Abstract

Let denote the class of analytic functions in the punctured unit disc 𝑈={𝑧0<|𝑧|<1}. Set 𝜑𝑚𝜆,(𝑧)=1/𝑧+𝑘=0[+𝜆(𝑘+1)/]𝑚𝑧𝑘(𝑚0;>0;𝜆0;𝑧𝑈), and define 𝜑𝑚,𝜇𝜆, in terms of the Hadamard product by 𝜑𝑚𝜆,(𝑧)𝜑𝑚,𝜇𝜆,(𝑧)=1/𝑧(1𝑧)𝜇(𝜇>0;𝑧𝑈). In this paper, we introduce several new subclasses of analytic functions defined by means of the operator 𝐼𝑚𝜇(𝜆,)𝑓(𝑧)=𝜑𝑚,𝜇𝜆,(𝑧)𝑓(𝑧)(𝑓;𝑚0;>0;𝜆0;𝜇>0).Inclusion properties of these classes and some applications involving integral operator are also considered.

1. Introduction

Let denote the class of functions of the form: 1𝑓(𝑧)=𝑧+𝑘=0𝑎𝑘𝑧𝑘,(1.1) which are analytic in the punctured open unit disk 𝑈={𝑧𝑧 and 0<|𝑧|<1}=𝑈{0}. We denote by 𝑆(𝜂),𝐾(𝜂), and 𝐶(𝜂,𝛽)(0𝜂,𝛽<1) the subclasses of consisting of all meromorphic functions which are, respectively, starlike of order 𝜂 in 𝑈, convex of order 𝜂 in 𝑈, and close-to-convex of order 𝜂 and type 𝛽 in 𝑈 (see [13]).

Let 𝑀 be the class of all function 𝜑 which are analytic and univalent in 𝑈 and for which 𝜑(𝑈) is convex with 𝜑(0)=1,Re{𝜑(𝑧)}>0(𝑧𝑈).(1.2)

For two functions 𝑓 and 𝑔 analytic in 𝑈, we say that 𝑓 is subordinate to 𝑔 and write 𝑓𝑔 in 𝑈 or 𝑓(𝑧)𝑔(𝑧), if there exists a Schwarz function 𝑤(𝑧), which is analytic in 𝑈 with 𝑤(0)=0 and |𝑤(𝑧)|<1(𝑧𝑈), such that 𝑓(𝑧)=𝑔(𝑤(𝑧)). It is known that 𝑓(𝑧)𝑔(𝑧)𝑓(0)=𝑔(0),𝑓(𝑈)𝑔(𝑈).(1.3) Furthermore, if the function 𝑔 is univalent in 𝑈 (see, [4, page 4]),𝑓(𝑧)𝑔(𝑧)𝑓(0)=𝑔(0),𝑓(𝑈)𝑔(𝑈).(1.4)

Making use of the principle of subordination between analytic functions, we define the subclasses 𝑆(𝜂;𝜑),𝐾(𝜂,𝜑), and 𝐶(𝜂,𝛽;𝜑,𝜓) of the class for 0𝜂,𝛽<1 and 𝜑,𝜓𝑀, which are defined by ,1𝑆(𝜂,𝜑)=𝑓𝑓1𝜂𝑧𝑓(𝑧),,1𝑓(𝑧)𝜂𝜑(𝑧)(𝑧𝑈)𝐾(𝜂,𝜑)=𝑓𝑓1𝜂1+𝑧𝑓(𝑧)𝑓,𝐶1(𝑧)𝜂𝜑(𝑧)(𝑧𝑈)(𝜂,𝛽;𝜑,𝜓)=𝑓𝑓,𝑔𝑆(𝜂;𝜑)s.t.1𝛽𝑧𝑓(𝑧),𝑔(𝑧)𝛽𝜑(𝑧)(𝑧𝑈)(1.5) respectively. For special choices for the parameters 𝜂 and 𝛽 as well as for special choices for the function 𝜑 and 𝜓, we will obtain various subclasses of meromorphic function of the above classes (see [57]).

For 𝑚0={0}(={1,2,}), we define the multiplier transformation 𝐽𝑚(𝜆,) for functions 𝑓 (see [8, 9] with 𝑝=1) by 𝐽𝑚(1𝜆,)𝑓(𝑧)=𝑧+𝑘=0+𝜆(𝑘+1)𝑚𝑎𝑘𝑧𝑘>0;𝜆0;𝑧𝑈.(1.6) Obviously, we have 𝐽𝑚1(𝜆,)(𝐽𝑚2(𝜆,)𝑓(𝑧))=𝐽𝑚2(𝜆,)(𝐽𝑚1(𝜆,)𝑓(𝑧))=𝐽𝑚1+𝑚2(𝜆,)𝑓(𝑧),(1.7) for all integers 𝑚1 and 𝑚2.

We note that(i)𝐽𝑚(1,)𝑓(𝑧)=𝐼(𝑚,)𝑓(𝑧)(see [10, 11]);(ii)𝐽𝑚(𝜆,1)𝑓(𝑧)=𝐷𝑚𝜆𝑓(𝑧) (see [12]);(iii)𝐽𝑚(1,1)𝑓(𝑧)=𝐼𝑚𝑓(𝑧)(see [13]).

Setting 𝜑𝑚𝜆,(1𝑧)=𝑧+𝑘=0+𝜆(𝑘+1)𝑚𝑧𝑘𝑚0;>0;𝜆0;𝑧𝑈,(1.8) we define a new function 𝜑𝑚,𝜇𝜆,(𝑧) in terms of the Hadamard product (or convolution) by 𝜑𝑚𝜆,(𝑧)𝜑𝑚,𝜇𝜆,1(𝑧)=𝑧(1𝑧)𝜇𝜇>0;𝑧𝑈.(1.9) Essentially Choi et al. [14] motivated the Choi-Saigo-Srivastava operator for analytic functions, which includes an integral operator considered earlier by Noor [15] and others [1618]; we now introduce the operator 𝐼𝑚𝜇,(𝜆,)which is defined here by; 𝐼𝑚𝜇(𝜆,)𝑓(𝑧)=𝜑𝑚,𝜇𝜆,(𝑧)𝑓(𝑧)𝑓;𝑚0;>0;𝜆0;𝜇>0.(1.10) We note that(i)𝐼02(1,1)𝑓(𝑧)=𝑧𝑓(𝑧)+2𝑓(𝑧)and 𝐼12(1,1)𝑓(𝑧)=𝑓(𝑧);(ii)𝐼𝑚𝜇(1,)𝑓(𝑧)=𝐼𝑚,𝜇𝑓(𝑧) (see [11]).

It is easily verified from the definition of the operator 𝐼𝑚𝜇(𝜆,) that 𝐼𝜆𝑧𝜇𝑚+1(𝜆,)𝑓(𝑧)=𝐼𝑚𝜇(𝜆,)𝑓(𝑧)(𝜆+)𝐼𝜇𝑚+1(𝑧𝐼𝜆,)𝑓(𝑧)(𝜆>0),(1.11)𝑚𝜇(𝜆,)𝑓(𝑧)=𝜇𝐼𝑚𝜇+1(𝜆,)𝑓(𝑧)(𝜇+1)𝐼𝑚𝜇(𝜆,)𝑓(𝑧).(1.12)

Next, by using the operator 𝐼𝑚𝜇(𝜆,) defined by (1.10), we introduce the following subclasses of meromorphic functions: 𝑆𝑚,𝜇𝜆,(𝜂;𝜑)=𝑓𝑓and𝐼𝑚𝜇(𝜆,)𝑓(𝑧)𝑆(𝜂;𝜑)𝜑𝑀;𝜆,,𝜇>0;𝑚𝑁0,𝐾;0𝜂<1𝑚,𝜇𝜆,(𝜂;𝜑)=𝑓𝑓and𝐼𝑚𝜇(𝜆,)𝑓(𝑧)𝐾(𝜂;𝜑)𝜑𝑀;𝜆,,𝜇>0;𝑚𝑁0,𝐶;0𝜂<1𝑚,𝜇𝜆,(𝜂,𝛽;𝜑,𝜓)=𝑓𝑓and𝐼𝑚𝜇(𝜆,)𝑓(𝑧)𝐶(𝜂,𝛽;𝜑,𝜓)𝜑,𝜓𝑀;𝜆,,𝜇>0;𝑚𝑁0.;0𝜂,𝛽<1(1.13) We also note that 𝐾𝑓(𝑧)𝑚,𝜇𝜆,(𝜂;𝜑)𝑧𝑓𝑆(𝑧)𝑚,𝜇𝜆,(𝜂;𝜑).(1.14) In particular, we set 𝑆𝑚,𝜇𝜆,𝜂;1+𝐴𝑧=𝑆1+𝐵𝑧𝑚,𝜇𝜆,𝐾(𝜂;𝐴,𝐵)(1<𝐵<𝐴1),𝑚,𝜇𝜆,𝜂;1+𝐴𝑧=𝐾1+𝐵𝑧𝑚,𝜇𝜆,(𝜂;𝐴,𝐵)(1<𝐵<𝐴1).(1.15)

The main object of this paper is to investigate several inclusion properties of the classes mentioned above. Some applications involving integral operator are also considered.

2. Inclusion Properties Involving the Operator 𝐼𝑚𝜇(𝜆,)

The following lemmas will be required in our investigation.

Lemma 2.1 (see [19]). Let 𝜑 be convex univalent in 𝑈 with 𝜑(0)=1 and Re{𝛽𝜑(𝑧)+𝜈}>0(𝛽,𝜈). If 𝑝 is analytic in 𝑈 with 𝑝(0)=1, then 𝑝(𝑧)+𝑧𝑝(𝑧)𝛽𝑝(𝑧)+𝜈𝜑(𝑧)(2.1) implies that 𝑝(𝑧)𝜑(𝑧).(2.2)

Lemma 2.2 (see [20]). Let 𝜑 be convex univalent in 𝑈 and let 𝑤 be analytic in 𝑈 with Re{𝑤(𝑧)}0. If 𝑝(𝑧) is analytic in 𝑈 and 𝑝(0)=𝜑(0), then 𝑝(𝑧)+𝑤(𝑧)𝑧𝑝(𝑧)𝑝(𝑧),(2.3) implies that 𝑝(𝑧)𝜑(𝑧).(2.4)

At first, with the help of Lemma 2.1, we prove the following theorem.

Theorem 2.3. Let 𝜑𝑀 with max𝑧𝑈(Re{𝜑(𝑧)})<min𝜇+1𝜂,1𝜂(/𝜆)+1𝜂1𝜂(𝜆,𝜇,>0;0𝜂<1);(2.5) then 𝑆𝑚,𝜇+1𝜆,𝑆(𝜂;𝜑)𝑚,𝜇𝜆,𝑆(𝜂;𝜑)𝑚+1,𝜇𝜆,(𝜂;𝜑).(2.6)

Proof. We begin by showing the first inclusion relationship: 𝑆𝑚,𝜇+1𝜆,𝑆(𝜂;𝜑)𝑚,𝜇𝜆,(𝜂;𝜑),(2.7) which is asserted by Theorem 2.3. Let 𝑆𝑓𝑚,𝜇+1𝜆,(𝜂;𝜑)and set 1𝑝(𝑧)=𝑧𝐼1𝜂𝑚𝜇(𝜆,)𝑓(𝑧)𝐼𝑚𝜇(𝜆,)𝑓(𝑧)𝜂,(2.8) where the function 𝑝(𝑧) is analytic in 𝑈 with 𝑝(0)=1. Then, by applying (1.11) is (2.8), we obtain 𝜇𝐼𝑚𝜇+1(𝜆,)𝑓(𝑧)𝐼𝑚𝜇(𝜆,)𝑓(𝑧)=(1𝜂)𝑝(𝑧)+(𝜇+1𝜂).(2.9) Differentiating (2.9) logarithmically with respect to 𝑧 and multiplying the resulting equation by 𝑧, we have 1𝑧𝐼1𝜂𝑚𝜇+1(𝜆,)𝑓(𝑧)𝐼𝑚𝜇+1=(𝜆,)𝑓(𝑧)𝜂𝑧𝑝(𝑧)(1𝜂)𝑝(𝑧)+𝜇+1𝜂+𝑝(𝑧)(𝑧𝑈).(2.10) Since max𝑧𝑈(Re{𝜑(𝑧)})<𝜇+1𝜂1𝜂(𝜇>0;0𝜂<1;𝑧𝑈),(2.11) we see that Re{𝜇+1𝜂(1𝜂)𝜑(𝑧)}>0(𝑧𝑈).(2.12) Applying Lemma 2.1 to (2.10), it follows that 𝑝𝜑 in 𝑈, that is, 𝑆𝑓𝑚,𝜇𝜆,(𝜂;𝜑).(2.13) For the second inclusion relationship asserted by Theorem 2.3, using arguments similar to those detailed above with (1.11), we obtain 𝑆𝑚,𝜇𝜆,𝑆(𝜂,𝛽;𝜑)𝑚+1,𝜇𝜆,(𝜂,𝛽;𝜑).(2.14) We thus complete the proof of Theorem 2.3.

Theorem 2.4. Let 𝜑𝑀 with max𝑧𝑈(Re{𝜑(𝑧)})<min𝜇+1𝜂,1𝜂(/𝜆)+1𝜂1𝜂(𝜆,𝜇,>0;0𝜂<1);(2.15) then 𝐾𝑚,𝜇+1𝜆,𝐾(𝜂;𝜑)𝑚,𝜇𝜆,𝐾(𝜂;𝜑)𝑚+1,𝜇𝜆,(𝜂;𝜑).(2.16)

Proof. Applying (1.14) and Theorem 2.3, we observe that 𝐾𝑓(𝑧)𝑚,𝜇+1𝜆,(𝜂;𝜑)𝐼𝑚𝜇+1𝐼(𝜆,)𝑓(𝑧)𝐾(𝜂;𝜑)𝑧𝑚𝜇+1(𝜆,)𝑓(𝑧)𝑆(𝜂;𝜑)𝐼𝑚𝜇+1(𝜆,)𝑧𝑓(𝑧)𝑆(𝜂;𝜑)𝑧𝑓𝑆(𝑧)𝑚,𝜇+1𝜆,(𝜂;𝜑)𝑧𝑓𝑆(𝑧)𝑚,𝜇𝜆,(𝜂;𝜑)𝐼𝑚𝜇(𝜆,)𝑧𝑓𝑆𝐼(𝑧)(𝜂;𝜑)𝑧𝑚𝜇(𝜆,)𝑓(𝑧)𝑆(𝜂;𝜑)𝐼𝑚𝜇𝐾(𝜆,)𝑓(𝑧)𝐾(𝜂;𝜑)𝑓(𝑧)𝑚,𝜇𝜆,𝐾(𝜂;𝜑),𝑓(𝑧)𝑚,𝜇𝜆,(𝜂;𝜑)𝑧𝑓𝑆(𝑧)𝑚,𝜇𝜆,(𝜂;𝜑)𝑧𝑓(𝑧)𝑆𝑚+1,𝜇𝜆,𝐼(𝜂;𝜑)𝑧𝜇𝑚+1(𝜆,)𝑓(𝑧)𝑆(𝜂;𝜑)𝐼𝜇𝑚+1𝐾𝐾(𝜆,)𝑓(𝑧)(𝜂;𝜑)𝑓(𝑧)𝑚+1,𝜇𝜆,(𝜂;𝜑),(2.17) which evidently prove Theorem 2.4.

By setting 𝜑(𝑧)=1+𝐴𝑧1+𝐵𝑧(1<𝐵<𝐴1;𝑧𝑈)(2.18) in Theorems 2.3 and 2.4, we deduce the following corollary.

Corollary 2.5. Suppose that 1+𝐴1+𝐵<min𝜇+1𝜂,1𝜂(/𝜆)+1𝜂1𝜂(𝜆,𝜇,>0;0𝜂<1;1<𝐵<𝐴1).(2.19) Then, for the function classes defined by (1.15), 𝑆𝑚,𝜇+1𝜆,𝑆(𝜂;𝐴,𝐵)𝑚,𝜇𝜆,𝑆(𝜂;𝐴,𝐵)𝑚+1,𝜇𝜆,𝐾(𝜂;𝐴,𝐵),𝑚,𝜇+1𝜆,𝐾(𝜂;𝐴,𝐵)𝑚,𝜇𝜆,𝐾(𝜂;𝐴,𝐵)𝑚+1,𝜇𝜆,(𝜂;𝐴,𝐵).(2.20)

Next by using Lemma 2.2, one obtains the following inclusion relationships for the class 𝐶𝑚,𝜇𝜆,(𝜂,𝛽;𝜑,𝜓).

Theorem 2.6. Let 𝜑,𝜓𝑀 with max𝑧𝑈(Re{𝜑(𝑧)})<min𝜇+1𝜂,1𝜂(/𝜆)+1𝜂1𝜂(𝜆,𝜇,>0;0𝜂<1).(2.21) Then 𝐶𝑚,𝜇+1𝜆,𝐶(𝜂,𝛽;𝜑,𝜓)𝑚,𝜇𝜆,𝐶(𝜂,𝛽;𝜑,𝜓)𝑚+1,𝜇𝜆,(𝜂,𝛽;𝜑,𝜓).(2.22)

Proof. We begin by proving that 𝐶𝑚,𝜇+1𝜆,𝐶(𝜂,𝛽;𝜑,𝜓)𝑚,𝜇𝜆,(𝜂,𝛽;𝜑,𝜓),(2.23) which is the first inclusion relationship asserted by Theorem 2.6. Let 𝐶𝑓𝑚,𝜇+1𝜆,(𝜂,𝛽;𝜑,𝜓).(2.24) Then, in view of the definition of the function class 𝐶𝑚,𝜇+1𝜆,(𝜂,𝛽;𝜑,𝜓), there exists a function 𝑘(𝑧)𝑆(𝜂;𝜑) such that 1𝑧𝐼1𝛽𝑚𝜇+1(𝜆,)𝑓(𝑧)𝑘(𝑧)𝛽𝜓(𝑧).(2.25) Choose the function 𝑔(𝑧) such that 𝐼𝑚𝜇+1(𝜆,)𝑔(𝑧)=𝑘(𝑧). Then 𝑆𝑔(𝑧)𝑚,𝜇+1𝜆,(𝜂;𝜑)and 1𝑧𝐼1𝛽𝑚𝜇+1(𝜆,)𝑓(𝑧)𝐼𝑚𝜇+1(𝜆,)𝑔(𝑧)𝛽𝜓(𝑧).(2.26) Now let 1𝑝(𝑧)=𝑧𝐼1𝛽𝑚𝜇+1(𝜆,)𝑓(𝑧)𝐼𝑚𝜇+1(𝜆,)𝑔(𝑧)𝛽,(2.27) where the function 𝑝(𝑧) is analytic in 𝑈 with 𝑝(0)=1. Using (1.12), we find that 1𝑧𝐼1𝛽𝑚𝜇+1(𝜆,)𝑓(𝑧)𝐼𝑚𝜇+1=1(𝜆,)𝑔(𝑧)𝛽𝐼1𝛽𝑚𝜇+1(𝜆,)𝑧𝑓(𝑧)𝐼𝑚𝜇+1=1(𝜆,)𝑔(𝑧)𝛽1𝛽𝑧(𝐼𝑚𝜇(𝜆,)𝑧𝑓(𝑧)+(𝜇+1)𝐼𝑚𝜇(𝜆,)𝑧𝑓(𝑧)𝑧𝐼𝑚𝜇(𝜆,)𝑔(𝑧)+(𝜇+1)𝐼𝑚𝜇(=1𝜆,)𝑔(𝑧)𝛽×1𝛽𝑧(𝐼𝑚𝜇(𝜆,)𝑧𝑓(𝑧)/𝐼𝑚𝜇𝐼(𝜆,)𝑔(𝑧)+(𝜇+1)𝑚𝜇(𝜆,)𝑧𝑓(𝑧)/𝐼𝑚𝜇(𝜆,)𝑔(𝑧)𝑧𝐼𝑚𝜇+1(𝜆,)𝑔(𝑧)/𝐼𝑚𝜇.(𝜆,)𝑔(𝑧)+(𝜇+1)𝛽(2.28) Since 𝑆𝑔𝑚,𝜇+1𝜆,𝑆(𝜂;𝜑)𝑚,𝜇𝜆,(𝜂;𝜑),(2.29) by Theorem 2.3, then we set 1𝑞(𝑧)=𝑧𝐼1𝜂𝑚𝜇(𝜆,)𝑔(𝑧)𝐼𝑚𝜇(𝜆,)𝑔(𝑧)𝜂,(2.30) where 𝑞𝜑 in 𝑈 with the assumption that 𝜑𝑀. Then by (2.27) and (2.28), we observe that 𝐼𝑚𝜇(𝜆,)𝑧𝑓=(𝑧)(1𝛽)𝑝(𝑧)𝐼𝑚𝜇(𝜆,)𝑔(𝑧)+𝛽𝐼𝑚𝜇1(𝜆,)𝑔(𝑧),(2.31)𝑧𝐼1𝛽𝑚𝜇+1(𝜆,)𝑓(𝑧)𝐼𝑚𝜇+1=1(𝜆,)𝑔(𝑧)𝛽1𝛽𝑧(𝐼𝑚𝜇(𝜆,)𝑧𝑓(𝑧)/𝐼𝑚𝜇(𝜆,)𝑔(𝑧)+(𝜇+1)((1𝛽)𝑝(𝑧)+𝛽).𝜇+1𝜂(1𝜂)𝑞(𝑧)𝛽(2.32) Differentiating both sides of (2.31) with respect to 𝑧, multiplying by 𝑧 and dividing by 𝐼𝑚𝜇(𝜆,)𝑔(𝑧), we obtain 𝑧(𝐼𝑚𝜇(𝜆,)𝑧𝑓(𝑧)𝐼𝑚𝜇(𝜆,)𝑔(𝑧)=(1𝛽)𝑧𝑝[](𝑧)(1𝛽)𝑝(𝑧)+𝛽][(1𝜂)𝑞(𝑧)+𝜂.(2.33) Now making use of (2.26), (2.32), and (2.33), we get 1𝑧𝐼1𝛽𝑚𝜇(𝜆,)𝑓(𝑧)𝐼𝑚𝜇(𝜆,)𝑔(𝑧)𝛽=𝑝(𝑧)+𝑧𝑝(𝑧)(𝜇+1𝜂)(1𝜂)𝑞(𝑧)𝜓(𝑧).(2.34) Since 𝜇>0 and 𝑞𝜑 in 𝑈 with max𝑧𝑈(Re{𝜑(𝑧)})<𝜇+1𝜂1𝜂,(2.35) we have Re{𝜇+1𝜂(1𝜂)𝑞(𝑧)}>0(𝑧𝑈).(2.36) Hence, by taking 1𝑤(𝑧)=(𝜇+1𝜂)(1𝜂)𝑞(𝑧)(2.37) in (2.34), and then applying Lemma 2.2, we can show that 𝑝𝜓 in 𝑈, so that 𝐶𝑓𝑚,𝜇𝜆,(𝜂,𝛽;𝜑,𝜓).(2.38) For the second inclusion relationship asserted by Theorem 2.6, using arguments similar to those detailed above with (1.11), we obtain 𝐶𝑚,𝜇𝜆,𝐶(𝜂,𝛽;𝜑,𝜓)𝑚+1,𝜇𝜆,(𝜂,𝛽;𝜑,𝜓).(2.39) We thus complete the proof of Theorem 2.6.

3. Inclusion Properties Involving the Integral Operator 𝐹𝑐

In this section, we consider the integral operator 𝐹𝑐 (see, [4, page 11]) defined by 𝐹𝑐(𝑓)=𝐹𝑐𝑐(𝑓)(𝑧)=𝑧𝑐+1𝑧0𝑡𝑐𝑓(𝑡)𝑑𝑡𝑓;𝑐>0.(3.1) From the definition (3.1), it is easily verified that 𝑧𝐼𝑚𝜇(𝜆,)𝐹𝑐(𝑓)(𝑧)=𝑐𝐼𝑚𝜇(𝜆,)𝑓(𝑧)(𝑐+1)𝐼𝑚𝜇(𝜆,)𝐹𝑐(𝑓)(𝑧).(3.2) By using (3.2) we can prove the following theorems (see Cho et al. [11]).

Theorem 3.1. Let 𝜑𝑀 with max𝑧𝑈(Re{𝜑(𝑧)})<𝑐+1𝜂1𝜂(𝑐>0;0𝜂<1).(3.3) If 𝑆𝑓𝑚,𝜇𝜆,(𝜂;𝜑), then 𝐹𝑐𝑆(𝑓)𝑚,𝜇𝜆,(𝜂;𝜑).(3.4)

Theorem 3.2. Let 𝜑𝑀 with max𝑧𝑈(Re{𝜑(𝑧)})<𝑐+1𝜂1𝜂(𝑐>0;0𝜂<1).(3.5) If 𝐾𝑓𝑚,𝜇𝜆,(𝜂;𝜑), then 𝐹𝑐𝐾(𝑓)𝑚,𝜇𝜆,(𝜂;𝜑).(3.6)

From Theorems 3.1 and 3.2, we can easily deduce the following.

Corollary 3.3. Suppose that 1+𝐴<1+𝐵𝑐+1𝜂1𝜂(𝑐>0;1<𝐵<𝐴1;0𝜂<1).(3.7) Then for the function classes defined by (1.15), the following inclusion relationships hold true: 𝑆𝑓𝑚,𝜇𝜆,(𝜂;𝐴,𝐵)𝐹𝑐𝑆(𝑓)𝑚,𝜇𝜆,𝐾(𝜂;𝐴,𝐵),𝑓𝑚,𝜇𝜆,(𝜂;𝐴,𝐵)𝐹𝑐𝐾(𝑓)𝑚,𝜇𝜆,(𝜂;𝐴,𝐵).(3.8)

Theorem 3.4. Let 𝜑,𝜓𝑀 with max𝑧𝑈(Re{𝜑(𝑧)})<𝑐+1𝜂1𝜂(𝑐>0;0𝜂<1).(3.9) If 𝐶𝑓𝑚,𝜇𝜆,(𝜂,𝛽;𝜑,𝜓), then 𝐹𝑐𝐶(𝑓)𝑚,𝜇𝜆,(𝜂,𝛽;𝜑,𝜓).(3.10)

Remark 3.5. Putting 𝜆=1 in all the above results, we will obtain the results obtained by Cho et al. [11].

Acknowledgment

The author thanks the referees for their valuable suggestions which led to improvement of this paper.