Abstract

By using the fixed-point index theory, we discuss the existence, multiplicity, and nonexistence of positive solutions for the coupled systems of Hammerstein integral equation with parameters.

1. Introduction

In recent years, the study of solutions for Hammerstein integral equations has been an interesting topic, since the solution of some boundary value problems for differential equations are usually equivalent to solutions of Hammerstein integral equations [1โ€“6]. And many results concerning the existence of solutions for Hammerstein integral equations have been obtained by many authors [1, 7โ€“9]. For example, in [1] the Hammerstein integral equation:๎€œ๐œ“(๐‘ฅ)=๐บ๐‘˜(๐‘ฅ,๐‘ฆ)๐‘“(๐‘ฆ,๐œ“(๐‘ฆ))๐‘‘๐‘ฆ,(1.1) was considered, where ๐บโŠ‚โ„๐‘› is a bounded domain. When the nonlinear term is of the form ๐‘“(๐‘ข) or โˆ‘๐‘“(๐‘ฅ,๐‘ข)=๐‘›๐‘–=1๐‘Ž๐‘–(๐‘ฅ)๐‘ข๐›ผ๐‘–๐‘–, ๐›ผ๐‘–>0;๐‘–=1,2,โ€ฆ,๐‘›, some existence results of nonnegative solutions in ๐ถ(๐บ) for (1.1) were obtained; when the nonlinear term is a general ๐‘“(๐‘ฅ,๐‘ข), some multiple results for (1.1) in space ๐ฟ๐‘(๐บ)(๐‘โ‰ฅ1) were derived. In [8], by means of the decomposition of the operator and the critical point theory, the existence of infinitely many solutions for (1.1) was considered. In [7] the integral equation๎€œ๐œ“(๐‘ฅ)=๐œ†[]๐‘ฅ,๐‘ฅ+๐‘‡๐‘˜(๐‘ฅ,๐‘ฆ)๐‘“(๐‘ฆ,๐œ“(๐‘ฆโˆ’๐œ(๐‘ฆ)))๐‘‘๐‘ฆ(1.2) was studied, where ๐œ† is a parameter. Using the Leggett-Williams fixed-point theorem, when ๐œ† belongs to some intervals, the existence of triple positive solutions for (1.2) was proved.

More recently, in [9] the integral equation๎€œ๐‘ข(๐‘ฅ)=๐œ†10๐‘˜(๐‘ฅ,๐‘ฆ)๐‘“(๐‘ฆ,๐‘ข(๐‘ฆ))๐‘‘๐‘ฆ,(1.3) was studied and obtained that there exists a ๐œ†โˆ—>0 such that (1.3) has at least two, one and no positive solutions for ๐œ†โˆˆ(0,๐œ†โˆ—), ๐œ†=๐œ†โˆ—, and ๐œ†>๐œ†โˆ—, respectively.

Motivated by the papers mentioned above, we consider the coupled systems of Hammerstein integral equation (1.4) in this paper,๎€œ๐‘ข(๐‘ฅ)=๐œ†10๐‘˜1(๐‘ฅ,๐‘ฆ)๐‘“1๐‘ฃ๎€œ(๐‘ฆ,๐‘ข(๐‘ฆ),๐‘ฃ(๐‘ฆ))๐‘‘๐‘ฆ,(๐‘ฅ)=๐œ‡10๐‘˜2(๐‘ฅ,๐‘ฆ)๐‘“2(๐‘ฆ,๐‘ข(๐‘ฆ),๐‘ฃ(๐‘ฆ))๐‘‘๐‘ฆ,(1.4) where ๐œ†, ๐œ‡โˆˆโ„2+โงต{(0,0)}, โ„+=[0,+โˆž). Under some new assumptions, we show that there exists a continuous curve ฮ“ separating โ„2+โงต{(0,0)} into two disjoint subsets ๐’ช1 and ๐’ช2 such that problem (1.4) has at least two, one and no positive solutions for ๐’ช1, ฮ“ and ๐’ช2, respectively. Proofs of our results are mainly based on the fixed-point index theory, for this type of results see [10โ€“12].

The rest of the paper is organized as follows. In Section 2, we present some preliminaries and lemmas that will be used to prove our main results. In Section 3, we discuss the existence, multiplicity, and nonexistence of positive solution of the systems (1.4).

The vector (๐‘ขโˆ—,๐‘ฃโˆ—) is said to be a positive solution of problem (1.4) if and only if (๐‘ขโˆ—,๐‘ฃโˆ—) satisfies problem (1.4) and ๐‘ขโˆ—(๐‘ฅ)โ‰ฅ0,๐‘ฃโˆ—(๐‘ฅ)>0, or ๐‘ขโˆ—(๐‘ฅ)>0,๐‘ฃโˆ—(๐‘ฅ)โ‰ฅ0 for any ๐‘ฅโˆˆ[0,1].

2. Preliminaries and Lemmas

In the rest of the paper, we always suppose the following assumptions hold:(๐ป1)๐‘“๐‘–โˆˆ๐ถ[[0,1]ร—โ„+ร—โ„+,โ„+],๐‘–=1,2; (๐ป2)๐‘˜๐‘–โˆˆ๐ถ[[0,1]ร—[0,1],โ„+],๐‘–=1,2; (๐ป3) there exist ๐œŽ, ๐›ผ, ๐›ฝโˆˆ(0,1), ๐›ผ<๐›ฝ such that ๐‘˜๐‘–(๐‘ฅ,๐‘ฆ)โ‰ฅ๐œŽ๐‘˜๐‘–(๐‘ฆ,๐‘ฆ) for ๐‘ฆโˆˆ(0,1) and ๐‘ฅโˆˆ[๐›ผ,๐›ฝ],๐‘–=1,2;(๐ป4)๐‘“๐‘– are nondecreasing on โ„2+ for ๐‘ฅโˆˆ[0,1], that is, ๐‘“๐‘–(๐‘ฅ,๐‘ข1,๐‘ฃ1)โ‰ค๐‘“๐‘–(๐‘ฅ,๐‘ข2,๐‘ฃ2), ๐‘–=1,2 whenever (๐‘ข1,๐‘ฃ1)โ‰ค(๐‘ข2,๐‘ฃ2), where the inequality on โ„2+ can be understood componentwise and ๐‘“1(๐‘ฅ,0,0)>0 or ๐‘“2(๐‘ฅ,0,0)>0 for all ๐‘ฅโˆˆ[0,1];(๐ป5) there exist constants ๐‘๐‘“๐‘–>0,๐‘–=1,2, such that ๐‘“๐‘–(๐‘ฅ,๐‘ข,๐‘ฃ)โ‰ฅ๐‘๐‘“๐‘–(๐‘ข+๐‘ฃ) for all ๐‘ฅโˆˆ[0,1];(๐ป6)limโ€–(๐‘ข,๐‘ฃ)โ€–โ†’โˆž(๐‘“๐‘–(๐‘ฅ,๐‘ข,๐‘ฃ)/(๐‘ข+๐‘ฃ))=โˆž,๐‘–=1,2 uniformly for ๐‘ฅโˆˆ[0,1].

We will consider the Banach space ๐ธ=๐ถ[0,1]ร—๐ถ[0,1] equipped with the standard norm โ€–โ€–(๐‘ข,๐‘ฃ)=โ€–๐‘ขโ€–+โ€–๐‘ฃโ€–=max0โ‰ค๐‘ฅโ‰ค1||||๐‘ข(๐‘ฅ)+max0โ‰ค๐‘ฅโ‰ค1||||[][].๐‘ฃ(๐‘ฅ),(๐‘ข,๐‘ฃ)โˆˆ๐ถ0,1ร—๐ถ0,1(2.1)

Define๎‚ป๐‘ƒ=(๐‘ข,๐‘ฃ)โˆˆ๐ธโˆถ๐‘ข(๐‘ฅ)โ‰ฅ0,๐‘ข(๐‘ฅ)โ‰ฅ0,min๐‘ฅโˆˆ[๐›ผ,๐›ฝ]โ€–โ€–๎‚ผ(๐‘ข(๐‘ฅ)+๐‘ฃ(๐‘ฅ))โ‰ฅ๐œŽ(๐‘ข,๐‘ฃ).(2.2) It is easy to see that ๐‘ƒ is a cone in ๐ธ.

We define the operators ๐‘‡๐œ†,๐‘‡๐œ‡โˆถ๐‘ƒโ†’๐ถ[0,1] and ๐‘‡โˆถ๐‘ƒโ†’๐ถ[0,1]ร—๐ถ[0,1] by๐‘‡๐œ†๎€œ(๐‘ข,๐‘ฃ)(๐‘ฅ)=๐œ†10๐‘˜1(๐‘ฅ,๐‘ฆ)๐‘“1๐‘‡(๐‘ฅ,๐‘ข(๐‘ฆ),๐‘ฃ(๐‘ฆ))๐‘‘๐‘ฆ,๐œ‡๎€œ(๐‘ข,๐‘ฃ)(๐‘ฅ)=๐œ‡10๐‘˜2(๐‘ฅ,๐‘ฆ)๐‘“2[],๎€ท๐‘‡(๐‘ฆ,๐‘ข(๐‘ฆ),๐‘ฃ(๐‘ฆ))๐‘‘๐‘ฆ,๐‘ฅโˆˆ0,1๐‘‡(๐‘ข,๐‘ฃ)=๐œ†(๐‘ข,๐‘ฃ),๐‘‡๐œ‡๎€ธ(๐‘ข,๐‘ฃ),โˆ€(๐‘ข,๐‘ฃ)โˆˆ๐‘ƒ.(2.3)

Obvious, the existence of a positive solution of problem (1.4) is equivalent to the existence of a nontrivial fixed point of ๐‘‡ in ๐‘ƒ. It is easy to prove that the following lemma is true.

Lemma 2.1. Assume that (๐ป1)โ€“(๐ป3) hold. Then ๐‘‡(๐‘ƒ)โŠ‚๐‘ƒ and ๐‘‡โˆถ๐‘ƒโ†’๐‘ƒ is completely continuous.

Finally we list two lemmas, which are crucial to prove our main results.

Lemma 2.2 (see [13]). Let ๐ธ be a Banach space, ๐พ a cone and ฮฉ an open bounded subset of ๐ธ. Let ๐œƒโˆˆฮฉ and ๐‘‡โˆถ๐พโˆฉฮฉโ†’๐พ be a completely continuous mapping. Suppose that ๐‘‡๐‘ฅโ‰ ๐œ›๐‘ฅ for all ๐‘ฅโˆˆ๐พโˆฉ๐œ•ฮฉ and all ๐œ›โ‰ฅ1. Then ๐‘–(๐‘‡,๐พโˆฉฮฉ,๐พ)=1.

Lemma 2.3 (see [13]). Let ๐ธ be a Banach space and ๐พ a cone in ๐ธ. Assume that ๐‘‡โˆถ๐พ๐‘Ÿโ†’๐พ(๐พ๐‘Ÿ={๐‘ฅโˆˆ๐พ,โ€–๐‘ฅโ€–<๐‘Ÿ,๐‘Ÿ>0}) is a compact map such that ๐‘‡๐‘ฅโ‰ ๐‘ฅ for ๐‘ฅโˆˆ๐œ•๐พ๐‘Ÿ. If โ€–๐‘ฅโ€–โ‰คโ€–๐‘‡๐‘ฅโ€– for all ๐‘ฅโˆˆ๐œ•๐พ๐‘Ÿ, then ๐‘–(๐‘‡,๐พ๐‘Ÿ,๐พ)=0.

3. Main Results

In this section, we consider the existence of positive solutions for (1.4) in ๐ธ.

Lemma 3.1. Assume that (๐ป1)โ€“(๐ป6) hold, and let ฮฃ be a compact subset of โ„2+โงต{(0,0)}. Then there exists a constant ๐ถฮฃ>0 such that for all (๐œ†,๐œ‡)โˆˆฮฃ and all possible positive solutions (๐‘ข(๐‘ฅ),๐‘ฃ(๐‘ฅ)) of (1.4) at (๐œ†,๐œ‡), one has โ€–(๐‘ข,๐‘ฃ)โ€–โ‰ค๐ถฮฃ.

Proof. Suppose by contradiction that there is a sequence (๐‘ข๐‘›,๐‘ฃ๐‘›) of positive solutions of (1.4) at (๐œ†๐‘›,๐œ‡๐‘›) such that (๐œ†๐‘›,๐œ‡๐‘›)โˆˆฮฃ for all ๐‘› and โ€–(๐‘ข๐‘›,๐‘ฃ๐‘›)โ€–โ†’โˆž. Then (๐‘ข๐‘›,๐‘ฃ๐‘›)โˆˆ๐‘ƒ and thus min๐‘ฅโˆˆ[๐›ผ,๐›ฝ]๎€ท๐‘ข๐‘›(๐‘ฅ)+๐‘ฃ๐‘›๎€ธโ€–โ€–๎€ท๐‘ข(๐‘ฅ)โ‰ฅ๐œŽ๐‘›,๐‘ฃ๐‘›๎€ธโ€–โ€–.(3.1) Since ฮฃ is compact, the sequence {(๐œ†๐‘›,๐œ‡๐‘›)}โˆž๐‘›=1 has a convergent subsequence which we denote without loss of generality still by {(๐œ†๐‘›,๐œ‡๐‘›)}โˆž๐‘›=1 such that lim๐‘›โ†’โˆž๐œ†๐‘›=๐œ†โˆ—, lim๐‘›โ†’โˆž๐œ‡๐‘›=๐œ‡โˆ—, and at least one ๐œ†โˆ—>0 or ๐œ‡โˆ—>0, hence for ๐‘› sufficiently large, we have ๐œ†๐‘›โ‰ฅ๐œ†โˆ—/2>0.
Then by (๐ป6), there exists ๐‘…๐‘“1>0 such that ๐‘“1(๐‘ก,๐‘ข,๐‘ฃ)โ‰ฅ๐พ๐‘“1(๐‘ข+๐‘ฃ),โˆ€๐‘ข+๐‘ฃโ‰ฅ๐‘…๐‘“1,(3.2) where ๐พ๐‘“1 satisfies ๐œ†โˆ—๐œŽ2๐พ๐‘“12๎€œ๐›ฝ๐›ผ๐‘˜1(๐‘ฆ,๐‘ฆ)๐‘‘๐‘ฆ>1.(3.3)
Thus for ๐‘ฅโˆˆ[๐›ผ,๐›ฝ] and โˆ€๐‘ข๐‘›+๐‘ฃ๐‘›โ‰ฅ๐‘…๐‘“1, by using (3.1) and (3.2), we get โ€–โ€–๐‘ข๐‘›โ€–โ€–โ‰ฅ๐‘ข๐‘›(๐‘ฅ)=๐œ†๐‘›๎€œ10๐‘˜1(๐‘ฅ,๐‘ฆ)๐‘“1๎€ท๐‘ฆ,๐‘ข๐‘›(๐‘ฆ),๐‘ฃ๐‘›๎€ธโ‰ฅ๐œ†(๐‘ฆ)๐‘‘๐‘ฆโˆ—2๎€œ๐›ฝ๐›ผ๐‘˜1(๐‘ฅ,๐‘ฆ)๐‘“1๎€ท๐‘ฆ,๐‘ข๐‘›(๐‘ฆ),๐‘ฃ๐‘›๎€ธโ‰ฅ๐œ†(๐‘ฆ)๐‘‘๐‘ฆโˆ—๐พ๐‘“12๎€œ๐›ฝ๐›ผ๐‘˜1๎€ท๐‘ข(๐‘ฅ,๐‘ฆ)๐‘›(๐‘ฆ)+๐‘ฃ๐‘›๎€ธโ‰ฅ๐œ†(๐‘ฆ)๐‘‘๐‘ฆโˆ—๐œŽ2๐พ๐‘“12๎€œ๐›ฝ๐›ผ๐‘˜1๎€ทโ€–โ€–๐‘ข(๐‘ฆ,๐‘ฆ)๐‘›โ€–โ€–+โ€–โ€–๐‘ฃ๐‘›โ€–โ€–๎€ธ>โ€–โ€–๐‘ข๐‘‘๐‘ฆ๐‘›โ€–โ€–+โ€–โ€–๐‘ฃ๐‘›โ€–โ€–โ‰ฅโ€–โ€–๐‘ข๐‘›โ€–โ€–(3.4) for all ๐‘› sufficiently large. This is a contraction.

Lemma 3.2. Assume that (๐ป1)โ€“(๐ป6) hold, and let (1.4) have a positive solution at (๐œ†,๐œ‡). Then the problem also has a positive solution at (๐œ†,๐œ‡) for all (๐œ†,๐œ‡)โ‰ค(๐œ†,๐œ‡).

Proof. Let (๐‘ข,๐‘ฃ) be a positive solution of (1.4) at (๐œ†,๐œ‡), and let (๐œ†,๐œ‡)โˆˆโ„2+โงต{(0,0)} with (๐œ†,๐œ‡)โ‰ค(๐œ†,๐œ‡). First, we assume ๐œ†โˆˆ(0,๐œ†), and ๐œ‡โˆˆ(0,๐œ‡), then ๐‘ข๐œ†(๐‘ฅ)=๐œ†๎€œ10๐‘˜1(๐‘ฅ,๐‘ฆ)๐‘“1๎€ท๐‘ฆ,๐‘ข๐œ†(๐‘ฆ),๐‘ฃ๐œ‡๎€ธ๎€œ(๐‘ฆ)๐‘‘๐‘ฆโ‰ฅ๐œ†10๐‘˜1(๐‘ฅ,๐‘ฆ)๐‘“1๎€ท๐‘ฆ,๐‘ข๐œ†(๐‘ฆ),๐‘ฃ๐œ‡๎€ธ๐‘ฃ(๐‘ฆ)๐‘‘๐‘ฆ,๐œ‡(๐‘ฅ)=๐œ‡๎€œ10๐‘˜2(๐‘ฅ,๐‘ฆ)๐‘“2๎€ท๐‘ฆ,๐‘ข๐œ†(๐‘ฆ),๐‘ฃ๐œ‡๎€ธ๎€œ(๐‘ฆ)๐‘‘๐‘ฆโ‰ฅ๐œ‡10๐‘˜2(๐‘ฅ,๐‘ฆ)๐‘“2๎€ท๐‘ฆ,๐‘ข๐œ†(๐‘ฆ),๐‘ฃ๐œ‡๎€ธ(๐‘ฆ)๐‘‘๐‘ฆ.(3.5) Set ๐‘‡๐œ†๎€œ(๐‘ข,๐‘ฃ)(๐‘ฅ)=๐œ†10๐‘˜1(๐‘ฅ,๐‘ฆ)๐‘“1๐‘‡(๐‘ฆ,๐‘ข(๐‘ฆ),๐‘ฃ(๐‘ฆ))๐‘‘๐‘ฆ,๐œ‡๎€œ(๐‘ข,๐‘ฃ)(๐‘ฅ)=๐œ‡10๐‘˜2(๐‘ฅ,๐‘ฆ)๐‘“2(๐‘ฆ,๐‘ข(๐‘ฆ),๐‘ฃ(๐‘ฆ))๐‘‘๐‘ฆ,(3.6) and let ๐‘ข0(๐‘ฅ)=๐‘ข๐œ†(๐‘ฅ), ๐‘ฃ0(๐‘ฅ)=๐‘ฃ๐œ‡(๐‘ฅ), ๐‘ข๐‘›(๐‘ฅ)=๐‘‡๐œ†(๐‘ข๐‘›โˆ’1(๐‘ฅ),๐‘ฃ๐‘›โˆ’1(๐‘ฅ)), ๐‘ฃ๐‘›(๐‘ฅ)=๐‘‡๐œ‡(๐‘ข๐‘›โˆ’1(๐‘ฅ),๐‘ฃ๐‘›โˆ’1(๐‘ฅ)), ๐‘‡(๐‘ข๐‘›(๐‘ฅ),๐‘ฃ๐‘›(๐‘ฅ))=(๐‘‡๐œ†(๐‘ข๐‘›(๐‘ฅ),๐‘ฃ๐‘›(๐‘ฅ)), ๐‘‡๐œ‡(๐‘ข๐‘›(๐‘ฅ),๐‘ฃ๐‘›(๐‘ฅ))), ๐‘›=1,2,โ€ฆ. Then ๐‘ข0โ‰ฅ๐‘ข1โ‰ฅโ‹ฏโ‰ฅ๐‘ข๐‘›โ‰ฅโ‹ฏโ‰ฅ๐œŽ๐œ†๐‘๐‘“1๐พ1๐‘ฃ>๐œƒ,0โ‰ฅ๐‘ฃ1โ‰ฅโ‹ฏโ‰ฅ๐‘ฃ๐‘›โ‰ฅโ‹ฏโ‰ฅ๐œŽ๐œ‡๐‘๐‘“2๐พ2>๐œƒ,(3.7) where ๐พ๐‘–=โˆซ๐›ฝ๐›ผ๐‘˜๐‘–(๐‘ฆ,๐‘ฆ)๐‘‘๐‘ฆ, ๐‘›=1,2. By the compactness of the operator ๐‘‡๐œ†(๐‘ข,๐‘ฃ)(๐‘ฅ), ๐‘‡๐œ‡(๐‘ข,๐‘ฃ)(๐‘ฅ), Lemma 2.1, and the Lebesgue dominated convergence theorem, the sequence {๐‘ข๐‘›}โˆž๐‘›=0={๐‘‡๐œ†(๐‘ข๐‘›โˆ’1,๐‘ฃ๐‘›โˆ’1)}โˆž๐‘›=0, and {๐‘ฃ๐‘›}โˆž๐‘›=0={๐‘‡๐œ‡(๐‘ข๐‘›โˆ’1,๐‘ฃ๐‘›โˆ’1)}โˆž๐‘›=0 converges to ๐‘ขโˆ— and ๐‘ฃโˆ—, respectively. It is clear that (๐‘ขโˆ—,๐‘ฃโˆ—)โˆˆ๐‘ƒโงต{(0,0)} and is a solution (1.4) at (๐œ†,๐œ‡). Proof of the case ๐œ‡=0, and ๐œ†โˆˆ(0,๐œ†) or ๐œ†=0, and ๐œ‡โˆˆ(0,๐œ†) can be done similarly. The proof is complete.

Lemma 3.3. Assume that (๐ป1)โ€“(๐ป4) hold. Then there exists (๐œ†โˆ—,๐œ‡โˆ—)>(0,0) such that (1.4) has a positive solution for all (๐œ†,๐œ‡)โ‰ค(๐œ†โˆ—,๐œ‡โˆ—).

Proof. Let ๐‘ข0โˆซ(๐‘ฅ)=10๐‘˜1(๐‘ฅ,๐‘ฆ)๐‘‘๐‘ฆ, ๐‘ฃ0โˆซ(๐‘ฅ)=10๐‘˜2(๐‘ฅ,๐‘ฆ)๐‘‘๐‘ฆ, then (๐‘ข0(๐‘ฅ),๐‘ฃ0(๐‘ฅ))โˆˆ๐‘ƒโงต{(0,0)}. Take ๐‘€๐‘“๐‘–=max๐‘ฅโˆˆ[0,1]๐‘“๐‘–(๐‘ฅ,๐‘ข0(๐‘ฅ),๐‘ฃ0(๐‘ฅ)), ๐‘–=1,2. Then ๐‘€๐‘“๐‘–>0 and at (๐œ†โˆ—,๐œ‡โˆ—)=(1/๐‘€๐‘“1,1/๐‘€๐‘“2), we get ๐‘‡๐œ†โˆ—(๐‘ข,๐‘ฃ)(๐‘ฅ)=๐œ†โˆ—๎€œ10๐‘˜1(๐‘ฅ,๐‘ฆ)๐‘“1๐‘‡(๐‘ฆ,๐‘ข(๐‘ฆ),๐‘ฃ(๐‘ฆ))๐‘‘๐‘ฆ,๐œ‡โˆ—(๐‘ข,๐‘ฃ)(๐‘ฅ)=๐œ‡โˆ—๎€œ10๐‘˜2(๐‘ฅ,๐‘ฆ)๐‘“2(๐‘ฆ,๐‘ข(๐‘ฆ),๐‘ฃ(๐‘ฆ))๐‘‘๐‘ฆ.(3.8) This shows that (๐œ†โˆ—,๐œ‡โˆ—)>(0,0) and ๐‘ข0(๐‘ฅ)โ‰ฅ๐œ†โˆ—๎€œ10๐‘˜1(๐‘ฅ,๐‘ฆ)๐‘“1๎€ท๐‘ฆ,๐‘ข0(๐‘ฆ),๐‘ฃ0๎€ธ๐‘ฃ(๐‘ฆ)๐‘‘๐‘ฆ,0(๐‘ฅ)โ‰ฅ๐œ‡โˆ—๎€œ10๐‘˜2(๐‘ฅ,๐‘ฆ)๐‘“2๎€ท๐‘ฆ,๐‘ข0(๐‘ฆ),๐‘ฃ0๎€ธ(๐‘ฆ)๐‘‘๐‘ฆ(3.9) for ๐‘ฅโˆˆ[0,1]. Set ๐‘ข๐‘›(๐‘ฅ)=๐‘‡๐œ†โˆ—๎€ท๐‘ข๐‘›โˆ’1(๐‘ฅ),๐‘ฃ๐‘›โˆ’1๎€ธ(๐‘ฅ),๐‘ฃ๐‘›(๐‘ฅ)=๐‘‡๐œ‡โˆ—๎€ท๐‘ข๐‘›โˆ’1(๐‘ฅ),๐‘ฃ๐‘›โˆ’1๎€ธ,๐‘‡๎€ท๐‘ข(๐‘ฅ)๐‘›(๐‘ฅ),๐‘ฃ๐‘›(๎€ธ=๎€ท๐‘‡๐‘ฅ)๐œ†โˆ—๎€ท๐‘ข๐‘›(๐‘ฅ),๐‘ฃ๐‘›(๎€ธ๐‘ฅ),๐‘‡๐œ‡โˆ—๎€ท๐‘ข๐‘›(๐‘ฅ),๐‘ฃ๐‘›(๐‘ฅ)๎€ธ๎€ธ,๐‘›=1,2,โ€ฆ(3.10) for ๐‘ฅโˆˆ[0,1]. Then ๐‘ข0โ‰ฅ๐‘ข1โ‰ฅโ‹ฏโ‰ฅ๐‘ข๐‘›โ‰ฅโ‹ฏโ‰ฅ๐œŽ๐œ†โˆ—๎€œ10๐‘˜1๐‘ฃ(๐‘ฆ,๐‘ฆ)๐‘‘๐‘ฆ>๐œƒ,0โ‰ฅ๐‘ฃ1โ‰ฅโ‹ฏโ‰ฅ๐‘ฃ๐‘›โ‰ฅโ‹ฏโ‰ฅ๐œŽ๐œ‡โˆ—๎€œ10๐‘˜2(๐‘ฆ,๐‘ฆ)๐‘‘๐‘ฆ>๐œƒ.(3.11) We conclude the proof similarly to Lemma 3.2.

Define ๐’ซ={(๐œ†,๐œ‡)โˆˆโ„2+โงต{(0,0)}โˆถ (1.4) has a positive solution at (๐œ†,๐œ‡)}; then by Lemma 3.3, ๐’ซโ‰ ๐œ™, and it is easy to see that (๐’ซ,โ‰ค) is a partially ordered set.

Lemma 3.4. Assume that (๐ป1)โ€“(๐ป6) hold. Then (๐’ซ,โ‰ค) is bounded above.

Proof. Suppose to the contrary that there exists a fixed-point sequence {(๐‘ข๐‘›,๐‘ฃ๐‘›)}(๐‘›=1,2,โ€ฆ) of ๐‘‡(๐‘ข,๐‘ฃ) at (๐œ†๐‘›,๐œ‡๐‘›) such that lim๐‘›โ†’โˆžโ€–(๐œ†๐‘›,๐œ‡๐‘›)โ€–=โˆž. Considering a subsequence if necessary, we assume lim๐‘›โ†’โˆž๐œ†๐‘›=โˆž. The proof for the case lim๐‘›โ†’โˆž๐œ‡๐‘›=โˆž can be shown by an analogous way. Then there are two cases to be considered:(i)there exists a constant ๐ป>0 such that โ€–(๐‘ข๐‘›,๐‘ฃ๐‘›)โ€–โ‰ค๐ป,๐‘›=0,1,2,โ€ฆ;(ii)there exists a subsequence {(๐‘ข๐‘›๐‘–,๐‘ฃ๐‘›๐‘–)}โˆž๐‘–=1 such that lim๐‘–โ†’โˆžโ€–(๐‘ข๐‘›๐‘–,๐‘ฃ๐‘›๐‘–)โ€–=โˆž,which is impossible by Lemma 3.1. So we only consider (i). In view of (๐ป4)โ€“(๐ป6) we can choose ๐‘™0>0 such that ๐‘“1(๐‘ฆ,0,0)>๐‘™0๐ป or ๐‘“2(๐‘ฆ,0,0)>๐‘™0๐ป and further ๐‘“1(๐‘ฆ,๐‘ข๐‘›,๐‘ฃ๐‘›)>๐‘™0๐ป or ๐‘“2(๐‘ฆ,๐‘ข๐‘›,๐‘ฃ๐‘›)>๐‘™0๐ป for ๐‘ฆโˆˆ[0,1]. Thus for ๐‘ฅโˆˆ[๐›ผ,๐›ฝ], we know ๐‘ข๐‘›(๐‘ฅ)+๐‘ฃ๐‘›(๐‘ฅ)=๐œ†๐‘›๎€œ10๐‘˜1(๐‘ฅ,๐‘ฆ)๐‘“1๎€ท๐‘ฆ,๐‘ข๐‘›(๐‘ฆ),๐‘ฃ๐‘›๎€ธ(๐‘ฆ)๐‘‘๐‘ฆ+๐œ‡๐‘›๎€œ10๐‘˜2(๐‘ฅ,๐‘ฆ)๐‘“2๎€ท๐‘ฆ,๐‘ข๐‘›(๐‘ฆ),๐‘ฃ๐‘›๎€ธ(๐‘ฆ)๐‘‘๐‘ฆโ‰ฅ๐œ†๐‘›๐œŽ๎€œ๐›ฝ๐›ผ๐‘˜1(๐‘ฆ,๐‘ฆ)๐‘“1๎€ท๐‘ฆ,๐‘ข๐‘›(๐‘ฆ),๐‘ฃ๐‘›๎€ธ(๐‘ฆ)๐‘‘๐‘ฆ+๐œ‡๐‘›๐œŽ๎€œ๐›ฝ๐›ผ๐‘˜2(๐‘ฆ,๐‘ฆ)๐‘“2๎€ท๐‘ฆ,๐‘ข๐‘›(๐‘ฆ),๐‘ฃ๐‘›(๎€ธ๐‘ฆ)๐‘‘๐‘ฆ.(3.12) Now we will distinguish two cases.Case 1. If ๐‘“1(๐‘ฆ,๐‘ข๐‘›,๐‘ฃ๐‘›)>๐‘™0๐ป and ๐‘“2(๐‘ฆ,๐‘ข๐‘›,๐‘ฃ๐‘›)>๐‘™0๐ป, we have ๐‘ข๐‘›(๐‘ฅ)+๐‘ฃ๐‘›(๐‘ฅ)โ‰ฅ๐œ†๐‘›๐œŽ๐‘™0๐ป๐พ1+๐œ‡๐‘›๐œŽ๐‘™0๐ป๐พ2โ‰ฅ๎€ท๐œ†๐‘›+๐œ‡๐‘›๎€ธ๐œŽ๐‘™0๐ป๐พ0,(3.13) where ๐พ0=min(๐พ1,๐พ2), which implies that ๐ปโ‰ฅ(๐œ†๐‘›+๐œ‡๐‘›)๐œŽ๐‘™0๐ป๐พ1 or (๐œ†๐‘›+๐œ‡๐‘›)โ‰ค1/๐œŽ๐‘™0๐พ1, which is a contradiction.Case 2. If that one of ๐‘“1(๐‘ฆ,๐‘ข๐‘›,๐‘ฃ๐‘›)>๐‘™0๐ป and ๐‘“2(๐‘ฆ,๐‘ข๐‘›,๐‘ฃ๐‘›)>๐‘™0๐ป is satisfied, without loss of generality, we assume ๐‘“1(๐‘ฆ,๐‘ข๐‘›,๐‘ฃ๐‘›)>๐‘™0๐ป. The proof for the case ๐‘“2(๐‘ฆ,๐‘ข๐‘›,๐‘ฃ๐‘›)>๐‘™0๐ป can be shown by an analogous way. By (๐ป5) we have ๐‘ข๐‘›(๐‘ฅ)+๐‘ฃ๐‘›(๐‘ฅ)โ‰ฅ๐œ†๐‘›๐œŽ๐‘™0๐ป๐พ1+๐œ‡๐‘›๐œŽ2โ€–โ€–๎€ท๐‘ข๐‘›,๐‘ฃ๐‘›๎€ธโ€–โ€–๐‘๐‘“2๐พ2โ‰ฅ๐œ†๐‘›๐œŽ๐‘™0โ€–โ€–๎€ท๐‘ข๐‘›,๐‘ฃ๐‘›๎€ธโ€–โ€–๐พ1+๐œ‡๐‘›๐œŽ2โ€–โ€–๎€ท๐‘ข๐‘›,๐‘ฃ๐‘›๎€ธโ€–โ€–๐‘๐‘“2๐พ2โ‰ฅ๎€ท๐œ†๐‘›+๐œ‡๐‘›๎€ธ๐พ3โ€–โ€–๎€ท๐‘ข๐‘›,๐‘ฃ๐‘›๎€ธโ€–โ€–,(3.14) where ๐พ3=min(๐œŽ๐‘™0๐พ1,๐œŽ2๐‘๐‘“2๐พ2); which implies that โ€–(๐‘ข๐‘›,๐‘ฃ๐‘›)โ€–โ‰ฅ(๐œ†๐‘›+๐œ‡๐‘›)๐พ3โ€–(๐‘ข๐‘›,๐‘ฃ๐‘›)โ€– or (๐œ†๐‘›+๐œ‡๐‘›)โ‰ค1/๐พ3, which is a contradiction. The proof is complete.

Lemma 3.5. Assume that (๐ป1)โ€“(๐ป6) hold. Then every chain in ๐’ซ has a unique supremum in ๐’ซ.

Proof. Let ๐’ž be a chain in ๐’ซ. Since ๐’ซ is a partially ordered set, it is enough to show that ๐’ž has an upper bound in ๐’ซ. Without loss of generality, we may choose a distinct sequence {(๐œ†๐‘›,๐œ‡๐‘›)}โˆˆ๐’ž such that (๐œ†๐‘›,๐œ‡๐‘›)โ‰ค(๐œ†๐‘›+1,๐œ‡๐‘›+1),๐‘›=1,2,โ€ฆ. By Lemma 3.4, two sequences {๐œ†๐‘›} and {๐œ‡๐‘›} converge to, say, ๐œ†๐’ž and ๐œ‡๐’ž, respectively. If (๐œ†๐’ž,๐œ‡๐’ž)โˆˆ๐’ซ, then the proof is done. Since the sequence {(๐œ†๐‘›,๐œ‡๐‘›)} is bounded above, we may assume that the sequence belongs to a compact rectangle in โ„2+โงต{(0,0)} and Lemma 3.1 implies that the corresponding solutions {(๐‘ข๐‘›,๐‘ฃ๐‘›)} are uniformly bounded in ๐ธ. By the compactness of the integral operators ๐‘‡๐œ† and ๐‘‡๐œ‡, the sequence {(๐‘ข๐‘›,๐‘ฃ๐‘›)} has a subsequence converging to, say, {(๐‘ข๐‘›,๐‘ฃ๐‘›)}โˆˆ๐ธ. We can easily show, by the Lebesgue convergence theorem, that (๐‘ข๐’ž,๐‘ฃ๐’ž) is a solution of (1.4) at (๐œ†๐’ž,๐œ‡๐’ž). Thus (๐œ†๐’ž,๐œ‡๐’ž)โˆˆ๐’ซ and this completes the proof.

Lemma 3.6. Assume that (๐ป1)โ€“(๐ป6) hold. Then there exists ๐‘ โˆ—โˆˆ[๐œ‡โˆ—,๐œ‡๐‘ข] such that (1.4) has a positive solution at (0,๐‘ ) for all 0<๐‘ โ‰ค๐‘ โˆ—, and no solution at (0,๐‘ ) for all ๐‘ >๐‘ โˆ—. Similarly, there exists ๐‘Ÿโˆ—โˆˆ[๐œ†โˆ—,๐œ†๐‘ข] such that (1.4) has a positive solution at (๐‘Ÿ,0) for all 0<๐‘ โ‰ค๐‘ โˆ—, and no solution at (๐‘Ÿ,0) for all ๐‘Ÿ>๐‘Ÿโˆ—, where (๐œ†๐‘ข,๐œ‡๐‘ข) is upper bound of (๐’ซ,โ‰ค).

Proof. We know by Lemma 3.3 that (1.4) has a positive solution at (0,๐‘ ) for all 0<๐‘ โ‰ค๐œ‡โˆ—. Thus {(0,๐‘ )โˆถ๐‘ >0}โˆฉ๐’ซ is a nonempty chain in ๐’ซ and by Lemma 3.5, it has a unique supremum of the form (0,๐‘ โˆ—) in ๐’ซ. The proof of the second part is similar.

Lemma 3.7. Assume that (๐ป1)โ€“(๐ป6) hold. Then there exists a continuous curve ฮ“ separating โ„2+โงต{(0,0)} into two disjoint subsets ๐’ช1 and ๐’ช2 such that problem (1.4) has at least one positive solution for (๐œ†,๐œ‡)โˆˆ๐’ช1โˆชฮ“ and no solution for (๐œ†,๐œ‡)โˆˆ๐’ช2.

Proof. We first construct the curve ฮ“ on ๐‘2+โงต{(0,0)}. Define ๐ฟ๐‘ฅ=๎€ฝ(๐‘Ÿ,๐‘ )โˆˆ๐‘2+โงต๎€พ{(0,0)}โˆถ๐‘ =๐‘Ÿโˆ’๐‘ฅ,๐‘ฅโˆˆ๐‘….(3.15) At ๐‘ฅ=โˆ’๐‘ โˆ—, we know by Lemma 3.6, (0,๐‘ โˆ—)โˆˆ๐ฟโˆ’๐‘ โˆ—โˆฉ๐’ซ. Thus ๐ฟโˆ’๐‘ โˆ—โˆฉ๐’ซ is a nonempty chain in ๐’ซ and Lemma 3.5 implies that the chain has a unique supremum. We show sup{๐ฟโˆ’๐‘ โˆ—โˆฉ๐’ซ}=(0,๐‘ โˆ—). Indeed, otherwise, we may choose (ฬƒ๐‘Ÿ,ฬƒ๐‘ )(โ‰ (0,๐‘ โˆ—))โˆˆ๐ฟโˆ’๐‘ โˆ— such that (0,๐‘ โˆ—)<(ฬƒ๐‘Ÿ,ฬƒ๐‘ ) and (1.4) has a solution at (ฬƒ๐‘Ÿ,ฬƒ๐‘ ). Thus by Lemma 3.2, (1.4) has a solution at (0,ฬƒ๐‘ ) and this contradicts Lemma 3.6. Similarly, we get sup{๐ฟ๐‘Ÿโˆ—โˆฉ๐’ซ}=(๐‘Ÿโˆ—,0).
For โˆ’๐‘ โˆ—<๐‘ฅ<๐‘Ÿโˆ—, we know by Lemmas 3.3, 3.5, and 3.6 that ๐ฟ๐‘ฅโˆฉ๐’ซ is a nonempty chain in ๐’ซ and thus the chain also has a unique supremum.
We notice that ๐ฟ๐‘ฅโˆฉ๐’ซ=โˆ…, for ๐‘ฅ<โˆ’๐‘ โˆ— or ๐‘ฅ>๐‘Ÿโˆ—. Now for ๐‘ฅโˆˆ[โˆ’๐‘ โˆ—,๐‘Ÿโˆ—], let us define ฮ“๎€ท๐ฟ(๐‘ฅ)=sup๐‘ฅ๎€ธโˆฉ๐’ซ.(3.16) Then ฮ“โˆถ[โˆ’๐‘ โˆ—,๐‘Ÿโˆ—]โ†’๐‘2+โงต{(0,0)} is well defined and ฮ“(โˆ’๐‘ โˆ—)=(0,๐‘ โˆ—) and ฮ“(๐‘Ÿโˆ—)=(๐‘Ÿโˆ—,0). Similar to [10, Theorem โ€‰3.1], it is easy to prove that ฮ“ is continuous on [โˆ’๐‘ โˆ—,๐‘Ÿโˆ—].
Consequently, the curve ฮ“ separates ๐‘2+โงต{(0,0)} into two disjoint subsets ๐’ช1 and ๐’ช2, where ๐’ช1 is bounded and ๐’ช2 is unbounded. It is obvious that (1.4) has a positive solution at ฮ“(๐‘ฅ) for all ๐‘ฅโˆˆ[โˆ’๐‘ โˆ—,๐‘Ÿโˆ—]. If (๐œ†,๐œ‡)โˆˆ๐’ช1 and so if (๐œ†,๐œ‡)โˆˆ๐ฟ๐‘ฅ0, then ๐‘ฅ0โˆˆ[โˆ’๐‘ โˆ—,๐‘Ÿโˆ—] and (๐œ†,๐œ‡)<ฮ“(๐‘ฅ0). Thus by Lemma 3.2, (๐œ†,๐œ‡)โˆˆ๐’ซ. On the other hand, if (๐œ†,๐œ‡)โˆˆ๐’ช2 and if (๐œ†,๐œ‡)โˆˆ๐ฟ๐‘ฅ0, then either ฮ“(๐‘ฅ0) is not defined when ๐‘ฅ0โˆˆ[โˆ’๐‘ โˆ—,๐‘Ÿโˆ—] or (๐œ†,๐œ‡)>ฮ“(๐‘ฅ0) when ๐‘ฅ0โˆ‰[โˆ’๐‘ โˆ—,๐‘Ÿโˆ—]. We get (๐œ†,๐œ‡)โˆ‰๐’ซ for both cases and the proof is done.

Now, we show the existence of the second positive solution for (๐œ†,๐œ‡)โˆˆ๐’ช1. Let (๐œ†,๐œ‡)โˆˆ๐’ช1, then we may choose ๐‘ฅ0โˆˆ[โˆ’๐‘ โˆ—,๐‘Ÿโˆ—] such that (๐œ†,๐œ‡)โˆˆ๐ฟ๐‘ฅ0. We know by Lemma 3.7 that (1.4) has a positive solution at ฮ“(๐‘ฅ0), so let (๐‘ขโˆ—,๐‘ฃโˆ—) be the solution at ฮ“(๐‘ฅ0) and let us denote ฮ“(๐‘ฅ0)=(๐œ†โˆ—,๐œ‡โˆ—). Then obviously (๐œ†,๐œ‡)<(๐œ†โˆ—,๐œ‡โˆ—) and we have the following theorem.

Lemma 3.8. Let (๐œ†,๐œ‡)โˆˆ๐’ช1. Then there exists ๐œ€0>0 and for all ๐‘ฅโˆˆ[0,1], 0<๐œ€โ‰ค๐œ€0 such that ๐‘ขโˆ—๐œ€๎€œ(๐‘ฅ)>๐œ†10๐‘˜1(๐‘ฅ,๐‘ฆ)๐‘“1๎€ท๐‘ฆ,๐‘ขโˆ—๐œ€(๐‘ฆ),๐‘ฃโˆ—๐œ€๎€ธ๐‘ฃ(๐‘ฆ)๐‘‘๐‘ฆ,โˆ—๐œ€๎€œ(๐‘ฅ)>๐œ‡10๐‘˜2(๐‘ฅ,๐‘ฆ)๐‘“2๎€ท๐‘ฆ,๐‘ขโˆ—๐œ€(๐‘ฆ),๐‘ฃโˆ—๐œ€๎€ธ(๐‘ฆ)๐‘‘๐‘ฆ,(3.17) where ๐‘ขโˆ—๐œ€(๐‘ฅ)=๐‘ขโˆ—(๐‘ฅ)+๐œ€ and ๐‘ฃโˆ—๐œ€(๐‘ฅ)=๐‘ฃโˆ—(๐‘ฅ)+๐œ€.

Proof. From (๐ป4), there exists constant ๐‘€>0 such that min[]๐‘ฅโˆˆ0,1๐‘“๐‘–๎€ท๐‘ฅ,๐‘ขโˆ—(๐‘ฅ),๐‘ฃโˆ—๎€ธ(๐‘ฅ)โ‰ฅ๐‘€>0,๐‘–=1,2.(3.18) Then by the uniform continuity of ๐‘“๐‘– on a compact set, there exists ๐œ€0>0 small enough such that for all ๐‘ฅโˆˆ[0,1], 0<๐œ€โ‰ค๐œ€0, ||๐‘“1๎€ท๐‘ฅ,๐‘ขโˆ—๐œ€(๐‘ฅ),๐‘ฃโˆ—๐œ€๎€ธ(๐‘ฅ)โˆ’๐‘“1๎€ท๐‘ฅ,๐‘ขโˆ—(๐‘ฅ),๐‘ฃโˆ—๎€ธ||๎‚ต๐œ†(๐‘ฅ)<๐‘€โˆ—๐œ†๎‚ถ,||๐‘“โˆ’12๎€ท๐‘ฅ,๐‘ขโˆ—๐œ€(๐‘ฅ),๐‘ฃโˆ—๐œ€๎€ธ(๐‘ฅ)โˆ’๐‘“2๎€ท๐‘ฅ,๐‘ขโˆ—(๐‘ฅ),๐‘ฃโˆ—๎€ธ||๎‚ต๐œ‡(๐‘ฅ)<๐‘€โˆ—๐œ‡๎‚ถ,โˆ’1๐œ†๐‘“1๎€ท๐‘ฅ,๐‘ขโˆ—๐œ€(๐‘ฅ),๐‘ฃโˆ—๐œ€๎€ธ(๐‘ฅ)โˆ’๐œ†โˆ—๐‘“1๎€ท๐‘ฅ,๐‘ขโˆ—(๐‘ฅ),๐‘ฃโˆ—๎€ธ<๎€ท๐œ†(๐‘ฅ)โˆ—๎€ทโˆ’๐œ†๎€ธ๎€ท๐‘€โˆ’๐‘“๐‘ฅ,๐‘ขโˆ—(๐‘ฅ),๐‘ฃโˆ—(๐‘ฅ)๎€ธ๎€ธโ‰ค0,๐œ‡๐‘“2๎€ท๐‘ฅ,๐‘ขโˆ—๐œ€(๐‘ฅ),๐‘ฃโˆ—๐œ€๎€ธ(๐‘ฅ)โˆ’๐œ‡โˆ—๐‘“2๎€ท๐‘ฅ,๐‘ขโˆ—(๐‘ฅ),๐‘ฃโˆ—๎€ธ<๎€ท๐œ‡(๐‘ฅ)โˆ—โˆ’๐œ‡๎€ธ๎€ท๐‘€โˆ’๐‘“2๎€ท๐‘ฅ,๐‘ขโˆ—(๐‘ฅ),๐‘ฃโˆ—(๐‘ฅ)๎€ธ๎€ธโ‰ค0.(3.19) Furthermore, we have for all ๐‘ฅโˆˆ[0,1]๐‘ขโˆ—๐œ€(๐‘ฅ)>๐œ†โˆ—๎€œ10๐‘˜1(๐‘ฅ,๐‘ฆ)๐‘“1๎€ท๐‘ฆ,๐‘ขโˆ—(๐‘ฆ),๐‘ฃโˆ—๎€ธ๎€œ(๐‘ฆ)๐‘‘๐‘ฆ>๐œ†10๐‘˜1(๐‘ฅ,๐‘ฆ)๐‘“1๎€ท๐‘ฆ,๐‘ขโˆ—๐œ€(๐‘ฆ),๐‘ฃโˆ—๐œ€๎€ธ(๐‘ฆ)๐‘‘๐‘ฆ.(3.20) The inequalities for ๐‘ฃโˆ—๐œ€ can be shown similarly and the proof is done.

We now state and prove our main result in this section.

Theorem 3.9. Assume (๐ป1)โ€“(๐ป6). Then there exists a continuous curve ฮ“ separating โ„2+โงต{(0,0)} into two disjoint subsets ๐’ช1 and ๐’ช2 such that problem (1.4) has at least two positive solution on ๐’ช1, at least one positive solution on ฮ“ and no solution on ๐’ช2.

Proof. By Lemma 3.7, it is enough to show the existence of the second positive solution of (1.4) for (๐œ†,๐œ‡)โˆˆ๐’ช1. Let (๐œ†,๐œ‡)โˆˆ๐’ช1. Let (๐œ†,๐œ‡)โˆˆ๐ฟ๐‘ฅ0 and (๐‘ขโˆ—,๐‘ฃโˆ—) be a positive solution of (1.4) at ฮ“(๐‘ฅ0)=โˆถ(๐œ†โˆ—,๐œ‡โˆ—) and let ๐‘ขโˆ—๐œ€(๐‘ฅ)=๐‘ขโˆ—+๐œ€,๐‘ฃโˆ—๐œ€(๐‘ฅ)=๐‘ฃโˆ—+๐œ€, where ๐œ€ is given in Lemma 3.8. Let ๎€ฝฮฉ=(๐‘ข,๐‘ฃ)โˆˆ๐ธโˆถโˆ’๐œ€<๐‘ข(๐‘ฅ)<๐‘ขโˆ—๐œ€(๐‘ฅ),โˆ’๐œ€<๐‘ฃ(๐‘ฅ)<๐‘ฃโˆ—๐œ€[]๎€พ(๐‘ฅ),๐‘ฅโˆˆ0,1,(3.21) then ฮฉ is bounded open in ๐ธ, 0โˆˆฮฉ and ๐‘‡โˆถ๐‘ƒโˆฉฮฉโ†’๐‘ƒ be a completely continuous mapping, since it is completely continuous. Let (๐‘ข,๐‘ฃ)โˆˆ๐‘ƒโˆฉ๐œ•ฮฉ. Then there exists ๐‘ฅ๐‘œโˆˆ[0,1] such that either ๐‘ข(๐‘ฅ๐‘œ)=๐‘ขโˆ—๐œ€(๐‘ฅ๐‘œ) or ๐‘ฃ(๐‘ฅ๐‘œ)=๐‘ฃโˆ—๐œ€(๐‘ฅ๐‘œ). Suppose that ๐‘ข(๐‘ฅ๐‘œ)=๐‘ขโˆ—๐œ€(๐‘ฅ๐‘œ). Then by (๐ป4) and Lemma 3.8, ๐‘‡๐œ†๎€ท๐‘ฅ(๐‘ข,๐‘ฃ)๐‘œ๎€ธ๎€œ=๐œ†10๐‘˜1๎€ท๐‘ฅ๐‘œ๎€ธ๐‘“,๐‘ฆ1๎€œ(๐‘ฆ,๐‘ข(๐‘ฆ),๐‘ฃ(๐‘ฆ))๐‘‘๐‘ฆโ‰ค๐œ†10๐‘˜1๎€ท๐‘ฅ๐‘œ๎€ธ๐‘“,๐‘ฆ1๎€ท๐‘ฆ,๐‘ขโˆ—๐œ€(๐‘ฆ),๐‘ฃโˆ—๐œ€๎€ธ(๐‘ฆ)๐‘‘๐‘ฆ<๐‘ขโˆ—๐œ€๎€ท๐‘ฅ๐‘œ๎€ธ๎€ท๐‘ฅ=๐‘ข๐‘œ๎€ธ๎€ท๐‘ฅโ‰ค๐œ›๐‘ข๐‘œ๎€ธ,(3.22) for all ๐œ›โ‰ฅ1. Similarly, for the case ๐‘ฃ(๐‘ฅ๐‘œ)=๐‘ฃโˆ—๐œ€(๐‘ฅ๐‘œ), we can get ๐‘‡๐œ‡(๐‘ข,๐‘ฃ)(๐‘ฅ๐‘œ)<๐œ›๐‘ฃ(๐‘ฅ๐‘œ) for all ๐œ›โ‰ฅ1. Thus ๐‘‡(๐‘ข,๐‘ฃ)=(๐‘‡๐œ†(๐‘ข,๐‘ฃ),๐‘‡๐œ‡(๐‘ข,๐‘ฃ))โ‰ ๐œ›(๐‘ข,๐‘ฃ), for all (๐‘ข,๐‘ฃ)โˆˆ๐‘ƒโˆฉฮฉ and all ๐œ›โ‰ฅ1 and by Lemma 2.2, ๐‘–(๐‘‡,๐‘ƒโˆฉฮฉ,๐‘ƒ)=1.(3.23) Modifying (3.2) for ๐œ†โˆ—=๐œ†, that is, there exists ๐‘…๐‘“1>0 such that ๐‘“1(๐‘ฅ,๐‘ข,๐‘ฃ)โ‰ฅ๐พ๐‘“1(๐‘ข+๐‘ฃ),โˆ€๐‘ข+๐‘ฃโ‰ฅ๐‘…๐‘“1,(3.24) where ๐พ๐‘“1 satisfies ๐œ†๐œŽ2๐พ๐‘“12๎€œ๐›ฝ๐›ผ๐‘˜1(๐‘ฆ,๐‘ฆ)๐‘‘๐‘ฆ>1.(3.25) Let ๐‘…0=max{๐ถฮฃ,(1/๐œŽ)๐‘…๐‘“1,โ€–(๐‘ขโˆ—๐œ€,๐‘ฃโˆ—๐œ€)โ€–}, where ๐ถฮฃ is given in Lemma 3.1 with ฮฃ a compact rectangle in โ„2+โงต{(0,0)} containing (๐œ†,๐œ‡). Let ๐‘ƒ๐‘…0={(๐‘ข,๐‘ฃ)โˆˆ๐‘ƒ,โ€–(๐‘ข,๐‘ฃ)โ€–<๐‘…0}. Then (๐‘ข,๐‘ฃ)โ‰ ๐‘‡(๐‘ข,๐‘ฃ) for (๐‘ข,๐‘ฃ)โˆˆ๐œ•๐‘ƒ๐‘…0, by Lemma 3.1. Furthermore, if (๐‘ข,๐‘ฃ)โˆˆ๐‘ƒ๐‘…0, then ๐‘ข(๐‘ก)+๐‘ฃ(๐‘ก)โ‰ฅmin๐‘ฅโˆˆ[๐›ผ,๐›ฝ](๐‘ข(๐‘ฅ)+๐‘ฃ(๐‘ฅ))โ‰ฅ๐œŽโ€–(๐‘ข,๐‘ฃ)โ€–โ‰ฅ๐‘…๐‘“1.(3.26) Thus by (3.24), ๐‘“1(๐‘ฅ,๐‘ข(๐‘ฅ),๐‘ฃ(๐‘ฅ))โ‰ฅ๐พ๐‘“1(๐‘ข(๐‘ฅ)+๐‘ฃ(๐‘ฅ)), for all ๐‘ฅโˆˆ[๐›ผ,๐›ฝ] and ๐‘‡๐œ†๎€œ(๐‘ข,๐‘ฃ)(๐‘ฅ)=๐œ†10๐‘˜1(๐‘ฅ,๐‘ฆ)๐‘“1๎€œ(๐‘ฆ,๐‘ข(๐‘ฆ),๐‘ฃ(๐‘ฆ))๐‘‘๐‘ฆโ‰ฅ๐œ†๐œŽ๐›ฝ๐›ผ๐‘˜1(๐‘ฆ,๐‘ฆ)๐‘“1(๐‘ฆ,๐‘ข(๐‘ฆ),๐‘ฃ(๐‘ฆ))๐‘‘๐‘ฆโ‰ฅ๐œ†๐œŽ๐พ๐‘“1๎€œ๐›ฝ๐›ผ๐‘˜1(โ‰ฅ๐‘ฆ,๐‘ฆ)(๐‘ข(๐‘ฆ)+๐‘ฃ(๐‘ฆ))๐‘‘๐‘ฆ๐œ†๐œŽ2๐พ๐‘“12๎€œ๐›ฝ๐›ผ๐‘˜1(๐‘ฆ,๐‘ฆ)โ€–(๐‘ข,๐‘ฃ)โ€–๐‘‘๐‘ >โ€–(๐‘ข,๐‘ฃ)โ€–.(3.27) Therefore โ€–๐‘‡(๐‘ข,๐‘ฃ)โ€–โ‰ฅโ€–๐‘‡๐œ†(๐‘ข,๐‘ฃ)โ€–>โ€–(๐‘ข,๐‘ฃ)โ€– and by Lemma 2.3, ๐‘–๎€ท๐‘‡,๐‘ƒ๐‘…0๎€ธ,๐‘ƒ=0.(3.28) Consequently by the additivity of the fixed-point index, ๎€ท0=๐‘–๐‘‡,๐‘ƒ๐‘…0๎€ธ๎‚€,๐‘ƒ=๐‘–(๐‘‡,๐‘ƒโˆฉฮฉ,๐‘ƒ)+๐‘–๐‘‡,๐‘ƒ๐‘…0โงต๎‚๐‘ƒโˆฉฮฉ,๐‘ƒ.(3.29) Since ๐‘–(๐‘‡,๐‘ƒโˆฉฮฉ,๐‘ƒ)=1,๐‘–(๐‘‡,๐‘ƒ๐‘…0โงต๐‘ƒโˆฉฮฉ,๐‘ƒ)=โˆ’1 and thus ๐‘‡ has a fixed point on ๐‘ƒโˆฉฮฉ and another on ๐‘ƒ๐‘…0โงต๐‘ƒโˆฉฮฉ, and this completes the proof.

Acknowledgments

The author is very grateful to the referee for her/his important comments and suggestions. This work is sponsored by the Tutorial Scientific Research Program Foundation of Education Department of Gansu Province, China (0810-03).