥𝑐(𝑥𝑐)2𝑟0,1/4)
c is double pole of 𝑟 and the residue 𝜏(𝑐) of 𝜃 at 𝑐 have tow possibility values as follows: 1𝜏(𝑐)22=lim𝑥𝑐(𝑥𝑐)21𝑟+4.(2.6) Thus, 𝑐 is double pole of 𝑟 and the residue of 𝜃 at simple pole 𝑐 equals 𝜏(𝑐)=𝛼𝑐+12,(2.7) where 𝛼2𝑐=lim𝑥𝑐(𝑥𝑐)21𝑟+4.(2.8)

Situation 2 (lim𝑥𝑐(𝑥𝑐)2𝑟=1/4)
𝑐 is double pole of 𝑟 and the residue of 𝜃 at 𝑐 is 1/2.

Situation 3 (lim𝑥𝑐(𝑥𝑐)2𝑟=0)
𝑐 is a simple pole of 𝑟 or is not pole of 𝑟 and the residue of 𝜃 at simple pole 𝑐 equals 1.

Proposition 2.1. Let 𝜃(𝑥) such as 𝜃+𝜃2=𝑟.
(1)The fraction: 𝑟=𝑁/𝐷 with 𝑁 and 𝐷 being polynomials relatively prime 𝐷=𝐷1𝐷22𝐷23𝐷24,(2.9) where 𝐷1,𝐷2,𝐷3, and 𝐷4 are polynomials relatively prime pairwise. 𝐷1,𝐷2, and 𝐷3 are with simple roots, and 𝐷4 is without simple root 𝐷𝑐Root2lim𝑥𝑐(𝑥𝑐)21𝑟=4,𝐷𝑐Root3lim𝑥𝑐(𝑥𝑐)21𝑟4.(2.10)(2)(a)Let 𝜈2. 𝑐 pole of multiplicity 𝜈 of 𝜃𝑐Root(𝐷4).(b)𝑐 simple pole of 𝜃 with residue 1,1/2𝑐Root(𝐷3), the residue of 𝜃 where 𝑐 equals 𝛼𝑐+(1/2) where 𝛼2𝑐=lim𝑥𝑐(𝑥𝑐)21𝑟+4.(2.11)(c)𝑐 simple pole of 𝜃 with residue =1/2𝑐Roots(𝐷2).(d)𝑐 simple pole of 𝜃 with residue =1𝑐Roots(𝐷1) or 𝑐 pole of 𝜃 and false pole of 𝑟.

Corollary 2.2. One assumes that 𝑟=𝑁/𝐷 with 𝑁 and 𝐷 polynomials being relatively prime, 𝐷=𝐷1𝐷22𝐷23𝐷24 where 𝐷1,𝐷2,𝐷3, and 𝐷4 are polynomials relatively prime pairwise, 𝐷1,𝐷2, and 𝐷3 are with simple roots, and 𝐷4 is without simple root 𝐷𝑐Root2lim𝑥𝑐(𝑥𝑐)21𝑟=4,𝐷𝑐Root3lim𝑥𝑐(𝑥𝑐)21𝑟4.(2.12) a rational fraction 𝜃. Verify 𝜃+𝜃2=𝑟 is the shape 𝜃=𝐸(𝜃)+𝑐Roots(𝐷4)𝜃𝑐+𝑐Roots(𝐷3)𝛼𝑐+1/2+1𝑥𝑐2𝐷2𝐷2+𝐷1𝐷1+𝐷0𝐷0(2.13) with 𝐷0 being monic polynomial with simple roots and the roots are false poles of 𝑟.

2.2. Study in the Infinity

Let 𝑡(𝑥),𝑡0 rational fraction such as (𝑑𝑡/𝑑𝑥)+𝑡2=0.

Case 1. We assume that 𝑑𝑜(𝜃)<0.
We have 𝑑𝑜(𝜃)<0, and 𝑑𝑜(𝜃2)<0 thus 𝑑𝑜(𝑟)<0. We put 𝜃=𝑡𝜎(𝑡)with𝜎beingrationalfractiondenedat0.(2.14) We have 𝜎(0)=lim𝑥𝑥𝜃=sumtheresiduesof𝜃,𝑟=𝜃+𝜃2=𝜎2𝑡𝜎2𝜎𝑡3,lim𝑥𝑥2𝑟=𝜎(0)2𝜎(0).(2.15) Thus 𝑑𝑜𝑟2 and (𝜎(0)(1/2))2=lim𝑥𝑥2𝑟+(1/4).
If: lim𝑥𝑥2𝑟=1/4 then the sum of residues of 𝜃: 𝜎(0)=1/2.
If: lim𝑥𝑥2𝑟1/4 then the sum of residues of 𝜃: 𝜎(0)=𝛼+(1/2) where 𝛼2=lim𝑥𝑥21𝑟+4.(2.16)

Case 2. We assume that 𝑑𝑜(𝜃)=0.
𝐸(𝜃) constant 0. We put 𝜃=𝐸(𝜃)+𝑡𝜎(𝑡),with𝜎beingrationalfractiondenedat0.(2.17) We have 𝜎(0)=lim𝑥𝑥(𝜃𝐸(𝜃))=thesumofresiduesof𝜃,𝑟=𝜃+𝜃2=(𝐸(𝜃))2𝜎+2𝐸(𝜃)𝑡𝜎+2𝑡𝜎2𝜎𝑡3.(2.18) So 𝐸(𝑟) constant equals 𝐸(𝜃)2: []2𝐸(𝜃)sumtheresiduesof𝜃=sumtheresiduesof𝑟.(2.19)

Case 3. We assume that 𝑑𝑜(𝜃)>0.
We put 𝜈=𝑑𝑜(𝜃)1,𝜃=𝑡𝜈𝜎(𝑡)(2.20) with 𝜎 being rational fraction defined at 0. The scalar 𝜎(0) is the dominant coefficient of 𝐸(𝜃). We have 𝑟=𝜃+𝜃2=𝑡2𝜈𝜎2+𝜈𝑡𝜈+1𝜎𝑡𝜈+2𝜎.(2.21) Thus, 𝑡2𝜈𝑟=𝜎(0)2+𝑜(𝑡).(2.22) So 𝑑𝑜𝑟=2𝜈=2𝑑𝑜𝜃 and 𝜎2(𝑜) the dominant coefficient of 𝐸(𝑟).

Proposition 2.3. Let 𝜃(𝑥) such as 𝜃+𝜃2=𝑟.
(1)𝑑𝑜(𝜃)<0𝑑𝑜(𝑟)<0. Thus 𝑑𝑜(𝑟)2 and 1thesumofresiduesof𝜃=2iflim𝑥𝑥21𝑟=4,𝛼+12iflim𝑥𝑥21𝑟4.(2.23)(2)𝑑𝑜(𝜃)=0𝑑𝑜(𝑟)=0. In the case𝐸(𝜃) is square root of 𝐸(𝑟): 2𝐸(𝜃)(sumofresiduesof𝜃)=sumofresiduesof𝑟=lim𝑥𝑥(𝑟𝐸(𝑟)).(2.24)(3)We have 𝑑𝑜(𝜃)>0𝑑𝑜(𝑟)>0. In the case(a)𝑑𝑜(𝑟)=2𝑑𝑜(𝜃); (b)the dominant coefficient of 𝐸(𝜃) is square root of 𝐸(𝑟).

2.3. Determination of 𝐸(𝜃); 𝑑𝑜(𝑟)=2𝜈>0

We assume that 𝑟 is a rational fraction of degree 2𝜈>0 and 𝜃(𝑥) such as 𝜃+𝜃2=𝑟.

Let 𝑎 be the dominant coefficient of 𝐸(𝑟). Thus 𝑟𝑎𝑥2𝜈 if 𝑥 tends to : 𝑡2𝜈𝐸(𝑟)𝑎=1+𝑎1𝑡++𝑎2𝜈𝑡2𝜈.(2.25) The Taylor's expansion of order 𝜈+1 at 0 𝑡2𝜈𝐸(𝑟)𝑎1/2=1+𝑠1𝑡++𝑠𝜈+1𝑡𝜈+1𝑡+𝑜𝜈+1.(2.26) We have 𝑡2𝜈𝑟=𝑡2𝜈𝑡𝐸(𝑟)+𝑜2𝜈=𝑡2𝜈𝐸𝑡(𝑟)+𝑜𝜈+1𝑡=𝑎2𝜈𝐸(𝑟)𝑎1/22𝑡+𝑜𝜈+1.(2.27) We have 𝜃=𝑡𝜈𝜎(𝑡) with 𝜎 rational fraction defined at 0, 𝜎(0)2=𝑎 and 𝜈𝜎+2𝑡𝜈+12=𝑡2𝜈𝜈𝑟+24𝑡2𝜈+2+𝑡𝜈+2𝜎=𝑎1+𝑠1𝑡++𝑠𝜈+1𝑡𝜈+12𝑡+𝑜𝜈+1𝜈𝜎+2𝑡𝜈+1=𝜎(0)1+𝑠1𝑡++𝑠𝜈+1𝑡𝜈+1𝑡+𝑜𝜈+1.(2.28) Thus𝜃=𝑡𝜈𝑡𝜎=𝜎(0)𝜈+𝑠1𝑡(𝜈1)++𝑠𝜈+1𝑡𝜈2𝑡+𝑜(𝑡).(2.29) Imply𝑡𝐸(𝜃)=𝜎(0)𝜈+𝑠1𝑡(𝜈1)++𝑠𝜈,𝜎(0)𝑠𝜈+1𝜈2=sumofresiduesof𝜃.(2.30)

Proposition 2.4. Let 𝑟 be a rational fraction of degree 2𝜈>0, 𝜃(𝑥) such as 𝜃+𝜃2=𝑟 and 𝑎 the dominant coefficient of 𝐸(𝑟). If 𝑡2𝜈𝐸(𝑟)𝑎1/2=1+𝑠1𝑡++𝑠𝜈+1𝑡𝜈+1𝑡+𝑜𝜈+1.(2.31) Then 𝑡𝐸(𝜃)=𝛼𝜈+𝑠1𝑡(𝜈1)++𝑠𝜈,𝛼𝑠𝜈+1𝜈2=sumofresiduesof𝜃,(2.32) where 𝛼2=𝑎.(2.33)

3. Determination of Partial Fraction Decomposition

Let 𝑟=𝑁/𝐷 be rational fraction with 𝑁 and 𝐷 polynomials being relatively prime, 𝐷=𝐷1𝐷22𝐷23𝐷24 where 𝐷1,𝐷2,𝐷3, and 𝐷4 polynomials being relatively prime pair-wise, 𝐷1,𝐷2, and 𝐷3 with simple roots and 𝐷4 without simple root𝐷𝑐Root2lim𝑥𝑐(𝑥𝑐)21𝑟=4,𝐷𝑐Root3lim𝑥𝑐(𝑥𝑐)21𝑟4.(3.1) Let 𝜃(𝑥) be rational fraction. Verify 𝜃+𝜃2=𝑟.

3.1. Case 𝑑𝑜𝐷3=0 and 𝑑𝑜𝐷4=0

We have 𝑟=𝑁/𝐷1𝐷22.

This case corresponds to the fact that one pole 𝑐 of 𝑟 is simple or double withlim𝑥𝑐(𝑥𝑐)21𝑟=4.(3.2)

Proposition 3.1. One assumes 𝑑𝑜𝑟<0 and 𝑑𝑜𝐷3=𝑑𝑜𝐷4=0. One has: lim𝑥𝑥21𝑟+4=𝑞22(3.3) with 𝑞 being positive integer of parity against that of 𝑑𝑜𝐷21𝜃=2𝐷2𝐷2+𝐷1𝐷1+𝐷0𝐷0(3.4) with 𝐷0 polynomial of degree 𝑑𝑜𝐷0=12𝑞+1𝑑𝑜𝐷2𝑑𝑜𝐷1.(3.5)

Proof. We have 1𝜃=2𝐷2𝐷2+𝐷1𝐷1+𝐷0𝐷0.(3.6) The sum of residues of 𝜃 equal (1/2)𝑑𝑜𝐷2+𝑑𝑜𝐷1+𝑑𝑜𝐷0=𝛼+(1/2) with 𝛼2=lim𝑥𝑥2𝑟+(1/4). In particular 𝛼=𝑞/2 with 𝑞.
Remark 3.2. If lim𝑥𝑥2𝑟=1/4 then 𝑑𝑜𝐷2=1, 𝑑𝑜𝐷1=𝑑𝑜𝐷0=0, 𝜃=(1/2)(1/(𝑥𝑐)), and 𝑟=1/4(𝑥𝑐)2.

Proposition 3.3. One assumes 𝑑𝑜𝑟=0 and 𝑑𝑜𝐷3=𝑑𝑜𝐷4=0.
(1)𝐸(𝜃) square root of 𝐸(𝑟) such as 𝑝=(1/𝐸(𝜃))lim𝑥𝑥[𝑟𝐸(𝑟)] is positive integer of same parity as 𝑑𝑜𝐷2.(2)One has 1𝜃=𝐸(𝜃)+2𝐷2𝐷2+𝐷1𝐷1+𝐷0𝐷0(3.7) with 𝐷0 being polynomial of degree 𝑑𝑜𝐷0=12𝑝𝑑o𝐷112𝑑𝑜𝐷2.(3.8)

Proof. We have 1𝜃=𝐸(𝜃)+2𝐷2𝐷2+𝐷1𝐷1+𝐷0𝐷0.(3.9) We have 2𝐸(𝜃)sumofresidues(𝜃)=sumofresidues(𝑟)=lim𝑥𝑥[],1𝑟𝐸(𝑟)2𝐸(𝜃)2𝑑𝑜𝐷2+𝑑𝑜𝐷1+𝑑𝑜𝐷0=lim𝑥𝑥[].𝑟𝐸(𝑟)(3.10) Thus 𝑑𝑜𝐷2+2𝑑𝑜𝐷1+2𝑑𝑜𝐷0=1𝐸(𝜃)lim𝑥𝑥[].𝑟𝐸(𝑟)(3.11) If 𝑟 is constant then 𝐷1=𝐷2=𝐷0=1 and 𝜃 are constant.
If 𝑟 is nonconstant then 𝑟 is not polynomial thus 1𝑝=𝐸(𝜃)lim𝑥𝑥[]𝑟𝐸(𝑟)(3.12) is a positive integer of same parity as 𝑑𝑜𝐷2.

Proposition 3.4. We assume 𝑑𝑜𝑟=2𝜈>0 and 𝑑𝑜𝐷3=𝑑𝑜𝐷4=0.
Let 𝑎 be the dominant coefficient of 𝐸(𝑟) and one considers the Taylor's expansion at infinity: 𝑡2𝜈𝐸(𝑟)𝑎1/2=1+𝑠1𝑡++𝑠𝜈+1𝑡𝜈+1𝑡+𝑜𝜈+1.(3.13)(1)4𝑎𝑠2𝜈+1=𝑝2,(3.14) where 𝑝 is a positive integer, 𝑝𝑑𝑜𝐷2+2𝑑𝑜𝐷1+𝜈, and same parity of 𝑑𝑜𝐷2+2𝑑𝑜𝐷1+𝜈.(2)One has 1𝜃=𝐸(𝜃)+2𝐷2𝐷2+𝐷1𝐷1+𝐷0𝐷0(3.15) with 𝐷0 being polynomial of degree 𝑑𝑜𝐷0=𝑝𝜈𝑑𝑜𝐷22𝑑𝑜𝐷1(3.16) and 𝛼 the dominant coefficient of 𝐸(𝜃) where 𝑝=2𝛼𝑠𝜈+1.(3.17)

Proof. We have 𝑡𝐸(𝜃)=𝛼𝜈+𝑠1𝑡(𝜈1)++𝑠𝜈,𝛼𝑠𝜈+1𝜈21=sumofresiduesof𝜃,𝜃=𝐸(𝜃)+2𝐷2𝐷2+𝐷1𝐷1+𝐷0𝐷0.(3.18) Thus 12𝑑𝑜𝐷2+𝑑𝑜𝐷1+𝑑𝑜𝐷0=𝛼𝑠𝜈+1𝜈2(3.19)𝛼𝑠𝜈+1=𝑝/2 with 𝑝 positive integer. Thus 𝑝𝑑𝑜𝐷2+2𝑑𝑜𝐷1+𝜈, 𝑝 and 𝑑𝑜𝐷2+2𝑑𝑜𝐷1+𝜈 have the same parity.

3.2. Case: 𝐷3=𝑋𝑐 and 𝑑𝑜𝐷4=0

This case corresponds to the fact that a pole of 𝑟 is simple or double with only double pole 𝑐 such as:lim𝑥𝑐(𝑥𝑐)21𝑟4,𝑁(3.20)𝑟=𝐷1𝐷22(𝑥𝑐)2.(3.21)

Proposition 3.5. Consider (3.21) and let 𝜃(𝑥) be a rational fraction. Verify 𝜃+𝜃2=𝑟. One assumes 𝑑𝑜𝑟<0. Accordingly, in view of (2.11) and (2.16) one has 𝛼𝜃=𝑐+(1/2)+1𝑥𝑐2𝐷2𝐷2+𝐷1𝐷1+𝐷0𝐷0(3.22) with 𝐷0 being polynomial of degree 𝑑𝑜𝐷01=𝜆2𝑑𝑜𝐷2𝑑𝑜𝐷1,(3.23) where 𝜆=𝛼𝛼𝑐(3.24) one half positive integer of same parity as 𝑑𝑜𝐷2.

Proof. We have lim𝑥𝑥𝜃=𝛼𝑐+12+12𝑑𝑜𝐷2+𝑑𝑜𝐷1+𝑑𝑜𝐷0,𝛼𝑐+12𝑑𝑜𝐷2+𝑑𝑜𝐷1+𝑑𝑜𝐷02=lim𝑥𝑥21𝑟+4=𝛼2.(3.25) Thus 12𝑑𝑜𝐷2+𝑑𝑜𝐷1+𝑑𝑜𝐷0=𝛼𝛼𝑐.(3.26)

Proposition 3.6. Consider (3.21) and let 𝜃(𝑥) be a rational fraction. Verify: 𝜃+𝜃2=𝑟. One assumes 𝑑𝑜𝑟=0. One has: 𝛼𝜃=𝐸(𝜃)+𝑐+(1/2)+1𝑥𝑐2𝐷2𝐷2+𝐷1𝐷1+𝐷0𝐷0(3.27) with 𝐸2(𝜃)=𝐸(𝑟) and 𝐷0 being polynomial of degree 𝑑𝑜𝐷0=121𝜆2𝑑𝑜𝐷2𝑑𝑜𝐷112,(3.28) where 1𝜆=𝐸(𝜃)lim𝑥𝑥[]𝑟𝐸(𝑟)2𝛼𝑐(3.29)𝜆 is positive integer of parity against that of 𝑑𝑜𝐷2.

Proof. We have 𝛼2𝐸(𝜃)𝑐+12+12𝑑𝑜𝐷2+𝑑𝑜𝐷1+𝑑𝑜𝐷0=lim𝑥𝑥[].𝑟𝐸(𝑟)(3.30) Thus 1+𝑑𝑜𝐷2+2𝑑𝑜𝐷1+2𝑑𝑜𝐷0=1𝐸(𝜃)lim𝑥𝑥[]𝑟𝐸(𝑟)2𝛼𝑐.(3.31)

Proposition 3.7. Consider (3.21) and let 𝜃(𝑥) be a rational fraction. Verify 𝜃+𝜃2=𝑟. One assumes 𝑑𝑜𝑟=2𝜈>0. Let 𝑎 be the dominant coefficient of 𝐸(𝑟), let 𝛼 be the dominant coefficient of 𝐸(𝜃), 𝑡=1/𝑥 and Taylors expansion: 𝑡2𝜈𝐸(𝑟)𝑎1/2=1+𝑠1𝑡++𝑠𝜈+1𝑡𝜈+1𝑡+𝑜𝜈+1.(3.32) One has 𝛼𝜃=𝐸(𝜃)+𝑐+1/2+1𝑥𝑐2𝐷2𝐷2+𝐷1𝐷1+𝐷0𝐷0,(3.33) with 𝐷0 being polynomial of degree: 𝑑𝑜𝐷0=𝛼𝑠𝜈+1𝛼𝑐1+𝜈+𝑑𝑜𝐷22𝑑𝑜𝐷1,𝛼2=𝑎.(3.34)

Proof. We have 𝑡𝐸(𝜃)=𝛼𝜈+𝑠1𝑡(𝜈1)++𝑠𝜈,𝛼𝑠𝜈+1𝜈2=sumofresiduesof𝜃.(3.35) Thus 𝛼𝜃=𝐸(𝜃)+𝑐+(1/2)+1𝑥𝑐2𝐷2𝐷2+𝐷1𝐷1+𝐷0𝐷0𝛼𝑠𝜈+1𝜈2=𝛼𝑐+12+12𝑑𝑜𝐷2+𝑑𝑜𝐷1+𝑑𝑜𝐷0.(3.36) Thus 𝑑𝑜𝐷0=𝛼𝑠𝜈+1𝛼𝑐1+𝜈+𝑑𝑜𝐷22𝑑𝑜𝐷1.(3.37)

3.3. Case: (𝑑𝑜𝐷30 and 𝑑𝑜𝐷40) or (𝑑𝑜𝐷32 and 𝑑𝑜𝐷4=0)

𝐷1𝐷22 and 𝐷3𝐷4 are polynomials being relatively prime. Thus there are only two polynomials 𝑁1 and 𝑁2 such as 𝐷1𝐷22𝐷23𝐷24(𝑟𝐸(𝑟))=𝑁1𝐷1𝐷22+𝑁2𝐷3𝐷4,𝑑𝑜𝑁1<𝑑𝑜𝐷3𝐷4.(3.38) Thus𝑁𝑟=𝐸(𝑟)+1𝐷23𝐷24+𝑁2𝐷1𝐷22𝐷3𝐷4.(3.39) We have𝑑𝑜𝑁1𝐷23𝐷24=𝑑𝑜𝑁1𝐷3𝐷41𝐷3𝐷4<𝑑𝑜1𝐷3𝐷42.(3.40) Because 𝐷4 does not have simple roots verify 𝑑𝑜𝐷4=0 or 𝑑𝑜𝐷42. Thus 𝑑𝑜(𝐷3𝐷4)2. Thuslim𝑥𝑥2𝑁1𝐷23𝐷24𝑑=0,𝑜𝑑(𝑟𝐸(𝑟))<0,𝑜𝑁2𝐷1𝐷22𝐷3𝐷4<0.(3.41) We consider the rational fraction𝑁𝐹=𝐸(𝑟)+1𝐷23𝐷24𝛿,(3.42) where1𝛿=41𝑘𝐷3𝐷32+1𝑘𝐷+13𝐷3,𝑘=𝑑𝑜𝐷30.(3.43)

Proposition 3.8. One assumes 𝑑𝑜𝐷3𝑑0𝑜𝐷40 or 𝑑𝑜𝐷3𝑑2𝑜𝐷4=0. (1)If 𝑑𝑜𝑟0 then: 𝑑𝑜𝐹=𝑑𝑜𝑟 and 𝐸(𝐹)=𝐸(𝑟).(2)If 𝑑𝑜𝑟<0 then: 𝑑𝑜𝐹=2 where lim𝑥𝑥2𝐹=1/4.(3)For all 𝑐 root of 𝐷3 one has lim𝑥𝑐(𝑥𝑐)2𝐹=lim𝑥𝑐(𝑥𝑐)21𝑟+4.(3.44)(4)For all 𝑐 root of 𝐷4 of multiplicity 𝜈 one has (𝑥𝑐)2𝜈𝑟=(𝑥𝑐)2𝜈𝐹+𝑜(𝑥𝑐)𝜈1.(3.45)

Proof. (1) 𝑟𝐹=𝑁2/𝐷1𝐷22𝐷3𝐷4+𝛿 is from negative degree.
(2) lim𝑥𝑥2𝐹=lim𝑥(𝑥2𝑁1/𝐷23𝐷24)lim𝑥𝑥2𝛿=lim𝑥𝑥2𝛿=1/4.
(3) Let 𝑐 be root of 𝐷3lim𝑥(𝑥𝑐)2(𝑟𝐹)=lim𝑥𝑐𝑁2𝐷1𝐷22𝐷4(𝑥𝑐)2𝐷3+lim𝑥𝑐(𝑥𝑐)2𝛿=lim𝑥𝑐(𝑥𝑐)21𝛿=4.(3.46)
(4) Let 𝑐 be root of 𝐷4(𝑥𝑐)2𝜈𝑁(𝑟𝐹)=2𝐷1𝐷22𝐷3(𝑥𝑐)2𝜈𝐷4+(𝑥𝑐)2𝜈𝛿=𝑜(𝑥𝑐)𝜈1.(3.47)

Lemma 3.9. Let 𝑍 be nonzero rational fraction. Σ is a finished set such as ΣRoots(𝑍)poles(𝑍)=.(3.48)(1)There exists 𝑂open connected set on which one has a square root holomorphic of 𝑍, containing for every 𝑐Σ a half-right closed by origin 𝑐. (2)If, besides, 𝑍 is from even degree then one can choose 𝑂 of complementary compact.

Proof. We fix 𝑐0 is not an element of Σ. Let Σ be a finished set containing roots, poles of 𝑍 and 𝑐0. They consider all rights linked to the different pairs of points of ΣΣ. They choose a point 𝑤 not being on these rights. For all 𝑐ΣΣ, straight line which joins right 𝑤 and 𝑐 does not contain any other point of ΣΣ.
Case 1 (𝑑𝑜𝑍 even). Replacing 𝑍 by rational fraction 𝑍/(𝑥𝑐0)𝑑𝑜𝑍.
Assume 𝑑𝑜𝑍=0. We put 𝐾=𝑐Σ[𝑤,𝑐]. 𝐾 is compact-connected.
We put 𝑂=𝐾. 𝑂 is open at infinity such as for all 𝑐Σ reaching right 𝑤 in 𝑐 private of 𝑤 is contained in 𝑂.
If 𝛾 is a shoelace of 𝑂then 𝐾 is included in one connected component of 𝛾. Thus:12𝑖𝜋𝛾𝑍𝑍(𝑥)𝑑𝑥=±𝑐Σ𝑍residue𝑍,𝑐=±𝑑𝑜𝑍=0.(3.49) Thus there exist the primitive of 𝑍/𝑍 and the determination of logarithm of 𝑍 and the square root of 𝑍 in 𝑂.

Case 2 (𝑑𝑜𝑍 odd). They use the previous case in replacing 𝑍 by rational fraction 𝑍/(𝑥𝑐0).

Notation 3.3. We choose a square root of the polynomial of even degree 𝑁1+𝐷23𝐷24[𝐸(𝑟)𝛿] on a connected open at infinity, roots of 𝐷3 and root of 𝐷4. We put (𝐹)1/2=1𝐷3𝐷4𝑁1+𝐷23𝐷24[]𝐸(𝑟)𝛿1/2.(3.50)

Proposition 3.10. One assumes 𝑑𝑜𝐷3𝑑0𝑜𝐷40 or 𝑑𝑜𝐷3𝑑2𝑜𝐷4=0.
One has 𝜃=𝐸(𝜃)+𝑐Root𝐷3Root𝐷4𝜀𝑐partialfractionof(𝐹)1/2+1at𝑐2𝐷2𝐷3𝐷4𝐷2𝐷3𝐷4+𝐷1𝐷1+𝐷0𝐷0,(3.51) where 𝜀𝑐=±1.

Proof. For 𝑐 root of multiplicity 𝜈2 of 𝐷4(𝑥𝑐)𝜈𝜈𝜃2(𝑥𝑐)𝜈12=(𝑥𝑐)𝜈(𝐹)1/22+𝑜(𝑥𝑐)𝜈1.(3.52) Thus (𝑥𝑐)𝜈𝜈𝜃2(𝑥𝑐)𝜈1=𝜀𝑐(𝑥𝑐)𝜈(𝐹)1/2+𝑜(𝑥𝑐)𝜈1,𝜈𝜃2(𝑥𝑐)=𝜀𝑐(𝐹)1/21+𝑜.𝑥𝑐(3.53) Partial fraction of 𝜃, associated in root 𝑐 of (𝐷4), minus 𝜈/2(𝑥𝑐), is in sign meadows that of (𝐹)1/2.
For 𝑐 root of 𝐷31(residueof𝜃at𝑐)22=lim𝑥𝑐(𝑥𝑐)(𝐹)1/22.(3.54) Thus 1(residueof𝜃at𝑐)2=𝜀𝑐residueof(𝐹)1/2.at𝑐(3.55) Partial fraction of 𝜃, associated in root 𝑐 of (𝐷3), minus 1/2(𝑥𝑐), is in sign meadows that of (𝐹)1/2. Thus 𝜃=𝐸(𝜃)+𝑐Root𝐷3Root𝐷4𝜀𝑐partialfractionof(𝐹)1/2+1at𝑐2𝐷2𝐷3𝐷4𝐷2𝐷3𝐷4+𝐷1𝐷1+𝐷0𝐷0.(3.56)

Proposition 3.11. One assumes 𝑑𝑜𝑟<0 and 𝑑𝑜𝐷3𝑑0𝑜𝐷40 or 𝑑𝑜𝐷3𝑑2𝑜𝐷4=0.
One has 𝜃=𝑐Root𝐷3Root𝐷4𝜀𝑐partialfractionof(𝐹)1/2+1at𝑐2𝐷2𝐷3𝐷4𝐷2𝐷3𝐷4+𝐷1𝐷1+𝐷0𝐷0,(3.57) where 𝐷0 being a polynomial of degree 𝑐Roots𝐷3Roots𝐷4𝜀𝑐residueof(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷3𝐷4+𝑑𝑜𝐷1+𝑑𝑜𝐷0122=lim𝑥𝑥21𝑟+4.(3.58)

Proof. We have lim𝑥𝑥𝜃=𝑐Roots𝐷3Roots𝐷4𝜀𝑐residueof(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷3𝐷4+𝑑𝑜𝐷1+𝑑𝑜𝐷0,lim𝑥𝑥21𝑟+4=lim𝑥1𝑥𝜃22.(3.59) Thus 𝑐Roots𝐷3Zéros𝐷4𝜀𝑐residueof(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷3𝐷4+𝑑𝑜𝐷1+𝑑𝑜𝐷0122=lim𝑥𝑥21𝑟+4.(3.60)

Proposition 3.12. One assumes 𝑑𝑜𝑟=0. One has 𝜃=𝐸(𝜃)+𝑐Root𝐷3Root𝐷4𝜀𝑐partialfractionof(𝐹)1/2+1at𝑐2𝐷2𝐷3𝐷4𝐷2𝐷3𝐷4+𝐷1𝐷1+𝐷0𝐷0,(3.61) where 𝐸2(𝜃)=𝐸(𝑟) and 𝐷0 being a polynomial of degree: 𝑑𝑜𝐷0=12𝐸(𝜃)lim𝑥𝑥[]𝑟𝐸(𝑟)𝐷𝑐𝑅3𝐷𝑅4𝜀𝑐residueof(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷3𝐷4+𝑑𝑜𝐷1.(3.62)

Proof. We have 𝐸2(𝜃)=𝐸(𝑟),2𝐸(𝜃)𝑐residueof𝜃at𝑐=𝑐residueof𝑟at𝑐.(3.63) Thus 2𝐸(𝜃)𝐷𝑐𝑅3𝐷𝑅4𝜀𝑐residueof(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷3𝐷4+𝑑𝑜𝐷1+𝑑𝑜𝐷0=lim𝑥𝑥(𝑟𝐸(𝑟)).(3.64)

Proposition 3.13. One assumes 𝑑𝑜𝑟=2𝜈>0. One has 𝜃=𝐸(𝜃)+𝑐Root𝐷3Root𝐷4𝜀𝑐partialfractionof(𝐹)1/2+1at𝑐2𝐷2𝐷3𝐷4𝐷2𝐷3𝐷4+𝐷1𝐷1+𝐷0𝐷0,(3.65) where 𝐷0 being a polynomial of degree: 𝑑𝑜𝐷0=𝛼𝑠𝜈+1𝜈2𝐷𝑐𝑅3𝐷𝑅4𝜀𝑐residueof(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷3𝐷4+𝑑𝑜𝐷1.(3.66)

Proof. Let 𝑎 be dominant coefficient of 𝐸(𝑟), and we have 𝛼𝑠𝜈+1(𝜈/2)= sum of residues of 𝜃, 𝜃=𝐸(𝜃)+𝑐Zéros𝐷3Zéros𝐷4𝜀𝑐partialfractionof(𝐹)1/2+1at𝑐2𝐷2𝐷3𝐷4𝐷2𝐷3𝐷4+𝐷1𝐷1+𝐷0𝐷0.(3.67) Thus 𝛼𝑠𝜈+1𝜈2=𝐷𝑐𝑅3𝐷𝑅4𝜀𝑐residueof(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷3𝐷4+𝑑𝑜𝐷1+𝑑𝑜𝐷0.(3.68) Thus 𝑑𝑜𝐷0=𝛼𝑠𝜈+1𝜈2𝐷𝑐𝑅3𝐷𝑅4𝜀𝑐residueof(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷3𝐷4+𝑑𝑜𝐷1.(3.69)

3.4. Case 𝑑𝑜𝐷3=0 and 𝑑𝑜𝐷40

𝐷1𝐷22 and 𝐷4 are polynomials being relatively prime. Thus there are only two polynomials 𝑁1 and 𝑁2 such as 𝐷1𝐷22𝐷23𝐷24(𝑟𝐸(𝑟))=𝑁1𝐷1𝐷22+𝑁2𝐷4,𝑑𝑜𝑁1<𝑑𝑜𝐷4.(3.70) We have𝑁𝑟=𝐸(𝑟)+1𝐷24+𝑁2𝐷1𝐷22𝐷4,lim𝑥𝑥2𝑁1𝐷24=0.(3.71) We consider the rational fraction:𝑁𝐹=𝐸(𝑟)+1𝐷2414𝑑𝑜𝐷4𝐷4𝐷4.(3.72)

Proposition 3.14. One assumes 𝑑𝑜𝐷3𝑑=0𝑜𝐷40. (1)If 𝑑𝑜𝑟0 then: 𝑑𝑜𝐹=𝑑𝑜𝑟 and 𝐸(𝐹)=𝐸(𝑟).(2)If 𝑑𝑜𝑟<0 then: 𝑑𝑜𝐹=2 where lim𝑥𝑥2𝐹=1/4. (3)For all 𝑐 root of 𝐷4 of multiplicity 𝜈 one has (𝑥𝑐)2𝜈𝑟=(𝑥𝑐)2𝜈𝐹+𝑜(𝑥𝑐)𝜈1.(3.73)

Proof. (1) 𝑟𝐹=(𝑁2/𝐷1𝐷22𝐷4)+(1/4𝑑𝑜𝐷4)(𝐷4/𝐷4) is from negative degree.
(2) lim𝑥𝑥2𝐹=lim𝑥𝑁1𝐷24lim𝑥𝑥214𝑑𝑜𝐷4𝐷4𝐷4=lim𝑥𝑥214𝑑𝑜𝐷4𝐷4𝐷4=14.(3.74)
(3) Let 𝑐 be root of 𝐷4: (𝑥𝑐)2𝜈𝑁(𝑟𝐹)=2𝐷1𝐷22(𝑥𝑐)2𝜈𝐷4+(𝑥𝑐)2𝜈14𝑑𝑜𝐷4𝐷4𝐷4=𝑜(𝑥𝑐)𝜈1.(3.75)

Notation 3.4. We choose a square root of the polynomial of even degree: 𝑁1+𝐷24[𝐸(𝑟)(1/4𝑑𝑜𝐷4)(𝐷4/𝐷4)] on a connected open at infinity, root of 𝐷4. We put (𝐹)1/2=1𝐷4𝑁1+𝐷241𝐸(𝑟)4𝑑𝑜𝐷4𝐷4𝐷41/2.(3.76)

Proposition 3.15. One assumes 𝑑𝑜𝑟<0. One has 𝜃=𝑐Roots𝐷4𝜀𝑐partialfractionof(𝐹)1/2+1at𝑐2𝐷2𝐷4𝐷2𝐷4+𝐷1𝐷1+𝐷0𝐷0,(3.77) where 𝜀𝑐=±1 and 𝐷0 being a polynomial of degree: 𝑐Root𝐷4𝜀𝑐residue𝑜𝑓(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷4+𝑑𝑜𝐷1+𝑑𝑜𝐷0122=lim𝑥𝑥21𝑟+4.(3.78)

Proof. lim𝑥𝑥𝜃=𝑐Roots𝐷4𝜀𝑐residueof(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷4+𝑑𝑜𝐷1+𝑑𝑜𝐷0,lim𝑥𝑥21𝑟+4=lim𝑥1𝑥𝜃22.(3.79) Thus 𝑐Roots𝐷4𝜀𝑐residueof(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷4+𝑑𝑜𝐷1+𝑑𝑜𝐷0122=lim𝑥𝑥21𝑟+4.(3.80)

Proposition 3.16. One assumes 𝑑𝑜𝑟=0. One has 𝜃=𝐸(𝜃)+𝑐Roots𝐷4𝜀𝑐partialfractionof(𝐹)1/2+1at𝑐2𝐷2𝐷4𝐷2𝐷4+𝐷1𝐷1+𝐷0𝐷0,(3.81) where 𝜀𝑐=±1 and 𝐷0 being a polynomial of degree 𝑑𝑜𝐷0=12𝐸(𝜃)lim𝑥𝑥[]𝑟𝐸(𝑟)𝑐Roots𝐷4𝜀𝑐residueof(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷4+𝑑𝑜𝐷1.(3.82)

Proof. We have 𝐸2(𝜃)=𝐸(𝑟),2𝐸(𝜃)𝑐residueof𝜃at𝑐=𝑐residueof𝑟at𝑐.(3.83) Thus 2𝐸(𝜃)𝑐Roots𝐷4𝜀𝑐residueof(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷4+𝑑𝑜𝐷1+𝑑𝑜𝐷0=lim𝑥𝑥(𝑟𝐸(𝑟)).(3.84)

Proposition 3.17. One assumes 𝑑𝑜𝑟=2𝜈>0. One has 𝜃=𝐸(𝜃)+𝐷𝑐𝑅𝑜𝑜𝑡𝑠4𝜀𝑐partialfractionof(𝐹)1/2+1at𝑐2𝐷2𝐷4𝐷2𝐷4+𝐷1𝐷1+𝐷0𝐷0,(3.85) where 𝜀𝑐=±1 and 𝐷0 being a polynomial of degree 𝑑𝑜𝐷0=𝛼𝑠𝜈+1𝜈2𝐷𝑐𝑅𝑜𝑜𝑡𝑠4𝜀𝑐residueof(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷4+𝑑𝑜𝐷1.(3.86)

Proof. Let 𝑎 dominant coefficient of 𝐸(𝑟). 𝐸(𝜃)=𝛼[𝑡𝜈+𝑠1𝑡(𝜈1)++𝑠𝜈]. 𝛼𝑠𝜈+1(𝜈/2)=sumresidueof𝜃, where 𝛼2=𝑎. Thus 𝜃=𝐸(𝜃)+𝑐Roots𝐷4𝜀𝑐partialfractionof(𝐹)1/2+1at𝑐2𝐷2𝐷4𝐷2𝐷4+𝐷1𝐷1+𝐷0𝐷0.(3.87) Thus 𝛼𝑠𝜈+1𝜈2=𝑐Roots𝐷4𝜀𝑐residueof(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷4+𝑑𝑜𝐷1+𝑑𝑜𝐷0.(3.88) Thus 𝑑𝑜𝐷0=𝛼𝑠𝜈+1𝜈2𝑐Roots𝐷4𝜀𝑐residueof(𝐹)1/2+1at𝑐2𝑑𝑜𝐷2𝐷4+𝑑𝑜𝐷1.(3.89)

4. Recurrent Method at Infinity

4.1. Presentation of 𝐷0 as Determinant

Proposition 4.1. Let 𝑐1,,𝑐𝑚 be complex constants. We put 𝑃(𝑥)=𝑥𝑐1𝑥𝑐𝑚=𝑥𝑚𝑝1𝑥𝑚1+𝑝2𝑥𝑚2+(1)𝑚𝑝𝑚.(4.1) For 𝑗, we put 𝜎𝑗=𝑐𝑗1++𝑐𝑗𝑚 and |||||||||||||Δ=1𝑐1𝑐1𝑚11𝑐2𝑐2𝑚11𝑐𝑚𝑐𝑚𝑚1|||||||||||||.(4.2)(1)One has Δ2=||||||||||||𝜎0𝜎1𝜎𝑚1𝜎1𝜎2𝜎𝑚𝜎𝑚1𝜎𝑚𝜎2𝑚2||||||||||||.(4.3)(2)One has Δ2𝑃||||||||||||𝜎(𝑥)=0𝜎𝑚11𝜎𝑥𝑚𝜎2𝑚1𝑥𝑚||||||||||||.(4.4)

Proof. ||||Δ,𝜎0𝜎1𝜎𝑚1𝜎1𝜎2𝜎𝑚𝜎𝑚1𝜎𝑚𝜎2𝑚2|||| are polynomials at 𝑐1,,𝑐𝑚 with real coefficients. Thus, Δ2𝑃(𝑥) and |||||𝜎0𝜎𝑚11𝜎𝑥𝑚𝜎2𝑚1𝑥𝑚||||| are polynomials at 𝑐1,,𝑐𝑚,𝑥 with real coefficients. Thus, to have both identities we can assume 𝑐1,,𝑐𝑚,𝑥 are reals. Furthermore, we can restrict to the open of Zariski 𝑐1,,𝑐𝑚,𝑥 distinct real nonzero.
We have for all 𝑗=1,,𝑚,𝑐𝑚𝑗=𝑝1𝑐𝑗𝑚1𝑝2𝑐𝑗𝑚2(1)𝑚𝑝𝑚.
We put |||||||||||||||Δ(𝑥)=1𝑐1𝑐1𝑚1𝑐𝑚11𝑐2𝑐2𝑚1𝑐𝑚21𝑐𝑚𝑐𝑚𝑚1𝑐𝑚𝑚1𝑥𝑥𝑚1𝑥𝑚|||||||||||||||,Δ|||||||||||||||(𝑥)=1𝑐1𝑐1𝑚101𝑐2𝑐2𝑚101𝑐𝑚𝑐𝑚𝑚101𝑥𝑥𝑚1𝑃|||||||||||||||(𝑥)=Δ𝑃(𝑥).(4.5)
We put 𝑣𝑗=𝑐1𝑗1..𝑐𝑚𝑗1,for𝑗=1,,𝑚.(4.6) The scalar product 𝑣𝑗,𝑣𝑘=𝑐1𝑗+𝑘2++𝑐𝑚𝑗+𝑘2=𝜎𝑗+𝑘2.(4.7) The Gram matrix of 𝑣1,,𝑣𝑚 is 𝜎𝐺=0𝜎1𝜎𝑚1𝜎1𝜎2𝜎𝑚𝜎𝑚1𝜎𝑚𝜎2𝑚2(4.8) Thus Δ2=||||||||||||𝜎0𝜎1..𝜎𝑚1𝜎1𝜎2..𝜎𝑚𝜎....𝑚1𝜎𝑚..𝜎2𝑚2||||||||||||.(4.9) We put 𝑣𝑗𝑐(𝑥)=1𝑗1𝑐𝑚𝑗1𝑥𝑗1,𝑗=1,,𝑚+1.(4.10) We notice 𝑣𝑗(𝑥),𝑣𝑘=𝑣(𝑥)𝑗,𝑣𝑘+𝑥𝑗+𝑘2=𝜎𝑗+𝑘2+𝑥𝑗+𝑘2.(4.11) The 𝑗th column of Gram of matrix which defines Δ(𝑥) is 𝜎𝑗1𝜎𝑗𝜎𝑗+𝑚1+𝑥𝑗11𝑥𝑥𝑚.(4.12) Thus Δ2||||||||||||𝜎(𝑥)=0𝜎1𝜎𝑚𝜎1𝜎2𝜎𝑚+1𝜎𝑚𝜎𝑚+1𝜎2𝑚||||||||||||+||||||||||||1𝜎1𝜎𝑚𝑥𝜎2𝜎𝑚+1𝑥𝑚𝜎𝑚+1𝜎2𝑚||||||||||||||||||||||||𝜎++0𝜎𝑚1𝑥𝑚𝜎1𝜎𝑚𝑥𝑚+1𝜎𝑚𝜎2𝑚1𝑥2𝑚||||||||||||=𝑖,𝑗𝑥𝑖+𝑗2cofactor𝑖,𝑗(𝑀),(4.13) where 𝜎𝑀=0𝜎1𝜎𝑚𝜎1𝜎2𝜎𝑚+1𝜎𝑚𝜎𝑚+1𝜎2𝑚.(4.14) We obtain Δ2(𝑥)=Δ2𝑃2(𝑥)=(1𝑥𝑥𝑚1𝑥𝑥)Com(𝑀)𝑚(4.15)
The cofactor (𝑚+1,𝑚+1) of 𝑀 is Δ2. The adjoint of 𝑀 is nonzero. We prove that adjoint of 𝑀 of rank 1. det(𝑀)=0. Because: 𝜎𝑚=𝑝1𝜎𝑚1𝑝2𝜎𝑚2(1)𝑚𝑝𝑚𝜎0 and for all 𝑘𝑚;𝜎𝑘=𝑝1𝜎𝑘1𝑝2𝜎𝑘2(1)𝑚𝑝𝑚𝜎𝑘𝑚. Thus, the (𝑚+1)th column of 𝑀 is is a linear combination of other column.
We consider the matrix 𝐸1,1=100000,(4.16)𝑀+𝐸1,1=𝜎0+1𝜎1𝜎𝑚𝜎1𝜎2𝜎𝑚+1𝜎𝑚𝜎𝑚+1𝜎2𝑚,det𝑀+𝐸1,1||||||||||||=det(𝑀)+1𝜎1𝜎𝑚0𝜎2𝜎𝑚+10𝜎𝑚+1𝜎2𝑚||||||||||||=||||||||||||𝜎2𝜎3𝜎𝑚+1𝜎3𝜎4𝜎𝑚+2𝜎𝑚+1𝜎𝑚+2𝜎2𝑚||||||||||||(4.17) It is the determinant of Gram of 𝑐1𝑐𝑚𝑐,,𝑚1𝑐𝑚𝑚.(4.18) Thus det𝑀+𝐸1,1=||||||||||||𝑐1𝑐𝑚1𝑐𝑚𝑐𝑚𝑚||||||||||||2(4.19) But ||||||||||||𝑐1𝑐𝑚1𝑐𝑚𝑐𝑚𝑚||||||||||||=(1)𝑚1𝑝𝑚||||||||||||𝑐1𝑐1𝑚11𝑐1𝑚𝑐𝑚𝑚11||||||||||||=𝑝𝑚Δ.(4.20) Thus det(𝑀+𝐸1,1)=𝑝2𝑚Δ2. Or 𝑝𝑚=𝑐1𝑐𝑚 is scalar nonzero, 𝑀+𝐸1,1 is invertible matrix.
With 𝑀 symmetric matrix, Com(𝑀) symmetric matrix, we have 𝑀Com(𝑀)=Com(𝑀)𝑀=det(𝑀)𝐼=0,𝐼beingmatriceidentity.(4.21) Thus 𝑀+𝐸1,1Com(𝑀)=𝐸1,1Com(𝑀).(4.22) Or 𝑀+𝐸1,1 is invertible and Com(𝑀)0, Com(𝑀) of rank 1.
Thus cofactor𝑖,𝑗(𝑀)=cofactor𝑖,𝑚+1(𝑀)cofactor𝑚+1,𝑚+1(𝑀)cofactor𝑚+1,𝑗(𝑀).(4.23) For 𝑖=1,,𝑚+1,𝑗=1,,𝑚+1, we put: 𝐶𝑖,𝑗=cofactor𝑖,𝑗(𝑀), 𝐶𝑖,𝑗Δ2=𝐶𝑖,𝑚+1Δ2𝐶𝑚+1,𝑗Δ2.(4.24) Thus: 𝑃(𝑥)2=1𝑖,𝑗𝑚+1𝐶𝑖,𝑗Δ2𝑥𝑖+𝑗2=1𝑖,𝑗𝑚+1𝐶𝑖,𝑚+1Δ2𝐶𝑗,𝑚+1Δ2𝑥𝑖+𝑗2=1𝑖𝑚+1𝐶𝑖,𝑚+1Δ2𝑥𝑖12.(4.25) Or 𝑃 is monic polynomial and 𝐶𝑚+1,𝑚+1/Δ2=1𝑃(𝑥)=𝑖𝐶𝑖,𝑚+1Δ2𝑥𝑖1=1Δ2||||||||||||𝜎0𝜎𝑚11𝜎1𝜎𝑚𝑥𝜎𝑚𝜎2𝑚1𝑥𝑚||||||||||||.(4.26) We obtain Δ2𝑃||||||||||||𝜎(𝑥)=0𝜎𝑚11𝜎1𝜎𝑚𝑥𝜎𝑚𝜎2𝑚1𝑥𝑚||||||||||||(4.27)

4.2. Taylor Expansion of 𝑃/𝑃

Proposition 4.2. Let 𝑐1,,𝑐𝑚 be pairwise distinct constants.
(1)We put, for 𝑗=0,,𝑚: 𝜎𝑗=𝑐𝑗1++𝑐𝑗𝑚 and 𝑃(𝑥)=(𝑥𝑐1)(𝑥𝑐𝑚)𝑃𝑃+𝑃𝑃2=2𝑖𝑗1𝑐𝑖𝑐𝑗1𝑥𝑐𝑖.(4.28)(2)We put 𝑡=1/𝑥. Taylor expansion on the neighborhood of infinity: (a)𝑃𝑃+𝑃𝑃2=𝑙=2𝑙2𝜇=0𝜎𝜇𝜎𝑙2𝜇(𝑙1)𝜎𝑙2𝑡𝑙,(4.29)(b)𝑥𝑃𝑃=𝑙=0𝜎𝑙𝑡𝑙.(4.30)

Proof. We have 𝑃/𝑃=𝑚𝑖=11/(𝑥𝑐𝑖).
(1)𝑃𝑃+𝑃𝑃2=𝑖𝑗1𝑥𝑐𝑖1𝑥𝑐𝑗=𝑖𝑗𝑐1/𝑖𝑐𝑗𝑥𝑐𝑖+𝑐1/𝑗𝑐𝑖𝑥𝑐𝑗=2𝑖𝑗1𝑐𝑖𝑐𝑗1𝑥𝑐𝑖.(4.31)(2)We put 𝑡=1/𝑥. We have 𝑃𝑃+𝑃𝑃2=2𝑡𝑖𝑗1𝑐𝑖𝑐𝑗11𝑐𝑖𝑡=2𝑡𝑖𝑗1𝑐𝑖𝑐𝑗𝑘=0𝑐𝑖𝑡𝑘=𝑘=02𝑖𝑗𝑐𝑘𝑖𝑐𝑖𝑐𝑗𝑡𝑘+1=𝑘=1𝑖𝑗𝑐𝑘𝑖𝑐𝑘𝑗𝑐𝑖𝑐𝑗𝑡𝑘+1.(4.32) as 𝑖𝑗𝑐𝑘𝑖𝑐𝑘𝑗𝑐𝑖𝑐𝑗=𝑖𝑗𝜇+𝜈=𝑘1,0𝜇𝑘1𝑐𝜇𝑖𝑐𝜈𝑗=𝜇+𝜈=𝑘1,0𝜇𝑘1𝜎𝜇𝜎𝜈𝑚𝑖=1𝑐𝑖𝜇+𝜈=𝜇+𝜈=𝑘1,0𝜇𝑘1𝜎𝜇𝜎𝜈𝑘𝜎𝑘1.(4.33) Thus 𝑃𝑃+𝑃𝑃2=𝑘=1𝑘1𝜇=0𝜎𝜇𝜎𝑘1𝜇𝑘𝜎𝑘1𝑡𝑙=𝑙=2𝑙2𝜇=0𝜎𝜇𝜎𝑙2𝜇(𝑙1)𝜎𝑙2𝑡𝑙.(4.34)

4.3. Research of 𝐷0

Let 𝑟=𝑁/𝐷1𝐷22𝐷23𝐷24 be a rational fraction and 𝜃(𝑥) where 𝜃+𝜃2=𝑟.

We put𝐷𝜃=𝑆+0𝐷0,(4.35) where 𝑆=𝐸(𝜃)+𝑐polesof𝑟𝜃𝑐 and 𝐷0 monic polynomial of degree 𝑚. We have𝜃+𝜃2=𝑆+𝑆2+𝐷0𝐷0+𝐷0𝐷02𝐷+2𝑆0𝐷0,𝜃+𝜃2𝐷=𝑟0𝐷0+𝐷0𝐷02𝐷+2𝑆0𝐷0=𝑅𝐵(4.36) with 𝐵=𝐷1𝐷2𝐷3𝐷4 and 𝑅 polynomials as 𝑟𝑆𝑆2=𝑅/𝐵.

Case 1 (𝑑𝑜𝑟=2𝜈0). We have 𝑑𝑜𝑆=𝜈 and 𝑑𝑜𝑅/𝐵=𝜈1. Taylors expansion of (1/𝑥𝜈)𝑆, (1/𝑥𝜈1)(𝑅/𝐵) and 𝑥(𝐷0/𝐷0) at order 𝜇.
We obtain the Taylors expansion of (1/𝑥𝜈1)[(𝑅/𝐵)2𝑆(𝐷0/𝐷0)] at order 𝜇.
The Taylors expansion equals the Taylors expansion of (1/𝑥𝜈1)[(𝐷0/𝐷0)+(𝐷0/𝐷0)2]. Let 𝑡=1/𝑥. In Taylors expansion of (1/𝑥𝜈1)[(𝑃/𝑃)+(𝑃/𝑃)2] (see Proposition 4.2) the coefficient of 𝑡𝜈+1 is: 𝜎20𝜎0=𝑚2𝑚. For 𝑙2, coefficient of 𝑡𝑙+𝜈1 use: 𝜎0,,𝜎𝑙2.
Besides, we have 𝑥𝐷0𝐷0=𝑚𝑖=111𝑐𝑖𝑡=𝑚𝑖=1𝑘=0𝑐𝑘𝑖𝑡𝑘=𝑘=0𝜎𝑘𝑡𝑘.(4.37) Thus, Taylors expansion of 1Φ=𝑥𝜈1𝐷0𝐷0+𝐷0𝐷021𝑥𝜈1𝑅𝐵𝐷2𝑆0𝐷0(4.38) and the coefficient of 𝑡𝑘 is 2𝛼𝜎𝑘+polynomialat𝜎0,,𝜎𝑘1,(4.39)Φ=0 determine 𝜎𝑘 by recurrence at 𝑘=𝜈.

Case 2 (𝑑𝑜𝑟<0). The coefficient of 𝑡𝑘 in Taylors expansion of Ψ=𝑥2𝐷0𝐷0+𝐷0𝐷02𝑥2𝑅𝐵𝑥𝐷+2𝑥𝑆0𝐷0(4.40) is 2𝑚𝜎𝑘(𝑘+1)𝜎𝑘+2lim𝑥𝜎𝑥𝑆𝑘+polynomialat𝜎0,,𝜎𝑘1.(4.41) By recurrence 𝜎𝑘 at condition 𝑘2lim𝑥𝑥𝑆+2𝑚1.(4.42) We have lim𝑥𝑥𝑆+𝑚=𝛼2+(1/2) with 𝛼2=lim𝑥𝑥2𝑟+(1/4).
For 𝑘2𝛼, to be 𝜎𝑘 at function of 𝜎0,,𝜎𝑘1.
If 2𝛼 then, the coefficient of 𝑡2𝛼 is nonzero implied that there is no solution, or the coeffcient of 𝑡2𝛼 is zero implied that 𝜎2𝛼 is arbitrary and 𝜎𝑘; 𝑘>2𝛼 depend in a unique way.
𝐷0 is polynomial determined by 𝜎0,,𝜎2𝑚1 by determinant formulae; the problem of nonunique suite (𝜎𝑘)𝑘 is put if 2𝛼 is positive integer equal to or less than 2𝑚1, then 4lim𝑥𝑥2𝑟+1 is square of integer and lim𝑥𝑥2𝑟𝑚2𝑚.(4.43)

Example 4.3. In this example we consider the Riccati differential equation (1.2) where 𝑧𝑟=1+2(1/4)𝑥2;𝑧.(4.44) We have 𝐷1=1, 𝐷2=1, 𝐷3=𝑥 and 𝐸2(𝜃)=1.
We can assume 𝐸(𝜃)=𝑖, lim𝑥0𝑥21𝑟+4=𝑧2=𝛼20,𝛼𝜃=𝑖+0+(1/2)𝑥+𝐷0𝐷0,(4.45)2𝑖(𝛼0+(1/2)+𝑑𝑜𝐷0)=0. Thus 𝑚=𝑑𝑜𝐷0=𝛼0(1/2).
Thus 𝛼0=𝑚(1/2), 𝑟=1+((𝑚+(1/2))2(1/4))/𝑥2=1+(𝑚2+𝑚)/𝑥2 and 𝜃=𝑖(𝑚/𝑥)+(𝐷0/𝐷0). 𝜃 is a solution of Riccati equation if and only if 𝐷0 verifies 𝐷0𝐷0+𝐷0𝐷02𝑚+2𝑖𝑥𝐷0𝐷0𝑚=2𝑖𝑥.(4.46) Thus Φ=0 where 𝐷Φ=𝑥0𝐷0+𝐷0𝐷02𝑚+2𝑖𝑥𝑥𝐷0𝐷02𝑖𝑚.(4.47) Taylors expansion of Φ=0 at 𝑡=1/𝑥Φ=𝑘=1𝑘1𝜇=1𝜎𝜇𝜎𝑘1𝜇𝑘𝜎𝑘12𝑚𝜎𝑘1+2𝑖𝜎𝑘𝑡𝑘.(4.48) As 𝜎0=𝑚. Thus Φ=0𝑘1,𝑘1𝜇=0𝜎𝜇𝜎𝑘1𝜇𝑘𝜎𝑘12𝑚𝜎𝑘1+2𝑖𝜎𝑘=0.(4.49) For 𝑘=1, 𝜎20𝜎02𝑚𝜎0+2𝑖𝜎1=0 equivalent to 2𝑖𝜎1=𝑚2+𝑚.
For all, 𝑘2, 2𝑖𝜎𝑘=𝑘𝜎𝑘1𝑘2𝜇=1𝜎𝜇𝜎𝑘1𝜇. For example 𝑚=32𝑖𝜎1=12,2𝑖𝜎2=2𝜎1,2𝑖𝜎3=3𝜎2𝜎21,2𝑖𝜎4=4𝜎32𝜎1𝜎2,2𝑖𝜎5=5𝜎42𝜎1𝜎3𝜎22.(4.50) Thus, the polynomial 𝐷0 is partner to ||||||||||𝜎0𝜎1𝜎21𝜎1𝜎2𝜎3𝑥𝜎2𝜎3𝜎4𝑥2𝜎3𝜎4𝜎5𝑥3||||||||||=||||||||||36𝑖616𝑖69𝑖𝑥69𝑖54𝑥29𝑖5499𝑖𝑥3||||||||||=135𝑥3+810𝑖𝑥22025𝑥2025𝑖.(4.51) Thus 𝐷0=𝑥3+6𝑖𝑥215𝑥15𝑖.(4.52)

5. Method of Last Minor

Let 𝑟=𝑁/𝐷1𝐷22𝐷23𝐷24 be a rational fraction and 𝜃(𝑥) as: 𝜃+𝜃2=𝑟.

𝜃 solution of (1.2) if and only if 𝐷0 verifies𝐵𝐷0+2𝑆𝐵𝐷0=𝑅𝐷0.(5.1) We choose a complex number 𝑐 not pole of 𝑟 and we use the expression of polynomials following the powers of 𝑥𝑐.

For the sake of simplicity, in the following we assume that 𝑐=0. Constant coefficient constant of 𝐵 is nonzero.

Denote by 𝑎𝑘,𝑏𝑘, and 𝑟𝑘 coefficients of 𝑥𝑘, in 𝐴,𝐵, and 𝑅, respectively, 𝑘. If 𝑘 then 𝑎𝑘=𝑏𝑘=𝑟𝑘=0.

5.1. Case 𝑑𝑜𝑟<0

We put 𝑆=𝐴/𝐵.

If 𝑑𝑜𝐵=1 then 𝑟 are pole unique, it is simple or double. If 𝑐 simple pole of 𝑟 then 𝑟 of degree −1 and (1.2) has no rational solution.

If 𝑐 double pole of 𝑟 then 𝐴=𝛼𝑐+(1/2), 𝑟=(𝛼2𝑐(1/4))/(𝑥𝑐)2 and 𝑅=0.

Thus,(5.1)𝐷0𝐷0=𝛼2𝑐+(1/2).𝑥𝑐(5.2) The solutions𝐷0=2𝛼𝑐(𝑥𝑐)2𝛼𝑐1,𝐷0=(𝑥𝑐)2𝛼𝑐+𝛽,(5.3) where 𝛽 nonzero constant.

We have, an infinity of the other rational solution when 2𝛼𝑐, with the same parity of 𝑆.

We assume 𝑑𝑜𝐵2and we consider 𝐷0 a polynomial of degree 𝑚1 that verifies (5.1).

Proposition 5.1. One assumes 𝑑𝑜𝑟<0,𝑑𝑜𝑑𝐵2𝑜=𝑚1 and 𝐷0 verifies (5.1). (1)One has 𝑑𝑜𝐵𝐷0+2𝐴𝐷0𝑑𝑜𝑑𝐵+𝑚2,𝑜𝑅𝑑𝑜𝐵2.(5.4)(2)One has 𝑟𝑑𝑜𝐵2=2𝑎𝑑𝑜𝐵1𝑚+𝑚(𝑚1).(3)One has 𝑎𝑑𝑜𝐵1=12𝑚+𝛼,𝑟𝑑𝑜𝐵2=𝑚2𝛼.𝑚(5.5)

Proof. (1) 𝑑𝑜(𝐵𝐷0+2𝐴𝐷0)sup(𝑑𝑜(𝐵𝐷0),𝑑𝑜(2𝐴𝐷0)). If 𝑑𝑜𝐷0=1 then 𝑑sup𝑜𝐵𝐷0,𝑑𝑜2𝐴𝐷0=𝑑𝑜2𝐴𝐷0=𝑑𝑜𝐴𝑑𝑜𝐵1=𝑑𝑜𝐵+𝑑𝑜𝐷02.(5.6) If 𝑑𝑜𝐷02 then 𝑑𝑜𝐵𝐷0=𝑑𝑜𝑑𝐵+𝑚2,𝑜2𝐴𝐷0=𝑑𝑜𝐴+𝑚1𝑑𝑜𝐵+𝑚2.(5.7)
(2) We have 𝑑𝑜(𝑅𝐷0)𝑑𝑜𝐵+𝑚2 and coefficients of 𝑥𝑑𝑜𝐵+𝑚2 in (5.1).
(3) Accordingly, in view of lim𝑥𝑥𝜃=𝛼+(1/2).

We put1𝑥𝑥𝑣(𝑥)=𝑅2𝑥𝑚+2𝐴012𝑥𝑚𝑥𝑚1002+𝐵𝑚(𝑚1)𝑥𝑚2=𝑣1𝑣(𝑥)2𝑣(𝑥)3(𝑣𝑥)𝑚+1(𝑥).(5.8) The 𝑘th element of 𝑣(𝑥) is𝑣𝑘(𝑥)=𝐵(𝑘1)(𝑘2)𝑥𝑘3+2𝐴(𝑘1)𝑥𝑘2𝑅𝑥𝑘1,(5.9)𝑣𝑘(𝑥) of degree equal to or less than 𝑑𝑜𝐵+𝑘3 and 𝑥𝑑𝑜𝐵+𝑘3 of coefficient(𝑘1)(𝑘2)+2𝑎𝑑𝑜𝐵1(𝑘1)𝑟𝑑𝑜𝐵2𝑟=(𝑘𝑚1)𝑑𝑜𝐵2𝑚+𝑘1=(𝑘𝑚1)2𝑎𝑑𝑜𝐵1.+𝑚+𝑘2(5.10) For 𝑘𝑚, the coefficient of 𝑥𝑑𝑜𝐵+𝑘3 is zero if and only if 2𝑎𝑑𝑜𝐵1=(𝑚+𝑘2){(𝑚1),𝑚,,2(𝑚1)},(5.11)𝑣𝑚+1 of degree equal to or less than 𝑑𝑜𝐵+𝑚3.

For 𝑘3 the coefficient of more low degree of 𝑣𝑘 is coefficient of 𝑥𝑘3 equal 𝑏0(𝑘1)(𝑘2).

Let 𝑉 matrix of 𝑚+1 row and 𝑘th row is row 𝑙𝑘 of coefficients of 𝑣𝑘(𝑥) in basis of 𝑑𝑜𝐵+𝑚3[𝑋].

𝑙3,,𝑙𝑚+1 is linearly independent system.

Equation (5.1) gives𝐷0=𝑑0+𝑑1𝑥++𝑥𝑚,(5.12) obtained𝑑0𝑣1(𝑥)++𝑑𝑚1𝑣𝑚(𝑥)+𝑣𝑚+1𝑑(𝑥)=0,0𝑙1++𝑑𝑚1𝑙𝑚+𝑙𝑚+1=0.(5.13) Thus, the matrix 𝑉 is rank 𝑚1,𝑚 or 𝑚+1. Accordingly, existence of 𝐷0 correspondent is linearly dependent in row 𝑙𝑚+1 of 𝑙1,,𝑙𝑚.

Let 𝑐1,,𝑐𝑚 roots of 𝐷0 distinct.

We put, for 𝑗: 𝜎𝑗=𝑐𝑗1++𝑐𝑗𝑚 and Δ2=||||||||||||𝜎0𝜎1𝜎𝑚1𝜎1𝜎2𝜎𝑚𝜎𝑚1𝜎𝑚𝜎2𝑚2||||||||||||.(5.14)The 𝑚 column vector 𝜎0𝜎𝑚,,𝜎𝑚1𝜎2𝑚1 of 𝑚+1 column is linearly independent.

The equation of hyperplane 𝐻 engendered by vectors 𝜎0𝜎𝑚,,𝜎𝑚1𝜎2𝑚1 is||||||||||||𝜎0𝜎𝑚1𝑥1𝜎1𝜎𝑚𝑥2𝜎𝑚𝜎2𝑚1𝑥𝑚+1||||||||||||=0.(5.15) The coefficient of 𝑥𝑚+1 is Δ20 and 𝐻 as equation𝑥𝑚+1=𝜆1𝑥1++𝜆𝑚𝑥𝑚,(5.16) where 𝜆1𝜆𝑚 scalar satisfying𝜎𝑚,,𝜎2𝑚1=𝜆1𝜎0,,𝜎𝑚1++𝜆𝑚𝜎𝑚1,,𝜎2𝑚2.(5.17) The derivative of||||||||||||𝜎0𝜎𝑚11𝜎1𝜎𝑚𝑥𝜎𝑚𝜎2𝑚1𝑥𝑚||||||||||||(5.18) is derived from last column. Equation (5.1) is equivalent to:||||||||||||𝜎0𝜎𝑚11𝜎1𝜎𝑚𝑣1𝜎(𝑥)𝑚𝜎2𝑚1𝑣𝑚+1||||||||||||(𝑥)=0.(5.19) Thus, for all 𝑥, 𝑣(𝑥)𝐻. With application of Taylor, this is equivalent to columns of matrix 𝑉 in hyperplane 𝐻,𝑙𝑚+1=𝜆1𝑙1++𝜆𝑚𝑙𝑚,||||||||||||𝜎0𝜎𝑚11𝜎1𝜎𝑚𝑥𝜎𝑚𝜎2𝑚1𝑥𝑚||||||||||||=||||||||||||𝜎0𝜎𝑚11𝜎1𝜎𝑚𝑥𝜎𝑚1𝜎2𝑚2𝑥𝑚100𝑥𝑚𝜆1𝜆2𝑥𝜆𝑚𝑥𝑚1||||||||||||=Δ2𝑥𝑚𝜆1𝜆2𝑥𝜆𝑚𝑥𝑚1.(5.20) The polynomial 𝐷0 is partner to ||||||||||||𝜎0𝜎𝑚11𝜎1𝜎𝑚𝑥𝜎𝑚𝜎2𝑚1𝑥𝑚||||||||||||.(5.21) Thus𝐷0(𝑥)=𝑥𝑚𝜆1𝜆2𝑥𝜆𝑚𝑥𝑚1.(5.22) For 𝑘=1,,𝑚+1, we put𝑣𝑘(𝑥)=𝜌𝑘(𝑥)+𝑥𝑑𝑜𝐵2𝑤𝑘,(5.23) where 𝑑𝑜𝜌𝑘(𝑥)𝑑𝑜𝐵3.

The matrix 𝑊 partner to 𝑤1𝑤𝑚 is triangular where 𝑘th entry diagonal equal (𝑘1𝑚)(2𝑎𝑑𝑜𝐵1+𝑚+𝑘2). The coefficient is nonzero except possibly for a single value of 𝑘. Thus, rank of 𝑤1𝑤𝑚 is 𝑚 or 𝑚1.

For rank(𝑉)=𝑚, (5.1) as solution is equivalent to 𝑙1,,𝑙𝑚 which is linearly independent.

Hence, we assume rank(𝑉)=𝑚1. In that case 𝑙1 and 𝑙2 are linear combinations of 𝑙3,,𝑙𝑚+1. One of both combinations has to express 𝑙𝑚+1. Thus we have two situations.

Situation 1
𝑙2 linear combination of 𝑙3,,𝑙𝑚+1 where coefficient of 𝑙𝑚+1 is nonzero. By replacement of 𝑙𝑚+1, we obtain 𝑙1 a linear combination of 𝑙2,,𝑙𝑚.
Thus, 𝑤1 is linear combination of 𝑤2,,𝑤𝑚. (𝑤2,,𝑤𝑚) libre system where 𝑑𝑜𝑤𝑘=𝑘1 for 0𝑘=2,,𝑚. Thus: 𝑤1=0.
If 𝑙1=𝑚𝑗=2𝛼𝑗𝑙𝑗,(5.24) where 𝛼𝑗 is constant, then 𝑤1=𝑚𝑗=2𝛼𝑗𝑤𝑗.(5.25) As 𝑤1=0, thus for all 𝑗=2,,𝑚, 𝛼𝑗=0 equivalent to 𝑙1=0. Thus 𝑅=0.

First Way of Having 𝐷0:
𝐷0𝐷0=2𝐴𝐵(5.26)2𝐴/𝐵 has to be the sum of simple elements of the shape 𝜇𝑐/(𝑥𝑐) where 𝜇𝑐 is greater or equal to 1.
Thus 𝐷4=𝐷2=𝐷1=1 and 𝐷3=𝐵.
For all 𝑐 root of 𝐷3,2𝛼𝑐=𝜇𝑐+1 where 𝛼2𝑐=lim𝑥𝑐(𝑥𝑐)2𝑟+(1/4).Thus 𝛼𝑐<0,4lim𝑥𝑐(𝑥𝑐)21𝑟+4=𝜇𝑐+12.(5.27) Thus 𝐷0=𝑚𝑐Root(𝐷3)(𝑥𝑐)𝜇𝑐.(5.28)𝐷0 is primitive nonzero in roots of 𝐷3.

Second Way of Having 𝐷0:
𝑙𝑚+1=𝑚𝑗=2𝜆𝑗𝑙𝑗,(5.29) where 𝜆𝑗 is constant (𝑗=2,,𝑚). The relations which are linearly dependent between 𝑙𝑚+1 and 𝑙1,,𝑙𝑚 are 𝑙𝑚+1=𝜆𝑙1+𝑚𝑗=2𝜆𝑗𝑙𝑗.(5.30) Thus we have an infinity of solutions: 𝐷0=𝑥𝑚𝜆𝑚𝑗=2𝜆𝑗𝑥𝑗1,(5.31) where 𝜆 is arbitrarily constant.

Situation 2
𝑙1 is linear combination of 𝑙3,,𝑙𝑚+1 where coefficient of 𝑙𝑚+1 is nonzero and 𝑙2 is linear combination of 𝑙3,,𝑙𝑚. Thus, 𝑤2 is linear combination of 𝑤3,,𝑤𝑚. Thus, 𝑤2=0. 𝑤1,𝑤3,,𝑤𝑚 is libre system.
If 𝑙2=𝑚𝑗=3𝛼𝑗𝑙𝑗,(5.32) then 𝑤2=𝑚𝑗=3𝛼𝑗𝑤𝑗.(5.33) As 𝑤2=0. Thus, for all 𝑗=3,,𝑚, 𝛼𝑗=0 equivalent to 𝑙2=0 and 2𝐴𝑥𝑅=0.

First Way of Having 𝐷0:
2𝐴𝑥𝐷0=2𝐴𝐷0+𝐵𝐷0,𝐷2𝐴0𝑥𝐷0=𝑥𝐵𝐷0.(5.34) We put 𝑄=𝐷0𝑥𝐷0. 𝑄/𝑄=2𝐴/𝐵, 𝐷4=𝐷2=𝐷1=1,𝑄=(1𝑚)𝑐Root𝐷3(𝑥𝑐)𝜇𝑐.(5.35) Thus 𝐷0=𝐶𝑥 with 𝐶=𝑄/𝑥2; 𝐶 rational function.
The coefficient of 𝑥 in 𝑄 is zero. 𝑄(0)=0 (𝐴(0)=0; 2𝐴=𝑥𝑅).

Second Way of Having 𝐷0
𝑙𝑚+1=𝜆1𝑙1+𝑚𝑗=3𝜆𝑗𝑙𝑗,(5.36) thus 𝐷0=𝑥𝑚𝑚𝑗=1𝜆𝑗𝑥𝑗1.(5.37)𝜆2 is arbitrarily constant.

5.2. Case 𝑑𝑜𝑟=2𝜈0

We put 𝐸=𝐸(𝜃) and 𝑆=𝐸+(𝐴/𝐵). We have𝑑𝑜𝐵𝐷0𝑑𝑜𝑑𝐵+𝑚2,𝑜(𝐸𝐵+𝐴)𝐷0=𝑑𝑜𝐵+𝑚1+𝜈.(5.38) Thus𝑑𝑜𝑅𝐷0=𝑑𝑜𝐵+𝑚1+𝜈.(5.39) Thus, 𝑑𝑜𝑅=𝑑𝑜𝐵+𝜈1 and 𝑟𝑑𝑜𝐵+𝜈1=2𝛼𝑚 where 𝛼 is dominant coefficient of 𝐸.

We put1𝑥𝑥𝑣(𝑥)=𝑅2𝑥𝑚01+2(𝐸𝐵+𝐴)2𝑥𝑚𝑥𝑚1002+𝐵𝑚(𝑚1)𝑥𝑚2=𝑣1𝑣(𝑥)2𝑣(𝑥)3(𝑣𝑥)𝑚+1(𝑥)(5.40) The 𝑘th element of 𝑣(𝑥) is𝑣𝑘(𝑥)=𝐵(𝑘1)(𝑘2)𝑥𝑘3+2(𝐸𝐵+𝐴)(𝑘1)𝑥𝑘2𝑅𝑥𝑘1.(5.41)𝑣𝑘(𝑥) is of degree equal to or less than 𝑑𝑜𝐵+𝜈+𝑘2 where coefficient of 𝑥𝑑𝑜𝐵+𝜈+𝑘2 equal 2𝛼(𝑘1𝑚). For 𝑘=1,,𝑚, the 𝑘th element of 𝑣(𝑥) is of degree: 𝑑𝑜𝑅+𝑘1. The (𝑚+1)th element of 𝑣(𝑥) is of degree equal to or less than 𝑑𝑜𝑅+𝑚1.

Proposition 5.2. One puts 𝑣𝑘(𝑥)=𝜌𝑘(𝑥)+𝑥𝑑𝑜𝑅𝑤𝑘(𝑥) where 𝑑𝑜𝜌𝑘(𝑥)<𝑑𝑜𝑅. (1)𝑑𝑜𝑤𝑘𝑑(𝑥)=𝑘1for𝑘=1,,𝑚,𝑜𝑤𝑚+1(𝑥)𝑚1,(5.42)(2)(𝑤1,,𝑤𝑚) libre system and 𝑤𝑚+1(𝑥)=𝜆1𝑤1(𝑥)++𝜆𝑚𝑤𝑚(𝑥),(5.43) where 𝜆1,,𝜆𝑚 constants. (3)𝐷0=𝑥𝑚𝜆1𝜆2𝑥𝜆𝑚1𝑥𝑚1(5.44) is solution if and only if 𝑙𝑚+1=𝜆1𝑙1++𝜆𝑚𝑙𝑚.(5.45)

Example 5.3. In this example we consider the Riccati differential equation (1.2) where 1𝑟=(𝑥+1)45(𝑥+1)3+74(𝑥+1)2+1𝑥+1+𝑥2+2,(5.46)𝐷1=𝐷2=𝐷3=1,𝐷4=(𝑥+1)2,𝑑𝑜(𝑟)=2,𝜈=1. We have 𝑁1=15(𝑥+1),𝐹=𝑥2+2+15(𝑥+1)(𝑥+1)4+14(𝑥+1)2.(5.47)

Study at (−1)
Laurent series development at −1: (𝐹)1/2=𝜀11(𝑥+1)252(𝑥+1)+;𝜀1=±1.(5.48)

Study at Infinity
We have 𝐸(𝑟)/𝑥2=1+𝑡2 where 𝑡=1/𝑥, 1+2𝑡21/2=1+𝑡2𝑡+𝑜2.(5.49) Thus 𝑠𝜈+1=1 and 𝐸(𝜃)=𝛼𝑥, where 𝛼2=1, 𝜃=𝛼𝑥+𝜀11(𝑥+1)25+12(𝑥+1)(+𝐷𝑥+1)0𝐷0,𝑑𝑜𝐷0=𝛼𝑠𝜈+1𝜈2+5𝜀121=𝛼𝑠𝜈+1+5𝜀1232.(5.50) Case 𝜀𝛼=11=1 and 𝜀𝛼=11=1 are to be rejected because we obtain negative values of 𝐷0. (i)If 𝛼=1 and 𝜀1=1 then: 𝑑𝑜𝐷0=2.(ii)If 𝛼=1 and 𝜀1=1 then: 𝑑𝑜𝐷0=0.

Case 1 (𝛼=1 and 𝜀1=1). We have the following 1𝜃=𝑥+(𝑥+1)23+𝐷2(𝑥+1)0𝐷0,(5.51) where 𝑑𝑜𝐷0=2. Research of coefficients of 𝐷0, 1𝑆=𝑥+(𝑥+1)23=𝑥2(𝑥+1)3+2𝑥2(1/2)𝑥(1/2)(𝑥+1)2(5.52)𝑟𝑆𝑆2=𝑅/𝐵, where 𝑅=4𝑥2+4𝑥 and 𝐵=(1+𝑥)21𝑥𝑥𝑣(𝑥)=𝑅201002=+2𝑆𝐵2𝑥+𝐵4𝑥4𝑥21𝑥2𝑥32+2𝑥+4𝑥3,,𝑉=044011022204(5.53)𝑙3=2𝑙2. Thus 𝐷0=𝑥2+2𝑥, 1𝜃=𝑥+(𝑥+1)23+2(𝑥+1)2(𝑥+1)𝑥21+2𝑥=𝑥+(𝑥+1)23+12(𝑥+1)𝑥+1𝑥+2.(5.54)

Case 2 (𝛼=1 and 𝜀1=1). We obtain the rational fraction 1𝜃=𝑥+(𝑥+1)232(𝑥+1).(5.55) It is not a solution because the sum of this fraction with the solution already found is not the logarithmic derivative of a rational fraction.

Example 5.4. In this example we consider the Riccati differential equation (1.2) where 1𝑟=+116(𝑥1)84(𝑥1)5296(𝑥1)489(𝑥1)36427(𝑥1)2152+18(𝑥1)30(𝑥+2)210,81(𝑥+2)(5.56)𝐷1=𝐷2=1,𝐷3=𝑥+2 and 𝐷4=(𝑥1)4. We have 𝑁1=(2418𝑥2454)(𝑥1)3+(𝑥+2)21,𝛿=4(𝑥+2)2,1𝐹=+16(2418𝑥2454)(𝑥1)3+(𝑥+2)2(𝑥1)8(𝑥+2)2+14(𝑥+2)2.(5.57) Laurent series development at 1: (𝐹)1/2=𝜀11(𝑥1)42𝑥1+;𝜀1=±1.(5.58) Laurent series development at −2: (𝐹)1/2=𝜀2112(𝑥+2)+;𝜀2=±1.(5.59) We have 12𝐷2𝐷3𝐷4𝐷2𝐷3𝐷4=1+22(𝑥+2).𝑥1(5.60) Thus 𝜃=𝐸(𝜃)+𝜀11(𝑥1)42𝑥1+𝜀211+12(𝑥+2)+22(𝑥+2)+𝐷𝑥10𝐷0,(5.61) where 𝐸21(𝜃)=𝐸(𝑟)=,𝑑16𝑜𝐷01=𝐸(𝜃)+2𝜀111𝜀2252.(5.62) Cases 𝜀1𝜀=12=1 and 𝜀1𝜀=12=1 are to be rejected because we obtain negative values of 𝐷0.

Case 1. If 𝜀1=1,𝜀2=1,𝐸(𝜃)=1/4 then 𝑑𝑜𝐷0=1, 1𝜃=4+1(𝑥1)45+𝐷𝑥+20𝐷0.(5.63) Research of coefficients of 𝐷0, 1𝑆=4+1(𝑥1)45𝑥+2,(5.64)𝑟(𝑆+𝑆2)=𝑅/𝐵, where 𝑅=(1/2)𝑥410𝑥3+19𝑥218𝑥+(5/2), 𝐵=(𝑥1)4(𝑥+2), 𝑣1𝑥01=1(𝑥)=𝑅+2𝑆𝐵2𝑥4+10𝑥319𝑥25+18𝑥2𝑥4+20𝑥338𝑥2,5+36𝑥1𝑉=211819102,53638205(5.65)𝑙2=2𝑙1. Thus, 𝐷0=𝑥2, 𝜃1=14+1(𝑥1)45+1𝑥+2.𝑥2(5.66)

Case 2. If 𝜀1=1, 𝜀2=1, 𝐸(𝜃)=1/4 then: 𝑑𝑜𝐷0=9, 𝜃=14+1(𝑥1)45+𝐷𝑥+20𝐷0.(5.67) It is not a solution because the sum of this fraction with the solution already found is not the logarithmic derivative of a rational fraction.

Case 3. If 𝜀1=1, 𝜀2=1, 𝐸(𝜃)=1/4 then 𝑑𝑜𝐷0=5, 𝜃3=141(𝑥1)45+4𝑥+2+𝐷𝑥10𝐷0.(5.68) Research of coefficients of 𝐷0, 𝑆=141(𝑥1)45+4𝑥+2,𝑥1𝑅=𝑥4+36𝑥3137𝑥2+168𝑥88,𝐵=(𝑥1)45(𝑥+2),𝑉=371681373620000321512326618037200047816236821936200012138209214742543310002421295584285282000403001392.69831221(5.69) We consider 𝑉𝑝 the minor 6×6 obtained by column vectors 1,2,6,7,8, and 9. In /5𝑉𝑝=220000222000121100021210001022002221(5.70)det𝑉𝑝=1. Accordingly, row 6 is not linear combination of other row and So no solution 𝐷0.