Abstract

Finite-dimensional realization of a Two-Step Newton-Tikhonov method is considered for obtaining a stable approximate solution to nonlinear ill-posed Hammerstein-type operator equations ๐พ๐น(๐‘ฅ)=๐‘“. Here ๐นโˆถ๐ท(๐น)โŠ†๐‘‹โ†’๐‘‹ is nonlinear monotone operator, ๐พโˆถ๐‘‹โ†’๐‘Œ is a bounded linear operator, ๐‘‹ is a real Hilbert space, and ๐‘Œ is a Hilbert space. The error analysis for this method is done under two general source conditions, the first one involves the operator ๐พ and the second one involves the Frรฉchet derivative of ๐น at an initial approximation ๐‘ฅ0 of the the solution ฬ‚๐‘ฅ: balancing principle of Pereverzev and Schock (2005) is employed in choosing the regularization parameter and order optimal error bounds are established. Numerical illustration is given to confirm the reliability of our approach.

1. Introduction

Tikhonovโ€™s regularization (e.g., [1]) method has been used extensively to stabilize the approximate solution of nonlinear ill-posed problems. In recent years, increased emphasis has been placed on iterative regularization procedures [2, 3] for obtaining the approximate solution of such problems. In this paper, we examine the use of iterative regularization procedures for Hammerstein-type [4, 5] equations of the form๐พ๐น(๐‘ฅ)=๐‘“,(1.1) where ๐นโˆถ๐ท(๐น)โŠ†๐‘‹โ†’๐‘‹, is nonlinear monotone operator, ๐น๎…ž(โ‹…)โˆ’1 does not exists, and ๐พโˆถ๐‘‹โ†’๐‘Œ is a bounded linear operator. Throughout this paper, ๐ท(๐น) is the domain of ๐น,๐น๎…ž(โ‹…) is the Frรฉchet derivative of ๐น,๐‘‹ is a real Hilbert space, and ๐‘Œ is a Hilbert space. The inner product and the corresponding norm are denoted by โŸจโ‹…,โ‹…โŸฉ and โ€–โ‹…โ€–, respectively.

Recall that [6] the operator ๐น is said to be a monotone operator if โŸจ๐น(๐‘ฅ)โˆ’๐น(๐‘ฆ),๐‘ฅโˆ’๐‘ฆโŸฉโ‰ฅ0, for all ๐‘ฅ,๐‘ฆโˆˆ๐ท(๐น).

It is assumed throughout that ๐‘“๐›ฟโˆˆ๐‘Œ are the available noisy data withโ€–โ€–๐‘“โˆ’๐‘“๐›ฟโ€–โ€–โ‰ค๐›ฟ,(1.2) and ๐น possesses a uniformly bounded Frรฉchet derivative for each ๐‘ฅโˆˆ๐ท(๐น) (cf. [7]), that is,โ€–๐นโ€ฒ(๐‘ฅ)โ€–โ‰ค๐‘€,๐‘ฅโˆˆ๐ท(๐น)(1.3) for some ๐‘€.

Observe that the solution ๐‘ฅ of (1.1) with ๐‘“๐›ฟ in place of ๐‘“ can be obtained by first solving๐พ๐‘ง=๐‘“๐›ฟ(1.4) for ๐‘ง and then solving the nonlinear problem๐น(๐‘ฅ)=๐‘ง.(1.5) In [4, 5, 8] this was exploited. In [4], ๐‘ง is approximated with ๐‘ง๐›ฟ๐›ผ where๐‘ง๐›ฟ๐›ผ=๎€ท๐พโˆ—๎€ธ๐พ+๐›ผ๐ผโˆ’1๐พโˆ—๐‘“๐›ฟ,๐›ผ>0,๐›ฟ>0,(1.6) and then solve (1.5) iteratively using the following Newton-type procedure:๐‘ฅ๐›ฟ๐‘›+1,๐›ผ=๐‘ฅ๐›ฟ๐‘›,๐›ผโˆ’๐น๎…ž๎€ท๐‘ฅ0๎€ธโˆ’1๎€ท๐น๎€ท๐‘ฅ๐›ฟ๐‘›,๐›ผ๎€ธโˆ’๐‘ง๐›ฟ๐›ผ๎€ธ(1.7) with ๐‘ฅ๐›ฟ0,๐›ผโˆถ=๐‘ฅ0 and obtained local linear convergence. Here and below ๐‘ฅ0โˆˆ๐ท(๐น) is a known initial approximation of the solution ฬ‚๐‘ฅ of (1.1) such that โ€–๐‘ฅ0โˆ’ฬ‚๐‘ฅโ€–โ‰ค๐œŒ.

In [8], to solve (1.5), George and Kunhanandan used the iteration๐‘ฅ๐›ฟ๐‘›+1,๐›ผ=๐‘ฅ๐›ฟ๐‘›,๐›ผโˆ’๐น๎…ž๎€ท๐‘ฅ๐›ฟ๐‘›,๐›ผ๎€ธโˆ’1๎€ท๐น๎€ท๐‘ฅ๐›ฟ๐‘›,๐›ผ๎€ธโˆ’๐‘ง๐›ฟ๐›ผ๎€ธ,๐‘ฅ๐›ฟ0,๐›ผโˆถ=๐‘ฅ0,(1.8) where๐‘ง๐›ฟ๐›ผ=๎€ท๐พโˆ—๎€ธ๐พ+๐›ผ๐ผโˆ’1๐พโˆ—๎€ท๐‘“๐›ฟ๎€ท๐‘ฅโˆ’๐พ๐น0๎€ท๐‘ฅ๎€ธ๎€ธ+๐น0๎€ธ,(1.9) and obtained local quadratic convergence.

A sequence (๐‘ฅ๐‘›) in ๐‘‹ with lim๐‘ฅ๐‘›=๐‘ฅโˆ— is said to be convergent of order ๐‘>1, if there exist positive reals ๐›ฝ and ๐›พ such that, for all ๐‘›โˆˆ๐‘,โ€–โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ€–โ‰ค๐›ฝ๐‘’โˆ’๐›พ๐‘๐‘›.(1.10) If a sequence (๐‘ฅ๐‘›) satisfies โ€–๐‘ฅ๐‘›โˆ’๐‘ฅโˆ—โ€–โ‰ค๐›ฝ๐‘ž๐‘›, 0<๐‘ž<1, then (๐‘ฅ๐‘›) is said to be linearly convergent.

As in [8], it is assumed that the solution ฬ‚๐‘ฅ of (1.1) satisfiesโ€–โ€–๐น๎€ท๐‘ฅ(ฬ‚๐‘ฅ)โˆ’๐น0๎€ธโ€–โ€–๎€ฝโ€–โ€–๐น๎€ท๐‘ฅ=min(๐‘ฅ)โˆ’๐น0๎€ธโ€–โ€–๎€พโˆถ๐พ๐น(๐‘ฅ)=๐‘“,๐‘ฅโˆˆ๐ท(๐น).(1.11) The regularization parameter ๐›ผ is chosen from a finite set๐ท๐‘=๎€ฝ๐›ผ๐‘–โˆถ๐›ผ0<๐›ผ1<๐›ผ2<โ‹ฏ<๐›ผ๐‘๎€พ(1.12) using the adaptive method considered by Pereverzev and Schock in [9].

In [10], Argyros and Hilout considered a method called Two-Step Directional Newton Method (TSDNM) for approximating a zero ๐‘ฅโˆ— of a differentiable function ๐น defined on a convex subset ๐’Ÿ of a Hilbert space ๐ป with values in โ„. Motivated by TSDNM, in [11], we propose a Two-Step Newton-Tikhonov Methods (TSNTM) for solving (1.1).

In fact, in [11] we consider two cases of ๐น, in the first case we assume that ๐น๎…ž(๐‘ฅ0)โˆ’1 exist and in the second case we assume ๐น is monotone. In this paper we consider the finite-dimensional realization of the second case, that is, ๐น is monotone. The finite-dimensional realization of the method and associated algorithm are proposed for which local-cubic convergence is established theoretically and validated numerically.

The organization of this paper is as follows. Section 2 deals with Discretized Tikhonov regularization and Section 3 investigates the convergence of the Discretized TSNTM. Section 4 discusses the algorithm and finally the paper ends with a numerical example in Section 5.

2. Discretized Tikhonov Regularization

This section deals with discretized Tikhonov regularized solution ๐‘ง๐›ผโ„Ž,๐›ฟ of (1.4) and (an a priori and an a posteriori) error estimate for โ€–๐น(ฬ‚๐‘ฅ)โˆ’๐‘ง๐›ผโ„Ž,๐›ฟโ€– using an error estimate for โ€–๐น(ฬ‚๐‘ฅ)โˆ’๐‘ง๐›ผโ€– from [8].

The following assumption is used in [8] to obtain the error estimate.

Assumption 2.1. There exists a continuous, strictly monotonically increasing function ๐œ‘โˆถ(0,๐‘Ž]โ†’(0,โˆž) with ๐‘Žโ‰ฅโ€–๐พโ€–2 satisfying(i)lim๐œ†โ†’0๐œ‘(๐œ†)=0, (ii)sup๐œ†>0๐›ผ๐œ‘(๐œ†)],๐œ†+๐›ผโ‰ค๐œ‘(๐›ผ)โˆ€๐œ†โˆˆ(0,๐‘Ž(2.1)(iii)๐น๎€ท๐‘ฅ(ฬ‚๐‘ฅ)โˆ’๐น0๎€ธ๎€ท๐พ=๐œ‘โˆ—๐พ๎€ธ๐‘ค(2.2)
for some ๐‘คโˆˆ๐‘‹ such that โ€–๐‘คโ€–โ‰ค1.

Remark 2.2. The functions ๐œ‘(๐œ†)โˆถ=๐œ†๐œˆ,๐œ†>0,(2.3) for 0<๐œˆโ‰ค1 and ๎ƒฏ๎‚ƒ1๐œ‘(๐œ†)=ln๐œ†๎‚„โˆ’๐‘,0<๐œ†โ‰ค๐‘’โˆ’(๐‘+1),0otherwise(2.4) for ๐‘โ‰ฅ0 satisfy the above assumption (see [12]).

Theorem 2.3 (cf. [8], Theorem 4.3). Let ๐‘ง๐›ผโˆถ=๐‘ง0๐›ผ be as in (1.9) and Assumption 2.1 holds. Then โ€–โ€–๐น(ฬ‚๐‘ฅ)โˆ’๐‘ง๐›ผโ€–โ€–โ‰ค๐œ‘(๐›ผ).(2.5)
Let {๐‘ƒโ„Ž}โ„Ž>0 be a family of orthogonal projections on ๐‘‹. Let ๐œ€โ„Žโ€–โ€–๐พ๎€ทโˆถ=๐ผโˆ’๐‘ƒโ„Ž๎€ธโ€–โ€–,๐œโ„Žโ€–โ€–๐นโˆถ=๎…ž(๎€ท๐‘ฅ)๐ผโˆ’๐‘ƒโ„Ž๎€ธโ€–โ€–,โˆ€๐‘ฅโˆˆ๐ท(๐น)(2.6) and {๐‘โ„Žโˆถโ„Ž>0} is such that limโ„Žโ†’0(โ€–(๐ผโˆ’๐‘ƒโ„Ž)๐‘ฅ0โ€–/๐‘โ„Ž)=0,โ€‰ limโ„Žโ†’0(โ€–(๐ผโˆ’๐‘ƒโ„Ž)๐น(๐‘ฅ0)โ€–/๐‘โ„Ž)=0 and limโ„Žโ†’0๐‘โ„Ž=0. We assume that ๐œ€โ„Žโ†’0 and ๐œโ„Žโ†’0 as โ„Žโ†’0. The above assumption is satisfied if, ๐‘ƒโ„Žโ†’๐ผ pointwise and if ๐พ and ๐น๎…ž(๐‘ฅ) are compact operators. Further we assume that ๐œ€โ„Ž<๐œ€0,๐œโ„Žโ‰ค๐œ0,๐‘โ„Žโ‰ค๐‘0 and ๐›ฟโˆˆ(0,๐›ฟ0] where ๐›ฟ0+๐œ€0โˆš<(2/(2๐‘€+3))๐›ผ0. The discretized Tikhonov regularization method for the regularized equation (1.4) consists of solving the equation ๎€ท๐‘ƒโ„Ž๐พโˆ—๐พ๐‘ƒโ„Ž+๐›ผ๐‘ƒโ„Ž๎€ธ๎‚€๐‘ง๐›ผโ„Ž,๐›ฟโˆ’๐‘ƒโ„Ž๐น๎€ท๐‘ฅ0๎€ธ๎‚=๐‘ƒโ„Ž๐พโˆ—๎€บ๐‘“๐›ฟ๎€ท๐‘ฅโˆ’๐พ๐น0๎€ธ๎€ป.(2.7)

Theorem 2.4. Suppose assumptions in Theorem 2.3 hold. Let ๐‘ง๐›ผโ„Ž,๐›ฟ be as in (2.7) and ๐‘โ„Žโ‰ค(๐›ฟ+๐œ€โ„Žโˆš)/๐›ผ. Then โ€–โ€–๐น(ฬ‚๐‘ฅ)โˆ’๐‘ง๐›ผโ„Ž,๐›ฟโ€–โ€–๎ƒฉ๎ƒฉโ‰ค๐ถ๐œ‘(๐›ผ)+๐›ฟ+๐œ€โ„Žโˆš๐›ผ๎ƒช๎ƒช,(2.8) where ๐ถ=(1/2)max{๐‘€๐œŒ,1}+1.

Proof . Let ๐‘ง๐›ผ=(๐พโˆ—๐พ+๐›ผ๐ผ)โˆ’1๐พโˆ—(๐‘“โˆ’๐พ๐น(๐‘ฅ0))+๐น(๐‘ฅ0). Then โ€–โ€–๐‘ง๐›ผโˆ’๐‘งโ„Ž๐›ผโ€–โ€–=โ€–โ€–๎€ท๐พโˆ—๎€ธ๐พ+๐›ผ๐ผโˆ’1๐พโˆ—๎€ท๎€ท๐‘ฅ๐‘“โˆ’๐พ๐น0โˆ’๎€ท๐‘ƒ๎€ธ๎€ธโ„Ž๐พโˆ—๐พ๐‘ƒโ„Ž๎€ธ+๐›ผ๐ผโˆ’1๐‘ƒโ„Ž๐พโˆ—๎€ท๎€ท๐‘ฅ๐‘“โˆ’๐พ๐น0๎€ท๐‘ฅ๎€ธ๎€ธ+๐น0๎€ธโˆ’๐‘ƒโ„Ž๐น๎€ท๐‘ฅ0๎€ธโ€–โ€–โ‰คโ€–โ€–๎€ท๐‘ƒโ„Ž๐พโˆ—๐พ๐‘ƒโ„Ž+๐›ผ๐‘ƒโ„Ž๎€ธโˆ’1๐‘ƒโ„Ž๐พโˆ—๎€ท๐พ๐‘ƒโ„Ž๐พโˆ’๐พ๎€ธ๎€ทโˆ—๎€ธ๐พ+๐›ผ๐ผโˆ’1๐พโˆ—๐พ๎€บ๎€ท๐‘ฅ๐น(ฬ‚๐‘ฅ)โˆ’๐น0โ€–โ€–+โ€–โ€–๎€ท๎€ธ๎€ป๐ผโˆ’๐‘ƒโ„Ž๎€ธ๐น๎€ท๐‘ฅ0๎€ธโ€–โ€–โ‰คโ€–โ€–๎€ท๐‘ฅ๐น(ฬ‚๐‘ฅ)โˆ’๐น0๎€ธโ€–โ€–๐œ€โ„Ž2โˆš๐›ผ+๐‘โ„Žโ‰คโ€–โ€–โ€–๎€œ10๐น๎…ž๎€ท๐‘ฅ0๎€ท+๐‘กฬ‚๐‘ฅโˆ’๐‘ฅ0๎€ธ๎€ธ๎€ทฬ‚๐‘ฅโˆ’๐‘ฅ0๎€ธโ€–โ€–โ€–๐œ€๐‘‘๐‘กโ„Ž2โˆš๐›ผ+๐‘โ„Ž๐œ€โ‰ค๐‘€๐œŒโ„Ž2โˆš๐›ผ+๐‘โ„Ž,โ€–โ€–๐‘งโ„Ž๐›ผโˆ’๐‘ง๐›ผโ„Ž,๐›ฟโ€–โ€–=โ€–โ€–๎€ท๐‘ƒโ„Ž๐พโˆ—๐พ๐‘ƒโ„Ž๎€ธ+๐›ผ๐ผโˆ’1๐‘ƒโ„Ž๐พโˆ—๎€ท๐‘“โˆ’๐‘“๐›ฟ๎€ธโ€–โ€–โ‰ค๐›ฟ2โˆš๐›ผ.(2.9) Now the result follows from (2.9), Theorem 2.3 and the following triangle inequality: โ€–โ€–๐น(ฬ‚๐‘ฅ)โˆ’๐‘ง๐›ฟ๐›ผ,โ„Žโ€–โ€–โ‰คโ€–โ€–๐น(ฬ‚๐‘ฅ)โˆ’๐‘ง๐›ผโ€–โ€–+โ€–โ€–๐‘ง๐›ผโˆ’๐‘งโ„Ž๐›ผโ€–โ€–+โ€–โ€–๐‘งโ„Ž๐›ผโˆ’๐‘ง๐›ผโ„Ž,๐›ฟโ€–โ€–.(2.10)

2.1. A Priori Choice of the Parameter

Note that the estimate ๐œ‘(๐›ผ)+(๐›ฟ+๐œ€โ„Žโˆš๐›ผ)/ in (2.8) is of optimal order for the choice ๐›ผโˆถ=๐›ผ(๐›ฟ,โ„Ž) which satisfies ๐œ‘(๐›ผ(๐›ฟ,โ„Ž))=(๐›ฟ+๐œ€โ„Žโˆš)/๐›ผ(๐›ฟ,โ„Ž). Let ๐œ“(๐œ†)โˆถ=๐œ†โˆš๐œ‘โˆ’1(๐œ†),0<๐œ†โ‰ค๐‘Ž. Then we have ๐›ฟ+๐œ€โ„Ž=โˆš๐›ผ(๐›ฟ,โ„Ž)๐œ‘(๐›ผ(๐›ฟ,โ„Ž))=๐œ“(๐œ‘(๐›ผ(๐›ฟ,โ„Ž))) and๐›ผ(๐›ฟ,โ„Ž)=๐œ‘โˆ’1๎€ท๐œ“โˆ’1๎€ท๐›ฟ+๐œ€โ„Ž.๎€ธ๎€ธ(2.11) So the relation (2.8) leads to โ€–๐น(ฬ‚๐‘ฅ)โˆ’๐‘ง๐›ผโ„Ž,๐›ฟโ€–โ‰ค2๐ถ๐œ“โˆ’1(๐›ฟ+๐œ€โ„Ž).

2.2. An Adaptive Choice of the Parameter

In this subsection, we consider the balancing principle established by Pereverzev and Shock [9] for choosing the parameter ๐›ผ. Let๐ท๐‘=๎€ฝ๐›ผ๐‘–โˆถ0<๐›ผ0<๐›ผ1<๐›ผ2<โ‹ฏ<๐›ผ๐‘๎€พ(2.12) be the set of possible values of the parameter ๐›ผ.

Let๎ƒฏ๎€ท๐›ผ๐‘™โˆถ=max๐‘–โˆถ๐œ‘๐‘–๎€ธโ‰ค๐›ฟ+๐œ€โ„Žโˆš๐›ผ๐‘–๎ƒฐ๎€ฝ<๐‘,(2.13)๐‘˜=max๐‘–โˆถ๐›ผ๐‘–โˆˆ๐ท+๐‘๎€พ,(2.14) where ๐ท+๐‘={๐›ผ๐‘–โˆˆ๐ท๐‘โˆถโ€–๐‘ง๐›ฟ๐›ผ๐‘–โˆ’๐‘ง๐›ฟ๐›ผ๐‘—โ€–โ‰ค4๐ถ(๐›ฟ+๐œ€โ„Žโˆš)/๐›ผ๐‘—,๐‘—=0,1,2,โ€ฆ,๐‘–โˆ’1}.

We use the following theorem, proof of which is analogous to the proof of Theoremโ€‰โ€‰4.3 in [8], for our error analysis.

Theorem 2.5 (cf. [8], Theorem 4.3). Let ๐‘™ be as in (2.13), let ๐‘˜ be as in (2.14), and let ๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜ be as in (2.7) with ๐›ผ=๐›ผ๐‘˜โˆถ=๐œ‡๐‘˜๐›ผ0,๐œ‡>1. Then ๐‘™โ‰ค๐‘˜ and โ€–โ€–๐น(ฬ‚๐‘ฅ)โˆ’๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜โ€–โ€–๎‚ตโ‰ค๐ถ2+4๐œ‡๎‚ถ๐œ‡โˆ’1๐œ‡๐œ“โˆ’1๎€ท๐›ฟ+๐œ€โ„Ž๎€ธ.(2.15)

3. Discretized Two-Step Newton Method (DTSNM)

We need the following assumptions for the convergence of DTSNM and to obtain the error estimate.

Assumption 3.1 (cf. [7], Assumption 3 (A3)). There exists a constant ๐‘˜0โ‰ฅ0 such that for every ๐‘ฅ,๐‘ขโˆˆ๐ท(๐น) and ๐‘ฃโˆˆ๐‘‹ there exists an element ฮฆ(๐‘ฅ,๐‘ข,๐‘ฃ)โˆˆ๐‘‹ such that [๐น๎…ž(๐‘ฅ)โˆ’๐น๎…ž(๐‘ข)]๐‘ฃ=๐น๎…ž(๐‘ข)ฮฆ(๐‘ฅ,๐‘ข,๐‘ฃ), โ€–ฮฆ(๐‘ฅ,๐‘ข,๐‘ฃ)โ€–โ‰ค๐‘˜0โ€–๐‘ฃโ€–โ€–๐‘ฅโˆ’๐‘ขโ€–.

Assumption 3.2. There exists a continuous, strictly monotonically increasing function ๐œ‘1โˆถ(0,๐‘]โ†’(0,โˆž) with ๐‘โ‰ฅโ€–๐น๎…ž(๐‘ฅ0)โ€– satisfying(i)lim๐œ†โ†’0๐œ‘1(๐œ†)=0, (ii)sup๐œ†>0๐›ผ๐œ‘1(๐œ†)๐œ†+๐›ผโ‰ค๐œ‘1],(๐›ผ)โˆ€๐œ†โˆˆ(0,๐‘(3.1)(iii) there exists ๐‘ฃโˆˆ๐‘‹ with โ€–๐‘ฃโ€–โ‰ค1 (cf. [6]) such that๐‘ฅ0โˆ’ฬ‚๐‘ฅ=๐œ‘1๎€ท๐น๎…ž๎€ท๐‘ฅ0๎€ธ๎€ธ๐‘ฃ,(3.2)(iv) for each ๐‘ฅโˆˆ๐ต๐‘Ÿ(๐‘ฅ0)โˆถ={๐‘ฅโˆถโ€–๐‘ฅโˆ’๐‘ฅ0โ€–<๐‘Ÿ} there exists a bounded linear operator ๐บ(๐‘ฅ,๐‘ฅ0) (cf. [13]) such that ๐น๎…ž(๐‘ฅ)=๐น๎…ž๎€ท๐‘ฅ0๎€ธ๐บ๎€ท๐‘ฅ,๐‘ฅ0๎€ธ(3.3) with โ€–๐บ(๐‘ฅ,๐‘ฅ0)โ€–โ‰ค๐พ1.First we consider a DTSNM for approximating the zero ๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜ of ๐‘ƒโ„Ž๎‚€๐›ผ๐น(๐‘ฅ)+๐‘˜๐‘๎€ท๐‘ฅโˆ’๐‘ฅ0๎€ธ๎‚=๐‘ƒโ„Ž๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜(3.4) and then we show that ๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜ is an approximation to the solution ฬ‚๐‘ฅ of (1.1) where ๐‘โ‰ค๐›ผ๐‘˜. For an initial guess ๐‘ฅ0โˆˆ๐‘‹ and for ๐‘…(๐‘ฅ)โˆถ=๐‘ƒโ„Ž๐น๎…ž(๐‘ฅ)๐‘ƒโ„Ž+(๐›ผ๐‘˜/๐‘)๐‘ƒโ„Ž, the DTSNM is defined as ๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜=๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚€๐‘ฅโˆ’๐‘…โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โˆ’1๐‘ƒโ„Ž๎‚ƒ๐น๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โˆ’๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜+๐›ผ๐‘˜๐‘๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ0,๐›ผ๐‘˜๐‘ฅ๎‚๎‚„,(3.5)โ„Ž,๐›ฟ๐‘›+1,๐›ผ๐‘˜=๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚€๐‘ฅโˆ’๐‘…โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โˆ’1๐‘ƒโ„Ž๎‚ƒ๐น๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โˆ’๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜+๐›ผ๐‘˜๐‘๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚๎‚„,(3.6) where ๐‘ฅโ„Ž,๐›ฟ0,๐›ผ๐‘˜โˆถ=๐‘ƒโ„Ž๐‘ฅ0. Note that with the above notation โ€–โ€–โ€–๐‘…๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โˆ’1๐‘ƒโ„Ž๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โ€–โ€–โ€–=โ€–โ€–โ€–๎‚€๐‘ƒโ„Ž๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๐‘ƒโ„Ž+๐›ผ๐‘˜๐‘๐‘ƒโ„Ž๎‚โˆ’1๐‘ƒโ„Ž๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โ€–โ€–โ€–=โ€–โ€–โ€–๎‚€๐‘ƒโ„Ž๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๐‘ƒโ„Ž+๐›ผ๐‘˜๐‘๐‘ƒโ„Ž๎‚โˆ’1๐‘ƒโ„Ž๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๎€บ๐‘ƒโ„Ž+๐ผโˆ’๐‘ƒโ„Ž๎€ปโ€–โ€–โ€–โ‰คโ€–โ€–โ€–๎‚€๐‘ƒโ„Ž๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๐‘ƒโ„Ž+๐›ผ๐‘˜๐‘๐‘ƒโ„Ž๎‚โˆ’1๐‘ƒโ„Ž๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๐‘ƒโ„Žโ€–โ€–โ€–+โ€–โ€–โ€–๎‚€๐‘ƒโ„Ž๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๐‘ƒโ„Ž+๐›ผ๐‘˜๐‘๐‘ƒโ„Ž๎‚โˆ’1๐‘ƒโ„Ž๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๎€ท๐ผโˆ’๐‘ƒโ„Ž๎€ธโ€–โ€–โ€–โ€–โ€–๐‘ƒโ‰ค1+โ„Ž๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๎€ท๐ผโˆ’๐‘ƒโ„Ž๎€ธโ€–โ€–๐›ผ๐‘˜/๐‘โ‰ค1+๐œโ„Žโ‰ค1+๐œ0.(3.7) Let ๐‘’โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โ€–โ€–๐‘ฆโˆถ=โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โ€–โ€–,โˆ€๐‘›โ‰ฅ0.(3.8) and let ๐‘˜0 be such that ๐‘˜208๎€ท4+3๐‘˜0๎€ท1+๐œ0๎€ธ๎€ธ๎€ท1+๐œ0๎€ธ2<1.(3.9)

Remark 3.3. Note that the above assumption is satisfied if we choose ๐‘˜0<๐‘š๐‘–๐‘›{1,(1/(1+๐œ0โˆš))8/4+3(1+๐œ0)}.
Let ๐‘”โˆถ(0,1)โ†’(0,1) be the function defined by ๐‘˜๐‘”(๐‘ก)=208๎€ท4+3๐‘˜0๎€ท1+๐œ0๎€ธ๐‘ก๎€ธ๎€ท1+๐œ0๎€ธ2๐‘ก2โˆ€๐‘กโˆˆ(0,1).(3.10) Let โ€–ฬ‚๐‘ฅโˆ’๐‘ฅ0โ€–โ‰ค๐œŒ, with 1๐œŒ<๐‘€๎ƒฉ๎‚€31โˆ’2๎‚๐›ฟ+๐‘€0+๐œ€0โˆš๐›ผ0๎ƒช,๐›พ๐œŒ๎‚€3โˆถ=๐‘€๐œŒ+2๎‚๎ƒฉ๐œ€+๐‘€0+๐›ฟ0โˆš๐›ผ0๎ƒช.(3.11)

Theorem 3.4. Let ๐‘’โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜ and ๐‘” be as in (3.8) and (3.10), respectively, and let ๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜ and ๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜ be as in (3.6) and (3.5), respectively, with ๐›ฟโˆˆ(0,๐›ฟ0],๐›ผ=๐›ผ๐‘˜ and ๐œ€โ„Žโˆˆ(0,๐œ€0]. Then the following holds:(a)โ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–โ‰ค๎€ท1+๐œ0๎€ธ๐‘˜0๐‘’โ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜2โ€–โ€–๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–;(3.12)(b)โ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–โ‰คโŽ›โŽœโŽœโŽ๎€ท1+1+๐œ0๎€ธ๐‘˜0๐‘’โ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜2โŽžโŽŸโŽŸโŽ โ€–โ€–๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–;(3.13)(c)โ€–โ€–๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โ€–โ€–๎‚€๐‘’โ‰ค๐‘”โ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โ€–โ€–๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–;(3.14)(d)๐‘”๎‚€๐‘’โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๎€ท๐›พโ‰ค๐‘”๐œŒ๎€ธ3๐‘›,โˆ€๐‘›โ‰ฅ0;(3.15)(e)๐‘’โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎€ท๐›พโ‰ค๐‘”๐œŒ๎€ธ(3๐‘›โˆ’1)/2๐›พ๐œŒ,โˆ€๐‘›โ‰ฅ0.(3.16)

Proof. Observe that ๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜=๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚€๐‘ฅโˆ’๐‘…โ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โˆ’1ร—๐‘ƒโ„Ž๎‚€๐น๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚๎‚€๐‘ฅโˆ’๐นโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚+๐›ผ๐‘˜๐‘๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚€๐‘ฅ๎‚๎‚=๐‘…โ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โˆ’1๎‚ƒ๐‘…๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๐‘ฆ๎‚๎‚€โ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โˆ’๐‘ƒโ„Ž๎‚€๐น๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚๎‚€๐‘ฅโˆ’๐นโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐›ผ๎‚๎‚๐‘˜๐‘๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚€๐‘ฅ๎‚๎‚„=๐‘…โ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โˆ’1๎‚ƒโˆ’๐›ผ๐‘˜๐‘๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๐‘ƒ๎‚๎‚€โ„Ž๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚๐‘ƒโ„Ž+๐›ผ๐‘˜๐‘๐‘ƒโ„Ž๐‘ฆ๎‚๎‚€โ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โˆ’๐‘ƒโ„Ž๎‚€๐น๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚๎‚€๐‘ฅโˆ’๐นโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐›ผ๎‚๎‚๐‘˜๐‘๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚€๐‘ฅ๎‚๎‚„=๐‘…โ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โˆ’1๐‘ƒโ„Žร—๎€œ10๎‚ƒ๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โˆ’๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚€๐‘ฆ+๐‘กโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๐‘ƒ๎‚๎‚๎‚„โ„Ž๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚๐‘‘๐‘ก.(3.17) Now by Assumption 3.1 and (3.7) we have โ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–โ‰ค๎€ท1+๐œ0๎€ธโ€–โ€–โ€–๎€œ10ฮฆ๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜,๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚€๐‘ฆ+๐‘กโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚,๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โ€–โ€–โ€–โ‰ค๎€ท๐‘‘๐‘ก1+๐œ0๎€ธ๐‘˜02โ€–โ€–๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–2.(3.18) This proves (a). Now (b) follows from (a) and the triangle inequality โ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–โ‰คโ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–+โ€–โ€–๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–.(3.19) To prove (c) we observe that ๐‘’โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜=โ€–โ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚€๐‘ฅโˆ’๐‘…โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โˆ’1๐‘ƒโ„Ž๎‚€๐น๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โˆ’๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜+๐›ผ๐‘˜๐‘๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚€๐‘ฅ๎‚๎‚+๐‘…โ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โˆ’1๐‘ƒโ„Ž๎‚€๐น๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โˆ’๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜+๐›ผ๐‘˜๐‘๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ0,๐›ผ๐‘˜โ€–โ€–โ€–=โ€–โ€–โ€–๐‘ฅ๎‚๎‚โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚€๐‘ฅโˆ’๐‘…โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โˆ’1๐‘ƒโ„Ž๎‚€๐น๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๎‚€๐‘ฆโˆ’๐นโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚+๐›ผ๐‘˜๐‘๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผโˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜+๎‚ธ๐‘…๎‚€๐‘ฅ๎‚๎‚โ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โˆ’1๎‚€๐‘ฅโˆ’๐‘…โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โˆ’1๎‚นร—๐‘ƒโ„Ž๎‚€๐น๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โˆ’๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜+๐›ผ๐‘˜๐‘๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ0,๐›ผ๐‘˜โ€–โ€–โ€–๎‚๎‚โˆถ=ฮ“1+ฮ“2,(3.20) where ฮ“1โ€–โ€–โ€–๐‘ฅโˆถ=โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚€๐‘ฅโˆ’๐‘…โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โˆ’1๐‘ƒโ„Ž๎‚€๐น๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๎‚€๐‘ฆโˆ’๐นโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚+๐›ผ๐‘˜๐‘๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผโˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–โ€–,ฮ“๎‚๎‚2โ€–โ€–โ€–๎‚ธ๐‘…๎‚€๐‘ฅโˆถ=โ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โˆ’1๎‚€๐‘ฅโˆ’๐‘…โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โˆ’1๎‚น๐‘ƒโ„Ž๎‚€๐น๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โˆ’๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜+๐›ผ๐‘˜๐‘๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ0,๐›ผ๐‘˜โ€–โ€–โ€–.๎‚๎‚(3.21) Note that ฮ“1=โ€–โ€–โ€–๐‘…๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โˆ’1๎‚ƒ๐‘ƒโ„Ž๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๐‘ƒโ„Ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โˆ’๐‘ƒโ„Ž๎‚€๐น๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๎‚€๐‘ฆโˆ’๐นโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–โ€–=โ€–โ€–โ€–๐‘…๎‚€๐‘ฅ๎‚๎‚๎‚„โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โˆ’1๐‘ƒโ„Ž๎€œ10๎‚ƒ๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โˆ’๐น๎…ž๎‚€๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚€๐‘ฅ+๐‘กโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚๎‚๎‚„ร—๐‘ƒโ„Ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โ€–โ€–โ€–โ‰ค๎€ท๐‘‘๐‘ก1+๐œ0๎€ธโ€–โ€–โ€–๎€œ10ฮฆ๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜,๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚€๐‘ฅ+๐‘กโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚,๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚โ€–โ€–โ€–โ‰ค๎€ท๐‘‘๐‘ก1+๐œ0๎€ธ๐‘˜02โ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–2.(3.22) The last but one step follows from Assumption 3.1 and (3.7). Similarly one can prove that ฮ“2โ‰ค๎€ท1+๐œ0๎€ธ๐‘˜0โ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–โ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–.(3.23)
Thus from (3.20), (3.22), (3.23), (a) and (b) we have ๐‘’โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โ‰ค๎€ท1+๐œ0๎€ธ2๎ƒฉ๐‘˜202+3๐‘˜30๎€ท1+๐œ0๎€ธ8โ€–โ€–๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–๎ƒชร—โ€–โ€–๐‘ฆโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ€–โ€–3๎‚€๐‘’โ‰ค๐‘”โ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜๎‚๐‘’โ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜.(3.24) Again since for ๐œ‡โˆˆ(0,1),๐‘”(๐œ‡๐‘ก)โ‰ค๐œ‡2๐‘”(๐‘ก), for all ๐‘กโˆˆ(0,1), by (3.24) we have ๐‘”๎‚€๐‘’โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๎‚€๐‘’โ‰ค๐‘”โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚3๐‘›,(3.25)๐‘’โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โ‰ค๐‘”3๎‚€๐‘’โ„Ž,๐›ฟ๐‘›โˆ’2,๐›ผ๐‘˜๎‚๐‘’โ„Ž,๐›ฟ๐‘›โˆ’1,๐›ผ๐‘˜โ‰ค๐‘”3๎‚€๐‘’โ„Ž,๐›ฟ๐‘›โˆ’2,๐›ผ๐‘˜๎‚๐‘”3๎‚€๐‘’โ„Ž,๐›ฟ๐‘›โˆ’3,๐›ผ๐‘˜๎‚๐‘’โ„Ž,๐›ฟ๐‘›โˆ’2,๐›ผ๐‘˜๎‚€๐‘’โ‹ฏ๐‘”โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚€๐‘’โ‰ค๐‘”โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚3๐‘›โˆ’1+3๐‘›โˆ’2+โ‹ฏ+1๐‘’โ„Ž,๐›ฟ0,๐›ผk๎‚€๐‘’โ‰ค๐‘”โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚(3๐‘›โˆ’1)/2๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜(3.26) provided ๐‘’โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜<1, for all๐‘›โ‰ฅ0. From (3.26) it is clear that, ๐‘’โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โ‰ค1 if ๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜โ‰ค1. This can be seen as follows: ๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜=โ€–โ€–๐‘ฆโ„Ž,๐›ฟ0,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ0,๐›ผ๐‘˜โ€–โ€–=โ€–โ€–๐‘ฆโ„Ž,๐›ฟ0,๐›ผ๐‘˜โˆ’๐‘ƒโ„Ž๐‘ฅ0โ€–โ€–=โ€–โ€–โ€–๎‚€๐‘ƒโ„Ž๐น๎…ž๎€ท๐‘ƒโ„Ž๐‘ฅ0๎€ธ๐‘ƒโ„Ž+๐›ผ๐‘˜๐‘๎‚โˆ’1๐‘ƒโ„Ž๎‚€๐น๎€ท๐‘ƒโ„Ž๐‘ฅ0๎€ธโˆ’๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜๎‚โ€–โ€–โ€–โ‰คโ€–โ€–๐น๎€ท๐‘ƒโ„Ž๐‘ฅ0๎€ธโˆ’๐‘งโ„Ž๐›ผ๐‘˜โ€–โ€–+โ€–โ€–๐‘งโ„Ž๐›ผ๐‘˜โˆ’๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜โ€–โ€–,โ€–โ€–๐น๎€ท๐‘ƒโ„Ž๐‘ฅ0๎€ธโˆ’๐‘งโ„Ž๐›ผ๐‘˜โ€–โ€–โ‰คโ€–โ€–๐น๎€ท๐‘ƒโ„Ž๐‘ฅ0๎€ธ๎€ท๐‘ฅโˆ’๐น0๎€ธโ€–โ€–+โ€–โ€–๐น๎€ท๐‘ฅ0๎€ธโˆ’๐‘ง๐›ผ๐‘˜โ€–โ€–+โ€–โ€–๐‘ง๐›ผ๐‘˜โˆ’๐‘งโ„Ž๐›ผ๐‘˜โ€–โ€–โ‰คโ€–โ€–โ€–๎€œ10๐น๎…ž๎€ท๐‘ฅ0๎€ท๐‘ƒ+๐‘กโ„Ž๐‘ฅ0โˆ’๐‘ฅ0๐‘ƒ๎€ธ๎€ธ๎€ทโ„Ž๐‘ฅ0โˆ’๐‘ฅ0๎€ธโ€–โ€–โ€–+โ€–โ€–๎€ท๐พ๐‘‘๐‘กโˆ—๐พ+๐›ผ๐‘˜๐ผ๎€ธโˆ’1๐พโˆ—๐พ๎€ท๎€ท๐‘ฅ๐น(ฬ‚๐‘ฅ)โˆ’๐น0โ€–โ€–+โ€–โ€–๐‘ง๎€ธ๎€ธ๐›ผ๐‘˜โˆ’๐‘งโ„Ž๐›ผ๐‘˜โ€–โ€–โ‰ค๐‘€๐‘โ„Ž+โ€–โ€–๎€ท๐‘ฅ๐น(ฬ‚๐‘ฅ)โˆ’๐น0๎€ธโ€–โ€–+โ€–โ€–๐‘ง๐›ผ๐‘˜โˆ’๐‘งโ„Ž๐›ผ๐‘˜โ€–โ€–โ‰ค๐‘€๐‘โ„Žโ€–โ€–๐‘ง+๐‘€๐œŒ+๐›ผ๐‘˜โˆ’๐‘งโ„Ž๐›ผ๐‘˜โ€–โ€–.(3.27) Therefore by (3.27) and (2.9) we have ๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜โ‰ค(๐‘€+1)๐‘โ„Ž+๎ƒฉ๐œ€1+โ„Ž2โˆš๐›ผ๐‘˜๎ƒช๐›ฟ๐‘€๐œŒ+2โˆš๐›ผ๐‘˜๐œ€โ‰ค(๐‘€+1)โ„Ž+๐›ฟโˆš๐›ผ๐‘˜1+๐‘€๐œŒ+2๐œ€max{๐‘€๐œŒ,1}0+๐›ฟ0โˆš๐›ผ0๐œ€โ‰ค(๐‘€+1)0+๐›ฟ0โˆš๐›ผ0๐œ€+๐‘€๐œŒ+0+๐›ฟ02โˆš๐›ผ0โ‰ค๐›พ๐œŒ<1.(3.28) Now since ๐‘” is monotonic increasing and ๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜โ‰ค๐›พ๐œŒ, we have ๐‘”(๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜)โ‰ค๐‘”(๐›พ๐œŒ). This completes the proof of the theorem.

Theorem 3.5. Let ๐‘Ÿ=(1/(1โˆ’๐‘”(๐›พ๐œŒ))+(1+๐œ0)(๐‘˜0/2)(๐›พ๐œŒ/(1โˆ’๐‘”(๐›พ๐œŒ)2)))๐›พ๐œŒ and the assumptions of Theorem 3.4 hold. Then ๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜,๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆˆ๐ต๐‘Ÿ(๐‘ƒโ„Ž๐‘ฅ0), for all ๐‘›โ‰ฅ0.

Proof. Note that by (b) of Theorem 3.4 we have โ€–โ€–๐‘ฅโ„Ž,๐›ฟ1,๐›ผ๐‘˜โˆ’๐‘ƒโ„Ž๐‘ฅ0โ€–โ€–โ‰ค๎‚ธ๎€ท1+1+๐œ0๎€ธ๐‘˜02๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚น๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜โ‰ค๎‚ธ๎€ท1+1+๐œ0๎€ธ๐‘˜02๐›พ๐œŒ๎‚น๐›พ๐œŒโ‰ค๐‘Ÿ,(3.29) that is, ๐‘ฅ1โˆˆ๐ต๐‘Ÿ(๐‘ƒโ„Ž๐‘ฅ0). Again note that by (3.29) and (c) of Theorem 3.4 we have โ€–โ€–๐‘ฆโ„Ž,๐›ฟ1,๐›ผ๐‘˜โˆ’๐‘ƒโ„Ž๐‘ฅ0โ€–โ€–โ‰คโ€–โ€–๐‘ฆโ„Ž,๐›ฟ1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ1,๐›ผ๐‘˜โ€–โ€–+โ€–โ€–๐‘ฅโ„Ž,๐›ฟ1,๐›ผ๐‘˜โˆ’๐‘ƒโ„Ž๐‘ฅ0โ€–โ€–โ‰ค๎‚ต๎‚€๐‘’1+๐‘”โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚+๎€ท1+๐œ0๎€ธ๐‘˜02๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚ถ๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜โ‰ค๎‚ต๎€ท๐›พ1+๐‘”๐œŒ๎€ธ+๎€ท1+๐œ0๎€ธ๐‘˜02๐›พ๐œŒ๎‚ถ๐›พ๐œŒโ‰ค๐‘Ÿ,(3.30) that is, ๐‘ฆโ„Ž,๐›ฟ1,๐›ผ๐‘˜โˆˆ๐ต๐‘Ÿ(๐‘ƒโ„Ž๐‘ฅ0). Further by (3.29) and (b) of Theorem 3.4 we have โ€–โ€–๐‘ฅโ„Ž,๐›ฟ2,๐›ผ๐‘˜โˆ’๐‘ƒโ„Ž๐‘ฅ0โ€–โ€–โ‰คโ€–โ€–๐‘ฅโ„Ž,๐›ฟ2,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ1,๐›ผ๐‘˜โ€–โ€–+โ€–โ€–๐‘ฅโ„Ž,๐›ฟ1,๐›ผ๐‘˜โˆ’๐‘ƒโ„Ž๐‘ฅ0โ€–โ€–โ‰ค๎‚ต๎€ท1+1+๐œ0๎€ธ๐‘˜02๐‘’โ„Ž,๐›ฟ1,๐›ผ๐‘˜๎‚ถ๐‘’โ„Ž,๐›ฟ1,๐›ผ๐‘˜+๎‚ต๎€ท1+1+๐œ0๎€ธ๐‘˜02๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚ถ๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜โ‰ค๎‚ต๎‚€๐‘’1+๐‘”โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚+๎€ท1+๐œ0๎€ธ๐‘˜02๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚ต๎‚€๐‘’1+๐‘”โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚2๐‘’๎‚ถ๎‚ถโ„Ž,๐›ฟ0,๐›ผ๐‘˜โ‰ค๐‘Ÿ.(3.31) The last but one step follows from the monotonicity of ๐‘” and (3.28).
And by (3.31) and (c) of Theorem 3.4 we have โ€–โ€–๐‘ฆโ„Ž,๐›ฟ2,๐›ผ๐‘˜โˆ’๐‘ƒโ„Ž๐‘ฅ0โ€–โ€–โ‰คโ€–โ€–๐‘ฆโ„Ž,๐›ฟ2,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ2,๐›ผ๐‘˜โ€–โ€–+โ€–โ€–๐‘ฅโ„Ž,๐›ฟ2,๐›ผ๐‘˜โˆ’๐‘ƒโ„Ž๐‘ฅ0โ€–โ€–๎‚€๐‘’โ‰ค๐‘”โ„Ž,๐›ฟ1,๐›ผ๐‘˜๎‚๐‘’โ„Ž,๐›ฟ1,๐›ผ๐‘˜+๎‚ต๎‚€๐‘’1+๐‘”โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚+๎€ท1+๐œ0๎€ธ๐‘˜02๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚ต๎‚€๐‘’1+๐‘”โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚2๐‘’๎‚ถ๎‚ถโ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚€๐‘’โ‰ค๐‘”โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚4๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜+๎‚ต๎‚€๐‘’1+๐‘”โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚+๎€ท1+๐œ0๎€ธ๐‘˜02๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚ต๎‚€๐‘’1+๐‘”โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚2๐‘’๎‚ถ๎‚ถโ„Ž,๐›ฟ0,๐›ผ๐‘˜โ‰ค๎‚ต๎€ท๐›พ1+๐‘”๐œŒ๎€ธ๎€ท๐›พ+๐‘”๐œŒ๎€ธ2+๎€ท1+๐œ0๎€ธ๐‘˜02๐›พ๐œŒ๎‚€๎€ท๐›พ1+๐‘”๐œŒ๎€ธ2๎‚๎‚ถ๐›พ๐œŒโ‰ค๐‘Ÿ,(3.32) that is, ๐‘ฅโ„Ž,๐›ฟ2,๐›ผ๐‘˜,๐‘ฆโ„Ž,๐›ฟ2,๐›ผ๐‘˜โˆˆ๐ต๐‘Ÿ(๐‘ƒโ„Ž๐‘ฅ0). Continuing this way one can prove that ๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜,๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆˆ๐ต๐‘Ÿ(๐‘ƒโ„Ž๐‘ฅ0), for all ๐‘›โ‰ฅ0. This completes the proof.

The main result of this section is the following theorem.

Theorem 3.6. Let ๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜ and ๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜ be as in (3.5) and (3.6), respectively, and let assumptions of Theorem 3.5 hold. Then (๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜) is a Cauchy sequence in ๐ต๐‘Ÿ(๐‘ƒโ„Ž๐‘ฅ0) and converges to ๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜โˆˆ๐ต๐‘Ÿ(๐‘ƒโ„Ž๐‘ฅ0). Further ๐‘ƒโ„Ž[๐น(๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜)+(๐›ผ๐‘˜/๐‘)(๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜โˆ’๐‘ฅ0)]=๐‘ƒโ„Ž๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜ and โ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜โ€–โ€–โ‰ค๐ถ0๐‘’โˆ’๐›พ13๐‘›,(3.33) where ๐ถ0=(1/(1โˆ’๐‘”(๐›พ๐œŒ)3)+(1+๐œ0)(๐‘˜0๐›พ๐œŒ/2)(1/(1โˆ’(๐‘”(๐›พ๐œŒ)2)3))๐‘”(๐›พ๐œŒ)3๐‘›)๐›พ๐œŒ and ๐›พ1=โˆ’log๐‘”(๐›พ๐œŒ).

Proof. Using the relation (b) and (e) of Theorem 3.4 and (3.28), we obtain โ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘›+๐‘š,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โ€–โ€–โ‰ค๐‘–=๐‘šโˆ’1๎“๐‘–=0โ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘›+๐‘–+1,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›+๐‘–,๐›ผ๐‘˜โ€–โ€–โ‰ค๐‘–=๐‘šโˆ’1๎“๐‘–=0๎ƒฉ๎€ท1+1+๐œ0๎€ธ๐‘˜0๐‘’โ„Ž,๐›ฟ๐‘›+๐‘–,๐›ผ๐‘˜2๎ƒช๐‘’โ„Ž,๐›ฟ๐‘›+๐‘–,๐›ผ๐‘˜โ‰ค๐‘–=๐‘šโˆ’1๎“๐‘–=0โŽ›โŽœโŽœโŽ๎€ท1+1+๐œ0๎€ธ๐‘˜0๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜2๐‘”๎‚€๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚3๐‘›+๐‘–โŽžโŽŸโŽŸโŽ ๐‘”๎‚€๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚3๐‘›+๐‘–๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜โ‰ค๎‚ธ๎‚€๎€ท๐›พ1+๐‘”๐œŒ๎€ธ3๎€ท๐›พ+๐‘”๐œŒ๎€ธ32๎€ท๐›พ+โ‹ฏ+๐‘”๐œŒ๎€ธ3๐‘š๎‚+๎€ท1+๐œ0๎€ธ๐‘˜0๐›พ๐œŒ2ร—๎‚ต๎‚€๐‘”๎€ท๐›พ1+๐œŒ๎€ธ2๎‚3+๎‚€๐‘”๎€ท๐›พ๐œŒ๎€ธ2๎‚32๎‚€๐‘”๎€ท๐›พ+โ‹ฏ+๐œŒ๎€ธ2๎‚3๐‘š๎‚ถ๎€ท๐›พร—๐‘”๐œŒ๎€ธ3๐‘›๎‚น๐‘”๎€ท๐›พ๐œŒ๎€ธ3๐‘›๐›พ๐œŒโ‰ค๐ถ0๐‘”๎€ท๐›พ๐œŒ๎€ธ3๐‘›โ‰ค๐ถ0๐‘’โˆ’๐›พ13๐‘›.(3.34) Thus (๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜) is a Cauchy sequence in ๐ต๐‘Ÿ(๐‘ƒโ„Ž๐‘ฅ0) and hence it converges, say, to ๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜โˆˆ๐ต๐‘Ÿ(๐‘ƒโ„Ž๐‘ฅ0). Observe that from (3.5) โ€–โ€–โ€–๐‘ƒโ„Ž๎‚€๐น๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โˆ’๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜๎‚+๐›ผ๐‘˜๐‘๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ƒโ„Ž๐‘ฅ0๎‚โ€–โ€–โ€–=โ€–โ€–๐‘…๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๐‘ฅ๎‚๎‚€โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โ€–โ€–โ‰คโ€–โ€–๐‘…๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚โ€–โ€–โ€–โ€–๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โ€–โ€–โ‰ค๎‚€โ€–โ€–๐‘ƒโ„Ž๎‚€๐‘ฅ๐นโ€ฒโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๐‘ƒโ„Žโ€–โ€–+๐›ผ๐‘˜๐‘๎‚๐‘’โ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โ‰ค๎‚€โ€–โ€–๐‘ƒโ„Ž๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๐‘ƒโ„Žโ€–โ€–+๐›ผ๐‘˜๐‘๎‚๎‚€๐‘’ร—๐‘”โ„Ž,๐›ฟ0,๐›ผ๐‘˜๎‚3๐‘›๐‘’โ„Ž,๐›ฟ0,๐›ผ๐‘˜โ‰ค๎‚€๐›ผ๐‘€+๐‘˜๐‘๎‚๐‘”๎€ท๐›พ๐œŒ๎€ธ3๐‘›๐›พ๐œŒ.(3.35) Now by letting ๐‘›โ†’โˆž in (3.35) we obtain ๐‘ƒโ„Ž๐น(๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜)+(๐›ผ๐‘˜/๐‘)(๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜โˆ’๐‘ƒโ„Ž๐‘ฅ0)=๐‘ƒโ„Ž๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜. This completes the proof.

Hereafter we assume that ๐‘Ÿ<1/๐‘˜0 and ๐พ1<(1โˆ’๐‘˜0๐‘Ÿ)/(1โˆ’๐‘). The proof of the following theorem is analogous to the proof of Theoremโ€‰โ€‰3.14 in [11] but for the sake of completeness we give the proof.

Theorem 3.7 (cf. [11], Theorem 3.14). Suppose ๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜ is the solution of ๐›ผ๐น(๐‘ฅ)+๐‘˜๐‘๎€ท๐‘ฅโˆ’๐‘ฅ0๎€ธ=๐‘ง๐›ฟ๐›ผ๐‘˜(3.36) and Assumptions 3.1 and 3.2 holds, then โ€–โ€–ฬ‚๐‘ฅโˆ’๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜โ€–โ€–โ‰ค๐œ‘1๎€ท๐›ผ๐‘˜๎€ธ+(2+4๐œ‡/(๐œ‡โˆ’1))๐œ‡๐œ“โˆ’1๎€ท๐›ฟ+๐œ€โ„Ž๎€ธ1โˆ’(1โˆ’๐‘)๐พ1โˆ’๐‘˜0๐‘Ÿ.(3.37)

Proof. Note that ๐‘(๐น(๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜)โˆ’๐‘ง๐›ฟ๐›ผ๐‘˜)+๐›ผ๐‘˜(๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜โˆ’๐‘ฅ0)=0, so ๎€ท๐น๎…ž๎€ท๐‘ฅ0๎€ธ+๐›ผ๐‘˜๐ผ๐‘ฅ๎€ธ๎€ท๐›ฟ๐‘,๐›ผ๐‘˜๎€ธ=๎€ท๐นโˆ’ฬ‚๐‘ฅ๎…ž๎€ท๐‘ฅ0๎€ธ+๐›ผ๐‘˜๐ผ๐‘ฅ๎€ธ๎€ท๐›ฟ๐‘,๐›ผ๐‘˜๎€ธ๎€ท๐น๎€ท๐‘ฅโˆ’ฬ‚๐‘ฅโˆ’๐‘๐›ฟ๐‘,๐›ผ๐‘˜๎€ธโˆ’๐‘ง๐›ฟ๐›ผ๐‘˜๎€ธโˆ’๐›ผ๐‘˜๎€ท๐‘ฅ๐›ฟ๐‘,๐›ผโˆ’๐‘ฅ0๎€ธ=๐›ผ๐‘˜๎€ท๐‘ฅ0๎€ธ๎€ทโˆ’ฬ‚๐‘ฅโˆ’๐‘๐น(ฬ‚๐‘ฅ)โˆ’๐‘ง๐›ฟ๐›ผ๐‘˜๎€ธ+๐น๎…ž๎€ท๐‘ฅ0๐‘ฅ๎€ธ๎€ท๐›ฟ๐‘,๐›ผ๐‘˜๎€ธ๎€บ๐น๎€ท๐‘ฅโˆ’ฬ‚๐‘ฅโˆ’๐‘๐›ฟ๐‘,๐›ผ๐‘˜๎€ธ๎€ป.โˆ’๐น(ฬ‚๐‘ฅ)(3.38) Thus โ€–โ€–๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜โ€–โ€–โ‰คโ€–โ€–๐›ผโˆ’ฬ‚๐‘ฅ๐‘˜๎€ท๐น๎…ž๎€ท๐‘ฅ0๎€ธ+๐›ผ๐‘˜๐ผ๎€ธโˆ’1๎€ท๐‘ฅ0๎€ธโ€–โ€–+โ€–โ€–๎€ท๐นโˆ’ฬ‚๐‘ฅ๎…ž๎€ท๐‘ฅ0๎€ธ+๐›ผ๐‘˜๐ผ๎€ธโˆ’1๐‘๎€ท๐น(ฬ‚๐‘ฅ)โˆ’๐‘ง๐›ฟ๐›ผ๐‘˜๎€ธโ€–โ€–+โ€–โ€–(๐น๎…ž๎€ท๐‘ฅ0๎€ธ+๐›ผ๐‘˜๐ผ)โˆ’1๎€บ๐น๎…ž๎€ท๐‘ฅ0๐‘ฅ๎€ธ๎€ท๐›ฟ๐‘,๐›ผ๐‘˜๎€ธ๎€ท๐น๎€ท๐‘ฅโˆ’ฬ‚๐‘ฅโˆ’๐‘๐›ฟ๐‘,๐›ผ๐‘˜๎€ธโ€–โ€–โ‰คโ€–โ€–๐›ผโˆ’๐น(ฬ‚๐‘ฅ)๎€ธ๎€ป๐‘˜๎€ท๐น๎…ž๎€ท๐‘ฅ0๎€ธ+๐›ผ๐‘˜๐ผ๎€ธโˆ’1๎€ท๐‘ฅ0๎€ธโ€–โ€–+โ€–โ€–โˆ’ฬ‚๐‘ฅ๐น(ฬ‚๐‘ฅ)โˆ’๐‘ง๐›ฟ๐›ผ๐‘˜โ€–โ€–+ฮ“,(3.39) where ฮ“โˆถ=โ€–(๐น๎…ž(๐‘ฅ0)+๐›ผ๐‘˜๐ผ)โˆ’1โˆซ10[๐น๎…ž(๐‘ฅ0)โˆ’๐‘๐น๎…ž(ฬ‚๐‘ฅ+๐‘ก(๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜โˆ’ฬ‚๐‘ฅ)](๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜โˆ’ฬ‚๐‘ฅ)๐‘‘๐‘กโ€–. So by Assumption 3.2, we obtain โ€–โ€–โ€–๎€ท๐นฮ“โ‰ค๎…ž๎€ท๐‘ฅ0๎€ธ+๐›ผ๐‘˜๐ผ๎€ธโˆ’1๎€œ10๎€บ๐น๎…ž๎€ท๐‘ฅ0๎€ธโˆ’๐น๎…ž๎€ท๎€ท๐‘ฅฬ‚๐‘ฅ+๐‘ก๐›ฟ๐‘,๐›ผ๐‘˜ร—๎€ท๐‘ฅโˆ’ฬ‚๐‘ฅ๎€ธ๎€ธ๎€ป๐›ฟ๐‘,๐›ผ๐‘˜๎€ธโ€–โ€–โ€–โ€–โ€–โ€–๎€ท๐นโˆ’ฬ‚๐‘ฅ๐‘‘๐‘ก+(1โˆ’๐‘)๎…ž๎€ท๐‘ฅ0๎€ธ+๐›ผ๐‘˜๐ผ๎€ธโˆ’1๐น๎…ž๎€ท๐‘ฅ0๎€ธร—๎€œ10๐บ๎€ท๎€ท๐‘ฅฬ‚๐‘ฅ+๐‘ก๐›ฟ๐‘,๐›ผ๐‘˜๎€ธโˆ’ฬ‚๐‘ฅ,๐‘ฅ0๐‘ฅ๎€ธ๎€ท๐›ฟ๐‘,๐›ผ๐‘˜๎€ธโ€–โ€–โ€–โˆ’ฬ‚๐‘ฅ๐‘‘๐‘กโ‰ค๐‘˜0๐‘Ÿโ€–โ€–๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜โ€–โ€–+โˆ’ฬ‚๐‘ฅ(1โˆ’๐‘)๐พ1โ€–โ€–๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜โ€–โ€–โˆ’ฬ‚๐‘ฅ(3.40) and hence by (3.39) and (3.40) we have โ€–โ€–๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜โ€–โ€–โ‰คโ€–โ€–๐›ผโˆ’ฬ‚๐‘ฅ๐‘˜๎€ท๐น๎…ž๎€ท๐‘ฅ0๎€ธ+๐›ผ๐‘˜๐ผ๎€ธโˆ’1๎€ท๐‘ฅ0๎€ธโ€–โ€–+โ€–โ€–โˆ’ฬ‚๐‘ฅ๐น(ฬ‚๐‘ฅ)โˆ’๐‘ง๐›ฟ๐›ผ๐‘˜โ€–โ€–1โˆ’(1โˆ’๐‘)๐พ1โˆ’๐‘˜0๐‘Ÿโ‰ค๐œ‘1๎€ท๐›ผ๐‘˜๎€ธ+(2+4๐œ‡/(๐œ‡โˆ’1))๐œ‡๐œ“โˆ’1๎€ท๐›ฟ+๐œ€โ„Ž๎€ธ1โˆ’(1โˆ’๐‘)๐พ1โˆ’๐‘˜0๐‘Ÿ.(3.41) This completes the proof of the theorem.

Theorem 3.8. Suppose ๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜ is the solution of (3.4) and Assumption 2.1 and Theorem 3.7 hold. In addition if ๐œ0<1, then โ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜โˆ’๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜โ€–โ€–โ‰ค21โˆ’๐œ0๎ƒฉ๐›ฟ+๐œ€โ„Žโˆš๐›ผ๐‘˜๎ƒช.(3.42)

Proof. Suppose ๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜ and ๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜ are the solutions of (3.36) and (3.4), respectively, then by (3.36) we have, ๐‘ƒโ„Ž๐น๎€ท๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜๎€ธ+๐›ผ๐‘˜๐‘๎‚€๐‘ƒโ„Ž๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜โˆ’๐‘ƒโ„Ž๐‘ฅ0๎‚=๐‘ƒโ„Ž๐‘ง๐›ฟ๐›ผ๐‘˜.(3.43) So from (3.4) and (3.43), ๐‘ƒโ„Ž๎‚ƒ๐น๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜๎‚๎€ท๐‘ฅโˆ’๐น๐›ฟ๐‘,๐›ผ๐‘˜๎€ธ๎‚„+๐›ผ๐‘˜๐‘๐‘ƒโ„Ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜โˆ’๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜๎‚=๐‘ƒโ„Ž๎‚€๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜โˆ’๐‘ง๐›ฟ๐›ผ๐‘˜๎‚.(3.44) Let ๐‘€๐‘“=โˆซ10๐น๎…ž(๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜+๐‘ก(๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜โˆ’๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜))๐‘‘๐‘ก. Then by (3.44) we have ๐‘ƒโ„Ž๎‚ƒ๐‘€๐‘“๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜โˆ’๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜+๐›ผ๎‚๎‚„๐‘˜๐‘๐‘ƒโ„Ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜โˆ’๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜๎‚=๐‘ƒโ„Ž๎‚€๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜โˆ’๐‘ง๐›ฟ๐›ผ๐‘˜๎‚(3.45) and hence โ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜โˆ’๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜โ€–โ€–โ‰คโ€–โ€–๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜โˆ’๐‘ง๐›ฟ๐›ผ๐‘˜โ€–โ€–+โ€–โ€–๐‘€๐‘“๎€ท๐‘ƒโ„Ž๎€ธโ€–โ€–โ€–โ€–๐‘ฅโˆ’๐ผโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜โˆ’๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜โ€–โ€–โ‰คโ€–โ€–๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜โˆ’๐‘ง๐›ฟ๐›ผ๐‘˜โ€–โ€–+๐œ0โ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜โˆ’๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜โ€–โ€–.(3.46) Thus โ€–โ€–๐‘ฅโ„Ž,๐›ฟ๐‘,๐›ผ๐‘˜โˆ’๐‘ฅ๐›ฟ๐‘,๐›ผ๐‘˜โ€–โ€–โ‰ค11โˆ’๐œ0โ€–โ€–๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜โˆ’๐‘ง๐›ฟ๐›ผ๐‘˜โ€–โ€–โ‰ค11โˆ’๐œ0๎‚ƒโ€–โ€–๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜โˆ’๐‘งโ„Ž๐›ผ๐‘˜โ€–โ€–+โ€–โ€–๐‘งโ„Ž๐›ผ๐‘˜โˆ’๐‘ง๐›ผ๐‘˜โ€–โ€–+โ€–โ€–๐‘ง๐›ผ๐‘˜โˆ’๐‘ง๐›ฟ๐›ผ๐‘˜โ€–โ€–๎‚„.(3.47) Now the result follows from (2.9), (3.47) and the relation โ€–โ€–๐‘ง๐›ผ๐‘˜โˆ’๐‘ง๐›ฟ๐›ผ๐‘˜โ€–โ€–โ‰ค๐›ฟ2โˆš๐›ผ๐‘˜.(3.48)
The following theorem is a consequence of Theorems 3.6, 3.7, and 3.8.

Theorem 3.9. Let ๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜ be as in (3.6) and let assumptions in Theorems 3.6, 3.7 and 3.8 hold. Then โ€–โ€–ฬ‚๐‘ฅโˆ’๐‘ฅ๐‘›โ„Ž,๐›ฟ๐‘˜,๐›ผ๐‘˜โ€–โ€–โ‰ค๐ถ0๐‘’โˆ’๐›พ13๐‘›+๐œ‘1๎€ท๐›ผ๐‘˜๎€ธ+(2+4๐œ‡/(๐œ‡โˆ’1))๐œ‡๐œ“โˆ’1๎€ท๐›ฟ+๐œ€โ„Ž๎€ธ1โˆ’(1โˆ’๐‘)๐พ1โˆ’๐‘˜0๐‘Ÿ+21โˆ’๐œ0๎ƒฉ๐›ฟ+๐œ€โ„Žโˆš๐›ผ๐‘˜๎ƒช,(3.49) where ๐ถ0 and ๐›พ1 are as in Theorem 3.6.

Theorem 3.10. Let ๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜ be as in (3.6) and let assumptions in Theorem 3.9 hold. Further let ๐œ‘1(๐›ผ๐‘˜)โ‰ค๐œ‘(๐›ผ๐‘˜) and ๐‘›๐‘˜๎ƒฏโˆถ=min๐‘›โˆถ๐‘’โˆ’๐›พ13๐‘›โ‰ค๐›ฟ+๐œ€โ„Žโˆš๐›ผ๐‘˜๎ƒฐ.(3.50) Then โ€–โ€–ฬ‚๐‘ฅโˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โ€–โ€–๎€ท๐œ“=๐‘‚โˆ’1๎€ท๐›ฟ+๐œ€โ„Ž.๎€ธ๎€ธ(3.51)

4. Algorithm

Note that for ๐‘–,๐‘—โˆˆ{0,1,2,โ€ฆ,๐‘},๐‘ง๐›ผโ„Ž,๐›ฟ๐‘–โˆ’๐‘ง๐›ผโ„Ž,๐›ฟ๐‘—=๎€ท๐›ผ๐‘—โˆ’๐›ผ๐‘–๐‘ƒ๎€ธ๎€ทโ„Ž๐พโˆ—๐พ๐‘ƒโ„Ž+๐›ผ๐‘—๐ผ๎€ธโˆ’1๎€ท๐‘ƒโ„Ž๐พโˆ—๐พ๐‘ƒโ„Ž+๐›ผ๐‘–๐ผ๎€ธโˆ’1๐‘ƒโ„Ž๐พโˆ—๎€ท๐‘“๐›ฟ๎€ท๐‘ฅโˆ’๐พ๐น0.๎€ธ๎€ธ(4.1)

Therefore the balancing principle algorithm associated with the choice of the parameter specified in Section 2 involves the following steps:

Step 1. Choose ๐›ผ0 such that ๐›ฟ0+๐œ€0โˆš<2๐›ผ0/(2๐‘€+3) and ๐œ‡>1.

Step 2. ๐›ผ๐‘–=๐œ‡2๐‘–๐›ผ0.

Step 3. Solve for ๐‘ค๐‘–: ๎€ท๐‘ƒโ„Ž๐พโˆ—๐พ๐‘ƒโ„Ž+๐›ผ๐‘–๐ผ๎€ธ๐‘ค๐‘–=๐‘ƒโ„Ž๐พโˆ—๎€ท๐‘“๐›ฟ๎€ท๐‘ฅโˆ’๐พ๐น0.๎€ธ๎€ธ(4.2)

Step 4. Solve for ๐‘—<๐‘–,โ€‰โ€‰ ๐‘งโ„Ž,๐›ฟ๐‘–๐‘—โˆถ(๐‘ƒโ„Ž๐พโˆ—๐พ๐‘ƒโ„Ž+๐›ผ๐‘—๐ผ)๐‘งโ„Ž,๐›ฟ๐‘–๐‘—=(๐›ผ๐‘—โˆ’๐›ผ๐‘–)๐‘ค๐‘–.

Step 5. If โ€–๐‘งโ„Ž,๐›ฟ๐‘–๐‘—โ€–>4๐ถ(๐›ฟ+๐œ€โ„Žโˆš)/๐›ผ๐‘—, then take ๐‘˜=๐‘–โˆ’1.

Step 6. Otherwise, repeat with ๐‘–+1 in place of ๐‘–.

Step 7. Choose ๐‘›๐‘˜=min{๐‘›โˆถ๐‘’โˆ’๐›พ13๐‘›โ‰ค(๐›ฟ+๐œ€โ„Žโˆš)/๐›ผ๐‘˜}.

Step 8. Solve ๐‘ฅ๐‘›โ„Ž,๐›ฟ๐‘˜,๐›ผ๐‘˜ using the iteration (3.6).

In the next section we consider an example to illustrate the above algorithm. The computational results provided endorse the reliability and effectiveness of our method.

5. Example

In this section we consider an example satisfying the assumptions made in this paper and give the numerical illustration. Consider the operator ๐พ๐นโˆถ๐ฟ2(0,1)โ†’๐ฟ2(0,1) where ๐พโˆถ๐ฟ2(0,1)โ†’๐ฟ2(0,1) is defined by๎€œ๐พ(๐‘ฅ)(๐‘ก)=10๐‘˜(๐‘ก,๐‘ )๐‘ฅ(๐‘ )๐‘‘๐‘ (5.1) and ๐นโˆถ๐ท(๐น)โŠ†๐ฟ2(0,1)โ†’๐ฟ2(0,1) defined by๎€œ๐น(๐‘ข)โˆถ=10๐‘˜(๐‘ก,๐‘ )๐‘ข3(๐‘ )๐‘‘๐‘ ,(5.2) where๎‚ป(๐‘˜(๐‘ก,๐‘ )=(1โˆ’๐‘ก)๐‘ ,0โ‰ค๐‘ โ‰ค๐‘กโ‰ค1,1โˆ’๐‘ )๐‘ก,0โ‰ค๐‘กโ‰ค๐‘ โ‰ค1.(5.3) Then for all ๐‘ฅ(๐‘ก),๐‘ฆ(๐‘ก)โˆถ๐‘ฅ(๐‘ก)>๐‘ฆ(๐‘ก) (see [7], Section 4.3):๎€œโŸจ๐น(๐‘ฅ)โˆ’๐น(๐‘ฆ),๐‘ฅโˆ’๐‘ฆโŸฉ=10๎‚ธ๎€œ10๎€ท๐‘ฅ๐‘˜(๐‘ก,๐‘ )3โˆ’๐‘ฆ3๎€ธ๎‚น(๐‘ )๐‘‘๐‘ (๐‘ฅโˆ’๐‘ฆ)(๐‘ก)๐‘‘๐‘กโ‰ฅ0.(5.4)

Thus the operator ๐น is monotone. The Frรฉchet derivative of ๐น is given by๐น๎…ž๎€œ(๐‘ข)๐‘ค=310๐‘˜(๐‘ก,๐‘ )(๐‘ข(๐‘ ))2๐‘ค(๐‘ )๐‘‘๐‘ .(5.5)

Let ๐‘‰๐‘› be a sequence of finite-dimensional subspaces of ๐‘‹ and let ๐‘ƒโ„Ž=๐‘ƒ1/๐‘› denote the orthogonal projection on ๐‘‹ with range ๐‘…(๐‘ƒโ„Ž)=๐‘‰๐‘›. We assume that dim๐‘‰๐‘›=๐‘›+1 and โ€–๐‘ƒโ„Ž๐‘ฅโˆ’๐‘ฅโ€–โ†’0 as โ„Žโ†’0 for all ๐‘ฅโˆˆ๐‘‹. We choose the linear splines {๐‘ฃ1,๐‘ฃ2,โ€ฆ,๐‘ฃ๐‘›+1} in a uniform grid of ๐‘›+1 points in [0,1] as a basis of ๐‘‰๐‘›.

Since ๐‘ค๐‘–โˆˆ๐‘‰๐‘›,๐‘ค๐‘– is of the form โˆ‘๐‘›+1๐‘–=1๐œ†๐‘–๐‘ฃ๐‘– for some scalars ๐œ†1,๐œ†2,โ€ฆ,๐œ†๐‘›+1. It can be seen that ๐‘ค๐‘– is a solution of (4.2) if and only if ๐œ†=(๐œ†1,๐œ†2,โ€ฆ,๐œ†๐‘›+1)๐‘‡ is the unique solution of๎€ท๐‘€๐‘›+๐›ผ๐‘–๐ต๐‘›๎€ธ๐œ†=๐‘Ž,(5.6) where๐‘€๐‘›=๎€ท๎ซ๐พ๐‘ฃ๐‘–,๐พ๐‘ฃ๐‘—๐ต๎ฌ๎€ธ,๐‘–,๐‘—=1,2,โ€ฆ,๐‘›+1,๐‘›=๐‘ฃ๎€ท๎ซ๐‘–,๐‘ฃ๐‘—๎ฌ๎€ธ,๐‘–,๐‘—=1,2,โ€ฆ,๐‘›+1,๐‘ƒ๐‘Ž=๎€ท๎ซโ„Ž๐พโˆ—๎€ท๐‘“๐›ฟ๎€ท๐‘ฅโˆ’๐พ๐น0๎€ธ๎€ธ,๐‘ฃ๐‘–๎ฌ๎€ธ๐‘‡,๐‘–=1,2,โ€ฆ,๐‘›+1.(5.7)

Observe that ๐‘งโ„Ž,๐›ฟ๐‘–๐‘— in Step 4 of algorithm is again in ๐‘‰๐‘› and hence ๐‘งโ„Ž,๐›ฟ๐‘–๐‘—=โˆ‘๐‘›+1๐‘˜=1๐œ‡๐‘˜๐‘–๐‘—๐‘ฃ๐‘˜ for some ๐œ‡๐‘˜๐‘–๐‘—,๐‘˜=1,2,โ€ฆ,๐‘›+1. One can see that for ๐‘—<๐‘–,๐‘งโ„Ž,๐›ฟ๐‘–๐‘— is a solution of๎€ท๐‘ƒโ„Ž๐พโˆ—๐พ๐‘ƒโ„Ž+๐›ผ๐‘—๐ผ๎€ธ๐‘งโ„Ž,๐›ฟ๐‘–๐‘—=๎€ท๐›ผ๐‘—โˆ’๐›ผ๐‘–๎€ธ๐‘ค๐‘–(5.8) if and only if ๐œ‡๐‘–๐‘—=(๐œ‡1๐‘–๐‘—,๐œ‡2๐‘–๐‘—,โ€ฆ,๐œ‡๐‘–๐‘—๐‘›+1)๐‘‡ is the unique solution of๎€ท๐‘€๐‘›+๐›ผ๐‘—๐ต๐‘›๎€ธ๐œ‡๐‘–๐‘—=๐‘,(5.9) where๐›ผ๐‘=๎€ท๎ซ๎€ท๐‘—โˆ’๐›ผ๐‘–๎€ธ๐‘ค๐‘–,๐‘ฃ๐‘–๎ฌ๎€ธ๐‘‡.(5.10) Compute ๐‘งโ„Ž,๐›ฟ๐‘–๐‘— till โ€–๐‘งโ„Ž,๐›ฟ๐‘–๐‘—โ€–>4๐ถ(๐›ฟ+๐œ€โ„Žโˆš)/๐›ผ๐‘— and fix ๐‘˜=๐‘–โˆ’1. Now choose ๐‘›๐‘˜=min{๐‘›โˆถ๐‘’โˆ’๐›พ13๐‘›โ‰ค(๐›ฟ+๐œ€โ„Žโˆš)/(๐›ผ๐‘˜)}.

Let ๐œ‰๐‘›=(๐œ‰๐‘›1,๐œ‰๐‘›2,โ€ฆ,๐œ‰๐‘›๐‘›+1),โ€‰โ€‰๐œ‚๐‘›=(๐œ‚๐‘›1,๐œ‚๐‘›2,โ€ฆ,๐œ‚๐‘›๐‘›+1),โ€‰โ€‰๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜=โˆ‘๐‘›+1๐‘–=1๐œ‰๐‘›๐‘–๐‘ฃ๐‘– and ๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜=โˆ‘๐‘›+1๐‘–=1๐œ‚๐‘›๐‘–๐‘ฃ๐‘–. Then from (3.5) we have๎‚€๐‘ƒโ„Ž๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚+๐›ผ๐‘˜๐‘๎‚๐‘›+1๎“๐‘–=1๎€ท๐œ‰๐‘›๐‘–โˆ’๐œ‚๐‘›๐‘–๎€ธ๐‘ฃ๐‘–=๐‘›+1๎“๐‘–=1๐œ†๐‘–๐‘ฃ๐‘–โˆ’๐‘›+1๎“๐‘–=1๐‘ƒโ„Ž๐น๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๐‘ฃ๐‘–+๐›ผ๐‘˜๐‘๐‘›+1๎“๐‘–=1๎€ท๐‘ฅ0๎€ท๐‘ก๐‘–๎€ธโˆ’๐œ‚๐‘›๐‘–๎€ธ๐‘ฃ๐‘–,(5.11) where ๐‘ก1,๐‘ก2,โ€ฆ,๐‘ก๐‘›+1 are the grid points.

Observe that (๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜โˆ’๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜) is a solution of (3.5) if and only if (๐œ‰๐‘›โˆ’๐œ‚๐‘›)=(๐œ‰๐‘›1โˆ’๐œ‚๐‘›1,๐œ‰๐‘›2โˆ’๐œ‚๐‘›2,โ€ฆ,๐œ‰๐‘›๐‘›+1โˆ’๐œ‚๐‘›๐‘›+1)๐‘‡ is the unique solution of๎‚€๐‘„๐‘›+๐›ผ๐‘˜๐‘๐ต๐‘›๎‚๎‚€๐œ‰๐‘›โˆ’๐œ‚๐‘›๎‚=๐ต๐‘›๎‚ƒ๐œ†โˆ’๐นโ„Ž1+๐›ผ๐‘˜๐‘๎€ท๐‘‹0โˆ’๐œ‚๐‘›๎€ธ๎‚„,(5.12) where ๐‘„๐‘›=โŸจ๐น๎…ž(๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜)๐‘ฃ๐‘–,๐‘ฃ๐‘—โŸฉ,๐‘–,๐‘—=1,2,โ€ฆ,๐‘›+1๐นโ„Ž1=๎‚ƒ๐น๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๎€ท๐‘ก1๎€ธ๎‚€๐‘ฅ,๐นโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๎€ท๐‘ก2๎€ธ๎‚€๐‘ฅ,โ€ฆ,๐นโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚๎€ท๐‘ก๐‘›+1๎€ธ๎‚„๐‘‡(5.13) and ๐‘‹0=[๐‘ฅ0(๐‘ก1),๐‘ฅ0(๐‘ก2),โ€ฆ,๐‘ฅ0(๐‘ก๐‘›+1)]๐‘‡.

Further from (3.6) it follows that๎‚€๐‘ƒโ„Ž๐น๎…ž๎‚€๐‘ฅโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚+๐›ผ๐‘˜๐‘๐‘ฅ๎‚๎‚€โ„Ž,๐›ฟ๐‘›+1,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚=๐‘ƒโ„Ž๎‚ƒ๐‘ง๐›ผโ„Ž,๐›ฟ๐‘˜๎‚€๐‘ฆโˆ’๐นโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜๎‚+๐›ผ๐‘˜๐‘๎‚€๐‘ฅโ„Ž,๐›ฟ0,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜.๎‚๎‚„(5.14) Thus (๐‘ฅโ„Ž,๐›ฟ๐‘›+1,๐›ผ๐‘˜โˆ’๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜) is a solution of (5.14) if and only if (๐œ‚๐‘›+1โˆ’๐œ‰๐‘›)=(๐œ‚1๐‘›+1โˆ’๐œ‰๐‘›1,๐œ‚2๐‘›+1โˆ’๐œ‰๐‘›2,โ€ฆ,๐œ‚๐‘›+1๐‘›+1โˆ’๐œ‰๐‘›๐‘›+1)๐‘‡ is the unique solution of๎‚€๐‘„๐‘›+๐›ผ๐‘˜๐‘๐ต๐‘›๎‚๎‚€๐œ‚๐‘›+1โˆ’๐œ‰๐‘›๎‚=๐ต๐‘›๎‚ƒ๐œ†โˆ’๐นโ„Ž2+๐›ผ๐‘˜๐‘๎‚€๐‘‹0โˆ’๐œ‰๐‘›๎‚๎‚„,(5.15) where ๐นโ„Ž2=[๐น(๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜)(๐‘ก1),๐น(๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜)(๐‘ก2),โ€ฆ,๐น(๐‘ฆโ„Ž,๐›ฟ๐‘›,๐›ผ๐‘˜)(๐‘ก๐‘›+1)]๐‘‡.

5.1. Numerical Example

Example 5.1. To illustrate the method discussed in the above section, we consider the space ๐‘‹=๐‘Œ=๐ฟ2[0,1] and the Fredholm integral operator ๐พโˆถ๐ฟ2[0,1]โ†’๐ฟ2[0,1]. The algorithm in Section 5 is applied by choosing ๐‘‰๐‘› as the space of linear splines in a uniform grid of ๐‘›+1 points in [0,1].
In our computation, we take ๐‘“(๐‘ก)=(1/36๐œ‹2)(27sin๐œ‹๐‘กโˆ’sin3๐œ‹๐‘ก)+(1/36๐œ‹)(27๐‘ก2cos๐œ‹๐‘กโˆ’3๐‘ก2cos3๐œ‹๐‘ก+6๐‘กcos3๐œ‹๐‘กโˆ’3cos3๐œ‹๐‘กโˆ’27๐‘กcos๐œ‹๐‘ก) and ๐‘“๐›ฟ=๐‘“+๐›ฟ. Then the exact solution ฬ‚๐‘ฅ(๐‘ก)=sin๐œ‹๐‘ก.(5.16) We use ๐‘ฅ03(๐‘ก)=sin๐œ‹๐‘ก+4๐œ‹2๎€ท1+๐‘ก๐œ‹2โˆ’๐‘ก2๐œ‹2โˆ’cos2๎€ธ(๐œ‹๐‘ก)(5.17) as our initial guess, so that the function ๐‘ฅ0โˆ’ฬ‚๐‘ฅ satisfies the source condition ๐‘ฅ0โˆ’ฬ‚๐‘ฅ=๐น๎…ž(ฬ‚๐‘ฅ)1=๐œ‘1๎€ท๐น๎…ž๎€ท๐‘ฅ0๐บ๎€ท๐‘ฅ๎€ธ๎€ธ0๎€ธ,ฬ‚๐‘ฅ,(5.18) where ๐œ‘1(๐œ†)=๐œ†. Thus we expect to have an accuracy of order at least ๐‘‚((๐›ฟ+๐œ€โ„Ž)1/2).
We choose ๐›ผ0=(1.5)๐›ฟ2,๐œ‡=1.5,๐›ฟ=0.0667=๐‘,๐œ€โ„Ž=1/10๐‘›2,๐œŒ=0.19,๐›พ๐œŒ=0.8173, and ๐‘”(๐›พ๐œŒ)=0.54 approximately. For all ๐‘› the number of iteration ๐‘›๐‘˜=3 in this example. The results of the computation are presented in Table 1. The plots of the exact and the approximate solution obtained are given in Figures 1 and 2.

Acknowledgment

M. E. Shobha thanks National Institute of Technology Karnataka India, for the financial support.