Abstract

We apply fixed point theorem in a cone to obtain sufficient conditions for the existence of single and multiple positive solutions of periodic boundary value problems for a class of four-order differential equations.

1. Introduction

In this paper, we investigate the existence of positive solutions of the following periodic boundary value problem:𝑦(4)(𝑑)βˆ’π΄π‘¦ξ…žξ…žξ€·(𝑑)+𝐡𝑦(𝑑)=𝑓𝑑,𝑦(𝑑),π‘¦ξ…žξ…žξ€Έπ‘¦(𝑑),π‘‘βˆˆπΌ,(𝑖)(0)=𝑦(𝑖)(2πœ‹),𝑖=0,1,2,3,(1.1) where 𝐼=[0,2πœ‹], 𝐴 and 𝐡 are positive constants with 𝐴2>4𝐡, π‘“βˆˆπΆ(𝐼×(0,+∞)×𝑅,[0,+∞)).

In recent years, the nonlinear periodic boundary value problems have been widely studied by many authors, for example, see [1–7] and the references therein. Many theorems and methods of nonlinear functional analysis, for instance, upper and lower solutions method, fixed point theorems, variational method, and critical point theory, and so on, have been applied to their problems. When positive solutions are discussed, it seems that fixed point theorem in cones is quite effective in dealing with the problems with singularity. In [8], Zhang and Wang proved periodic boundary value problems with singularityπ‘¦ξ…žξ…ž(𝑑)+π‘˜2𝑦𝑦(𝑑)=𝑔(𝑑,𝑦(𝑑)),π‘‘βˆˆπΌ,(𝑖)(0)=𝑦(𝑖)(2πœ‹),𝑖=0,1,(1.2) have multiple positive solutions under some conditions, where 𝑔(𝑑,𝑦)  is singular at 𝑦=0, that is,lim𝑦→0+𝑔(𝑑,𝑦)=+∞.(1.3) Relying on a nonlinear alternative of Leray-Schauder type and fixed point theorem, Chu and Zhou [9] discussed the existence of positive solutions for the third-order periodic boundary value problemπ‘¦ξ…žξ…žξ…ž(𝑑)+π‘˜3𝑦𝑦(𝑑)=𝑔(𝑑,𝑦(𝑑)),π‘‘βˆˆπΌ,(𝑖)(0)=𝑦(𝑖)(2πœ‹),𝑖=0,1,2,(1.4) where βˆšπ‘˜βˆˆ(0,1/3).  However, relatively few papers have been published on the same problem for four-order differential equations. Recently, by using a maximum principle for operator 𝐿𝑒=𝑒(4)βˆ’π›½π‘’ξ…žξ…ž+𝛼𝑒  in periodic boundary condition and fixed point index theory in cones, Li [10] considered the existence of positive solution for the fourth-order periodic boundary value problem𝑦(4)(𝑑)βˆ’π›½π‘¦ξ…žξ…ž[],𝑦(𝑑)+𝛼𝑦(𝑑)=𝑔(𝑑,𝑦(𝑑)),π‘‘βˆˆ0,1(𝑖)(0)=𝑦(𝑖)(1),𝑖=0,1,2,3,(1.5) where π‘“βˆΆ[0,1]×𝑅+→𝑅+  is continuous, 𝛼, π›½βˆˆπ‘… and satisfy 0<𝛼<(𝛽/2+2πœ‹2)2, 𝛽>βˆ’2πœ‹2, 𝛼/πœ‹4+𝛽/πœ‹2>1. However, since there appears π‘¦ξ…žξ…žβ€‰β€‰in nonlinear term 𝑔, the method in [9] cannot be directly applied to (1.1). The main aim of this paper is to establish sufficient conditions for the existence of positive solutions to the problem (1.1).

To prove our main results, we present an existence theorem.

Theorem 1.1 (see [11]). Let 𝐸 be a Banach space and 𝑃 a cone in 𝐸. Suppose Ξ›1 and Ξ›2 are open subsets of 𝐸 such that 0βˆˆΞ›1βŠ‚Ξ›1βŠ‚Ξ›2  and suppose that ξƒ©π‘‡βˆΆπ‘ƒβˆ©Ξ›2Ξ›1ξƒͺβŸΆπ‘ƒ(1.6) is a completely continuous operator. If one of the following conditions is satisfied:(i)‖𝑇π‘₯‖≀‖π‘₯β€–for π‘₯βˆˆπ‘ƒβˆ©πœ•Ξ›1,‖𝑇π‘₯β€–β‰₯β€–π‘₯‖  for π‘₯βˆˆπ‘ƒβˆ©πœ•Ξ›2,(ii)‖𝑇π‘₯β€–β‰₯β€–π‘₯‖  for π‘₯βˆˆπ‘ƒβˆ©πœ•Ξ›1,‖𝑇π‘₯‖≀‖π‘₯‖  for π‘₯βˆˆπ‘ƒβˆ©πœ•Ξ›2. Then 𝑇 has a fixed point in π‘ƒβˆ©(Ξ›2/Ξ›1).

2. Preliminaries

In this section, we present some preliminary results which will be needed in Section 3.

Let 𝛼>0, and for any function π‘’βˆˆπΆ(𝐼),  we defined the operatorξ€·π½π›Όπ‘’ξ€Έξ€œ(𝑑)=02πœ‹πΊπ›Ό(𝑑,𝑠)𝑒(𝑠)𝑑𝑠,(2.1) whereπΊπ›ΌβŽ§βŽͺβŽͺ⎨βŽͺβŽͺβŽ©π‘’(𝑑,𝑠)=𝛼(π‘‘βˆ’π‘ )+𝑒𝛼(2πœ‹βˆ’π‘‘+𝑠)𝑒2𝛼2πœ‹π›Όξ€Έπ‘’βˆ’1,0≀𝑠≀𝑑≀2πœ‹,𝛼(π‘ βˆ’π‘‘)+𝑒𝛼(2πœ‹βˆ’π‘ +𝑑)𝑒2𝛼2πœ‹π›Όξ€Έβˆ’1,0≀𝑑≀𝑠≀2πœ‹.(2.2) By a direct calculation, we easily obtainξ€œ02πœ‹πΊπ›Ό(𝑑,𝑠)𝑑𝑠=π›Όβˆ’2,π‘šπ›ΌβˆΆ=min𝑠,π‘‘βˆˆπΌπΊπ›Ό(𝑑,𝑠)=2π‘’π›Όπœ‹ξ€·π‘’2𝛼2πœ‹π›Όξ€Έβˆ’1,π‘€π›ΌβˆΆ=max𝑠,π‘‘βˆˆπΌπΊπ›Ό(𝑑,𝑠)=1+𝑒2π›Όπœ‹ξ€·π‘’2𝛼2πœ‹π›Όξ€Έ.βˆ’1(2.3) SetξƒŽπœŒ=√𝐴+𝐴2βˆ’4𝐡2,ξƒŽπœ†=βˆšπ΄βˆ’π΄2βˆ’4𝐡2,ξƒŽor𝜌=βˆšπ΄βˆ’π΄2βˆ’4𝐡2,ξƒŽπœ†=√𝐴+𝐴2βˆ’4𝐡2,(2.4) then 𝜌, πœ†βˆˆπ‘…. Now, we consider the problemβˆ’π‘’β€²ξ…ž(𝑑)+πœ†2𝑒(𝑑)=𝑓𝑑,π½πœŒπ‘’,𝜌2π½πœŒξ€Έπ‘’π‘’βˆ’π‘’,π‘‘βˆˆπΌ,(𝑖)(0)=𝑒(𝑖)(2πœ‹),𝑖=0,1.(2.5)

Lemma 2.1. If π‘’βˆˆπΆ2(𝐼)  is a (positive) solution of problem (2.5), then 𝑦=π½πœŒπ‘’βˆˆπΆ4(𝐼)  is a (positive) solution of problem (1.1). Moreover, the problem (2.5) is equivalent to integral equation ξ€œπ‘’(𝑑)=02πœ‹πΊπœ†ξ€·ξ€·π½(𝑑,𝑠)𝑓𝑠,πœŒπ‘’ξ€Έ(𝑠),𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έ(𝑠)βˆ’π‘’(𝑠)𝑑𝑠.(2.6)

Proof. If π‘’βˆˆπΆ2(𝐼),  then π½πœŒπ‘’βˆˆπΆ4(𝐼)  and ξ€·π½πœŒπ‘’ξ€Έξ…žξ…ž(𝑑)=βˆ’π‘’(𝑑)+𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€·π½(𝑑),π‘‘βˆˆπΌ,πœŒπ‘’ξ€Έ(𝑖)𝐽(0)=πœŒπ‘’ξ€Έ(𝑖)(2πœ‹),𝑖=0,1.(2.7) Thus, π‘¦ξ…žξ…ž(𝑑)=βˆ’π‘’(𝑑)+𝜌2ξ€·π½πœŒπ‘’ξ€Έ(𝑑),π‘¦ξ…žξ…žξ…ž(𝑑)=βˆ’π‘’ξ…ž(𝑑)+𝜌2ξ€·π½πœŒπ‘’ξ€Έξ…žπ‘¦(𝑑),(4)ξ€·(𝑑)=βˆ’π‘’(𝑑)+𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έ(𝑑)ξ…žξ…ž=βˆ’π‘’ξ…žξ…ž(𝑑)βˆ’πœŒ2𝑒(𝑑)+𝜌4ξ€·π½πœŒπ‘’ξ€Έ(𝑑).(2.8) Then, 𝑦(4)(𝑑)βˆ’π΄π‘¦ξ…žξ…ž(𝑑)+𝐡𝑦(𝑑)=βˆ’π‘’ξ…žξ…žξ€·(𝑑)+π΄βˆ’πœŒ2ξ€Έξ€·πœŒπ‘’(𝑑)+4βˆ’π΄πœŒ2𝐽+π΅ξ€Έξ€·πœŒπ‘’ξ€Έ(𝑑)=βˆ’π‘’ξ…žξ…ž(𝑑)+πœ†2𝑒(𝑑)=𝑓𝑑,π½πœŒπ‘’,𝜌2π½πœŒξ€Έξ€·π‘’βˆ’π‘’=𝑓𝑑,𝑦(𝑑),π‘¦ξ…žξ…žξ€Έ.(𝑑)(2.9) On the other hand, 𝑦(0)=𝑦(2πœ‹),π‘¦ξ…ž(0)=π‘¦ξ…ž(2πœ‹), π‘¦ξ…žξ…ž(0)=βˆ’π‘’(0)+𝜌2ξ€·π½πœŒπ‘’ξ€Έ(0)=βˆ’π‘’(2πœ‹)+𝜌2ξ€·π½πœŒπ‘’ξ€Έ(2πœ‹)=π‘¦ξ…žξ…žπ‘¦(2πœ‹),ξ…žξ…žξ…ž(0)=βˆ’π‘’ξ…ž(0)+𝜌2ξ€·π½πœŒπ‘’ξ€Έξ…ž(0)=βˆ’π‘’ξ…ž(2πœ‹)+𝜌2ξ€·π½πœŒπ‘’ξ€Έξ…ž(2πœ‹)=π‘¦ξ…žξ…žξ…ž(2πœ‹).(2.10) Hence, if π‘’βˆˆπΆ2(𝐼) is a solution of problem (2.5), then 𝑦=π½πœŒπ‘’βˆˆπΆ4(𝐼) is a solution of problem (1.1). And, if π‘’βˆˆπΆ2(𝐼) is a positive function, noting that 𝐺𝜌(𝑑,𝑠)>0 for any 𝑠, π‘‘βˆˆπΌ, we have ξ€œπ‘¦=02πœ‹πΊπœŒ(𝑑,𝑠)𝑒(𝑠)𝑑𝑠>0.(2.11) Noting that, for any function β„ŽβˆˆπΆ(𝐼), linear problem βˆ’π‘’ξ…žξ…ž(𝑑)+πœ†2𝑒𝑒(𝑑)=β„Ž(𝑑),π‘‘βˆˆπΌ,(𝑖)(0)=𝑒(𝑖)(2πœ‹),𝑖=0,1,(2.12) has a unique solution ξ€œπ‘’(𝑑)=02πœ‹πΊπœ†(𝑑,𝑠)β„Ž(𝑠)𝑑𝑠,(2.13) one can easily obtain that (2.6) holds. The proof is complete.

In the following application, we take 𝐸=𝐢2(𝐼) with the supremum norm β€–β‹…β€– and defineπ‘ƒπœ†=ξ‚»π‘’βˆˆπΈβˆΆπ‘’(𝑑)β‰₯0forallπ‘‘βˆˆπΌ,minπ‘‘βˆˆπ½π‘’(𝑑)β‰₯π›Ώπœ†ξ‚Όβ€–π‘’β€–,(2.14) where π›Ώπœ†=π‘šπœ†/π‘€πœ†βˆˆ(0,1).

One easily checks and verifies that π‘ƒπœ†β€‰β€‰is a cone in 𝐸. For any π‘Ÿ>0, let π‘ƒπœ†π‘Ÿ={π‘’βˆˆπ‘ƒπœ†βˆΆβ€–π‘’β€–<π‘Ÿ},  then πœ•π‘ƒπœ†π‘Ÿ={π‘’βˆˆπ‘ƒπœ†βˆΆβ€–π‘’β€–=π‘Ÿ}.  For any π‘’βˆˆπΈ, define mapping π‘‡πœ†βˆΆπΈβ†’πΈ byξ€·π‘‡πœ†π‘’ξ€Έξ€œ(𝑑)=02πœ‹πΊπœ†ξ€·ξ€·π½(𝑑,𝑠)𝑓𝑠,πœŒπ‘’ξ€Έ(𝑠),𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έ(𝑠)βˆ’π‘’(𝑠)𝑑𝑠,(2.15) then the fixed point of π‘‡πœ† in 𝐸 is a positive solution of (2.5).

Lemma 2.2. For any 𝜍>𝜏>0, π‘‡πœ†βˆΆπ‘ƒπœ†πœβ§΅π‘ƒπœ†πœβ†’π‘ƒπœ†β€‰β€‰is completely continuous.

Proof. For any π‘’βˆˆπ‘ƒπœ†πœβ§΅π‘ƒπœ†πœ, πœβ‰€β€–π‘’β€–β‰€πœβ€‰β€‰β€‰and π›Ώπœ†πœβ‰€π‘’(𝑑)β‰€πœ for all π‘‘βˆˆπΌ. Thus, if π‘’βˆˆπ‘ƒπœ†πœβ§΅π‘ƒπœ†πœ, ξ€·π½πœŒπ‘’ξ€Έξ€œ(𝑑)=02πœ‹πΊπœŒ(𝑑,𝑠)𝑒(𝑠)𝑑𝑠β‰₯π›Ώπœ†πœξ€œ02πœ‹πΊπœŒπ›Ώ(𝑑,𝑠)𝑑𝑠β‰₯πœ†πœπœŒ2.(2.16) It is easy to see that π‘‡πœ† is continuous and completely continuous since π‘“βˆΆπΌΓ—(0,+∞)×𝑅→[0,+∞)  is continuous. Next, we show that π‘‡πœ†βˆΆπ‘ƒπœ†πœβ§΅π‘ƒπœ†πœβ†’π‘ƒπœ†.  Since 𝑓(𝑠,(π½πœŒπ‘’)(𝑠),𝜌2(π½πœŒπ‘’)(𝑠)βˆ’π‘’(𝑠))β‰₯0  for π‘’βˆˆπ‘ƒπœ†πœβ§΅π‘ƒπœ†πœ, π‘‡πœ†π‘’β‰₯0. On the other hand, β€–β€–π‘‡πœ†π‘’β€–β€–=maxπ‘‘βˆˆπΌξ€œ02πœ‹πΊπœ†ξ€·ξ€·π½(𝑑,𝑠)𝑓𝑠,πœŒπ‘’ξ€Έ(𝑠),𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έ(𝑠)βˆ’π‘’(𝑠)π‘‘π‘ β‰€π‘€πœ†ξ€œ02πœ‹π‘“ξ€·ξ€·π½π‘ ,πœŒπ‘’ξ€Έ(𝑠),𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έξ€·π‘‡(𝑠)βˆ’π‘’(𝑠)𝑑𝑠,πœ†π‘’ξ€Έ(𝑑)β‰₯π‘šπœ†ξ€œ02πœ‹π‘“ξ€·ξ€·π½π‘ ,πœŒπ‘’ξ€Έ(𝑠),𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έ(𝑠)βˆ’π‘’(𝑠)𝑑𝑠β‰₯π›Ώπœ†β€–β€–π‘‡πœ†π‘’β€–β€–.(2.17) The proof is complete.

3. Positive Solutions of (1.1)

In this section, we make the following hypotheses. (π»πœ†1) There exist nonnegative functions β„Ž(𝑒), 𝑔(𝑒)∈𝐢((0,+∞)(0,+∞))  and 𝑝(𝑑,𝑣), π‘ž(𝑑,𝑣)∈𝐢(𝐽×𝑅) such that 𝑓(𝑑,𝑒,𝑣)≀𝑝(𝑑,𝑣)β„Ž(𝑒)+π‘ž(𝑑,𝑣)𝑔(𝑒)(3.1) for all (𝑑,𝑒,𝑣)βˆˆπΌΓ—(0,∞)×𝑅  and sup𝑒>0⎧βŽͺβŽͺ⎨βŽͺβŽͺβŽ©ξ€·πœŒπ‘’π‘”βˆ’2𝑒maxξ€·π›Ώπœ†ξ€Έξ€·βˆ’1𝑒≀𝑣≀1βˆ’π›Ώπœ†ξ€Έπ‘’ξ‚†βˆ«02πœ‹ξ€·πœŒπ‘(𝑑,𝑣)π‘‘π‘‘β„Žβˆ’2𝑒+∫02πœ‹ξ€·πœŒπ‘ž(𝑑,𝑣)π‘‘π‘‘π‘”βˆ’2π‘’ξ€Έξ‚‡π‘”ξ€·πœŒβˆ’2π›Ώπœ†π‘’ξ€ΈβŽ«βŽͺβŽͺ⎬βŽͺβŽͺ⎭>π‘€πœ†,(3.2) where 𝑔 is nonincreasing and β„Ž/𝑔 is nondecreasing on (0,∞).(π»πœ†2) One has liminf𝑒→0+ξ‚†βˆ«min02πœ‹π‘“(𝑑,𝑀,𝑣)𝑑𝑑,πœŒβˆ’2π›Ώπœ†π‘’β‰€π‘€β‰€πœŒβˆ’2𝛿𝑒,πœ†ξ€Έξ€·βˆ’1𝑒≀𝑣≀1βˆ’π›Ώπœ†ξ€Έπ‘’ξ‚‡π‘’>π‘šπœ†βˆ’1.(3.3)(π»πœ†3) One has liminf𝑒→+βˆžξ‚†βˆ«min02πœ‹π‘“(𝑑,𝑀,𝑣)𝑑𝑑,πœŒβˆ’2π›Ώπœ†π‘’β‰€π‘€β‰€πœŒβˆ’2𝛿𝑒,πœ†ξ€Έξ€·βˆ’1𝑒≀𝑣≀1βˆ’π›Ώπœ†ξ€Έπ‘’ξ‚‡π‘’>π‘šπœ†βˆ’1.(3.4)

Under the above hypotheses, we can obtain the following result.

Theorem 3.1. Assume that (π»πœ†1) and (π»πœ†2)  are satisfied, then there exist two positive constants 𝛼, 𝛽   such that (1.1) has at least positive solution 𝑦 with πœŒβˆ’2𝛼<‖𝑦‖<πœŒβˆ’2𝛽.(3.5)
Assume (π»πœ†1) and (π»πœ†3) are satisfied, then there exist two positive constants 𝛽, 𝛾 such that (1.1) has at least positive solution 𝑦 with πœŒβˆ’2𝛽<‖𝑦‖<πœŒβˆ’2𝛾.(3.6)
Assume (π»πœ†1), (π»πœ†2), and (π»πœ†3) are satisfied, then there exist positive constants 𝛼, 𝛽, 𝛾   such that (1.1) has at least two positive solutions 𝑦1, 𝑦2 with πœŒβˆ’2‖‖𝑦𝛼<1β€–β€–<πœŒβˆ’2‖‖𝑦𝛽<2β€–β€–<πœŒβˆ’2𝛾.(3.7)

Proof. First, we assume that (π»πœ†1) and (π»πœ†2) are satisfied. From the condition (π»πœ†1),  one can obtain that there exist a 𝛽>0 such that ξ€·πœŒπ›½π‘”βˆ’2𝛽max(π›Ώπœ†βˆ’1)𝛽≀𝑣≀(1βˆ’π›Ώπœ†)π›½ξ‚†βˆ«02πœ‹ξ€·πœŒπ‘(𝑑,𝑣)π‘‘π‘‘β„Žβˆ’2𝛽+∫02πœ‹ξ€·πœŒπ‘ž(𝑑,𝑣)π‘‘π‘‘π‘”βˆ’2π›½ξ€Έξ‚‡π‘”ξ€·πœŒβˆ’2π›Ώπœ†π›½ξ€Έ>π‘€πœ†.(3.8) For any π‘’βˆˆπœ•π‘ƒπœ†π›½, π›Ώπœ†π›½β‰€π‘’(𝑑)≀𝛽  for all π‘‘βˆˆπΌ and π›½π›Ώπœ†πœŒ2β‰€ξ€·π½πœŒπ‘’ξ€Έξ€œ(𝑑)=02πœ‹πΊπœŒπ›½(𝑑,𝑠)𝑒(𝑠)π‘‘π‘ β‰€πœŒ2,π›Ώπœ†π›½βˆ’π›½β‰€πœŒ2ξ€·π½πœŒπ‘’ξ€Έ(𝑑)βˆ’π‘’(𝑑)β‰€π›½βˆ’π›Ώπœ†π›½.(3.9) Thus, for π‘’βˆˆπœ•π‘ƒπœ†π›½, from (π»πœ†1),  we have ξ€·π‘‡πœ†π‘’ξ€Έξ€œ(𝑑)=02πœ‹πΊπœ†ξ€·ξ€·π½(𝑑,𝑠)𝑓𝑠,πœŒπ‘’ξ€Έ(𝑠),𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έ(𝑠)βˆ’π‘’(𝑠)π‘‘π‘ β‰€π‘€πœ†ξ€œ02πœ‹ξ€Ίπ‘ξ€·π‘ ,𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έβ„Žπ½(𝑠)βˆ’π‘’(𝑠)ξ€·ξ€·πœŒπ‘’ξ€Έξ€Έξ€·(𝑠)+π‘žπ‘ ,𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έπ‘”π½(𝑠)βˆ’π‘’(𝑠)ξ€·ξ€·πœŒπ‘’ξ€Έ(𝑠)ξ€Έξ€»π‘‘π‘ β‰€π‘€πœ†ξ€œ02πœ‹ξƒ¬π‘ξ€·π‘ ,𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έβ„Žπ½(𝑠)βˆ’π‘’(𝑠)ξ€·ξ€·πœŒπ‘’ξ€Έ(𝑠)π‘”π½ξ€·ξ€·πœŒπ‘’ξ€Έξ€Έξ€·(𝑠)+π‘žπ‘ ,𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έξƒ­π‘”π½(𝑠)βˆ’π‘’(𝑠)ξ€·ξ€·πœŒπ‘’ξ€Έξ€Έ(𝑠)π‘‘π‘ β‰€π‘€πœ†ξ€œ02πœ‹ξƒ¬π‘ξ€·π‘ ,𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έβ„Žξ€·πœŒ(𝑠)βˆ’π‘’(𝑠)βˆ’2π›½ξ€Έπ‘”ξ€·πœŒβˆ’2𝛽+π‘žπ‘ ,𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έξƒ­π‘”ξ€·πœŒ(𝑠)βˆ’π‘’(𝑠)βˆ’2π›Ώπœ†π›½ξ€Έπ‘‘π‘ β‰€π‘€πœ†π‘”ξ€·πœŒβˆ’2π›Ώπœ†π›½ξ€Έπ‘”ξ€·πœŒβˆ’2𝛽maxξ€·π›Ώπœ†ξ€Έξ€·βˆ’1𝛽≀𝑣≀1βˆ’π›Ώπœ†ξ€Έπ›½ξ‚»ξ€œ02πœ‹ξ€·πœŒπ‘(𝑑,𝑣)π‘‘π‘‘β„Žβˆ’2𝛽+ξ€œ02πœ‹ξ€·πœŒπ‘ž(𝑑,𝑣)π‘‘π‘‘π‘”βˆ’2𝛽<𝛽=‖𝑒‖,(3.10) which implies that β€–β€–ξ€·π‘‡πœ†π‘’ξ€Έβ€–β€–<‖𝑒‖,βˆ€π‘’βˆˆπœ•π‘ƒπœ†π›½.(3.11)
From (π»πœ†2)  is satisfied, there exists a positive constant 𝛼<𝛽  such that ξ‚»ξ€œmin02πœ‹π‘“(𝑑,𝑀,𝑣)𝑑𝑑,πœŒβˆ’2π›Ώπœ†π›Όβ‰€π‘€β‰€πœŒβˆ’2𝛿𝛼,πœ†ξ€Έξ€·βˆ’1𝛼≀𝑣≀1βˆ’π›Ώπœ†ξ€Έπ›Όξ‚Ό>π‘šπœ†βˆ’1𝛼.(3.12) For any π‘’βˆˆπœ•π‘ƒπœ†π›Ό, π›Ώπœ†π›Όβ‰€π‘’(t)≀𝛼 for all π‘‘βˆˆπΌ and π›Ώπœ†π›ΌπœŒ2β‰€ξ€·π½πœŒπ‘’ξ€Έξ€œ(𝑑)=02πœ‹πΊπœŒπ›Ό(𝑑,𝑠)𝑒(𝑠)π‘‘π‘ β‰€πœŒ2,π›Ώπœ†π›Όβˆ’π›Όβ‰€πœŒ2ξ€·π½πœŒπ‘’ξ€Έ(𝑑)βˆ’π‘’(𝑑)β‰€π›Όβˆ’π›Ώπœ†ξ€œπ›Ό,(𝑇𝑒)(𝑑)=02πœ‹πΊπœ†ξ€·ξ€·π½(𝑑,𝑠)𝑓𝑠,πœŒπ‘’ξ€Έ(𝑠),𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έ(𝑠)βˆ’π‘’(𝑠)𝑑𝑠β‰₯π‘šπœ†ξ€œ02πœ‹π‘“ξ€·ξ€·π½π‘ ,πœŒπ‘’ξ€Έ(𝑠),𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έ(𝑠)βˆ’π‘’(𝑠)𝑑𝑠β‰₯π‘šπœ†ξ‚»ξ€œmin02πœ‹π‘“(𝑑,𝑀,𝑣)𝑑𝑑,πœŒβˆ’2π›Ώπœ†π›Όβ‰€π‘€β‰€πœŒβˆ’2𝛿𝛼,πœ†ξ€Έξ€·βˆ’1𝛼≀𝑣≀1βˆ’π›Ώπœ†ξ€Έπ›Όξ‚Ό>𝛼=‖𝑒‖,(3.13) which implies that β€–β€–ξ€·π‘‡πœ†π‘’ξ€Έβ€–β€–>‖𝑒‖,βˆ€π‘’βˆˆπœ•π‘ƒπœ†π›Ό.(3.14) From (3.11) and (3.14) and Theorem 1.1, one can obtain that π‘‡πœ† has a fixed point 𝑒 inβ€‰β€‰π‘ƒπœ†π›½β§΅π‘ƒπœ†π›Ό with 𝛼<‖𝑒‖<𝛽.  Hence, 𝑦=π½πœŒπ‘’β€‰β€‰is a positive solution of (1.1) with πœŒβˆ’2𝛼<‖𝑦‖<πœŒβˆ’2𝛽.
Next, we assume that (π»πœ†1) and (π»πœ†3) are satisfied. In this case, we have (3.11).
Suppose that (π»πœ†3) is satisfied, there exists a positive constant 𝛾>𝛽 such that ξ‚»ξ€œmin02πœ‹π‘“(𝑑,𝑀,𝑣)𝑑𝑑,πœŒβˆ’2π›Ώπœ†π›Ύβ‰€π‘€β‰€πœŒβˆ’2𝛿𝛾,πœ†ξ€Έξ€·βˆ’1𝛾≀𝑣≀1βˆ’π›Ώπœ†ξ€Έπ›Ύξ‚Ό>π‘šπœ†βˆ’1𝛾.(3.15) For any π‘’βˆˆπœ•π‘ƒπœ†π›Ύ, π›Ώπœ†π›Ύβ‰€π‘’(𝑑)≀𝛾  for all π‘‘βˆˆπΌ and π›Ώπœ†π›ΎπœŒ2β‰€ξ€·π½πœŒπ‘’ξ€Έξ€œ(𝑑)=02πœ‹πΊπœŒπ›Ύ(𝑑,𝑠)𝑒(𝑠)π‘‘π‘ β‰€πœŒ2,π›Ώπœ†π›Ύβˆ’π›Ύβ‰€πœŒ2ξ€·π½πœŒπ‘’ξ€Έ(𝑑)βˆ’π‘’(𝑑)β‰€π›Ύβˆ’π›Ώπœ†ξ€œπ›Ύ,(𝑇𝑒)(𝑑)=02πœ‹πΊπœ†ξ€·ξ€·π½(𝑑,𝑠)𝑓𝑠,πœŒπ‘’ξ€Έ(𝑠),𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έ(𝑠)βˆ’π‘’(𝑠)𝑑𝑠β‰₯π‘šπœ†ξ€œ02πœ‹π‘“ξ€·ξ€·π½π‘ ,πœŒπ‘’ξ€Έ(𝑠),𝜌2ξ€·π½πœŒπ‘’ξ€Έξ€Έ(𝑠)βˆ’π‘’(𝑠)𝑑𝑠β‰₯π‘šπœ†ξ‚»ξ€œmin02πœ‹π‘“(𝑑,𝑀,𝑣)𝑑𝑑,πœŒβˆ’2π›Ώπœ†π›Ύβ‰€π‘€β‰€πœŒβˆ’2𝛿𝛾,πœ†ξ€Έξ€·βˆ’1𝛾≀𝑣≀1βˆ’π›Ώπœ†ξ€Έπ›Ύξ‚Ό>𝛾=‖𝑒‖,(3.16) which implies that β€–β€–ξ€·π‘‡πœ†π‘’ξ€Έβ€–β€–>‖𝑒‖,βˆ€π‘’βˆˆπœ•π‘ƒπœ†π›Ύ.(3.17) From (3.11) and (3.17) and Theorem 1.1, one can obtain that π‘‡πœ† has a fixed point 𝑒 inβ€‰β€‰π‘ƒπœ†π›Ύβ§΅π‘ƒπœ†π›½ with 𝛽<‖𝑒‖<𝛾.  Thus, 𝑦=π½πœŒπ‘’   is a positive solution of (1.1) with πœŒβˆ’2𝛽<‖𝑦‖<πœŒβˆ’2𝛾.
Assume that (π»πœ†1), (π»πœ†2), and (π»πœ†3) are satisfied. Repeating the above argument, one can obtain that π‘‡πœ† has a fixed point 𝑒1 inβ€‰β€‰π‘ƒπœ†π›½β§΅Pπœ†π›Όβ€‰β€‰and a fixed point 𝑒2 inβ€‰β€‰π‘ƒπœ†π›Ύβ§΅π‘ƒπœ†π›½ with ‖‖𝑒𝛼<1‖‖‖‖𝑒<𝛽<2β€–β€–<𝛾.(3.18) Hence, 𝑦1=π½πœŒπ‘’1, 𝑦2=π½πœŒπ‘’2  are two positive solutions of (1.1) with πœŒβˆ’2‖‖𝑦𝛼<1β€–β€–<πœŒβˆ’2‖‖𝑦𝛽<2β€–β€–<πœŒβˆ’2𝛾.(3.19) The proof is complete.

4. A Similar Problem

In this section, we use the idea in Sections 2 and 3 to consider the following problem:βˆ’π‘¦(4)(𝑑)+π‘˜4𝑦(𝑑)=𝑓𝑑,𝑦(𝑑),π‘¦β€²ξ…žξ‚1(𝑑),π‘‘βˆˆπΌ,0<π‘˜<2,𝑦(𝑖)(0)=𝑦(𝑖)(2πœ‹),𝑖=0,1,2,3,(4.1) where 𝐼=[0,2πœ‹], π‘“βˆˆπΆ(𝐼×(0,+∞)×𝑅,[0,+∞)).

Let π‘’βˆˆπΆ2(𝐼)  and ξ‚βˆ«π‘¦=𝐽𝑒=02πœ‹πΎ(𝑑,𝑠)𝑒(𝑠)𝑑𝑠,  where⎧βŽͺβŽͺ⎨βŽͺβŽͺ⎩𝐾(𝑑,𝑠)=cosπ‘˜(πœ‹βˆ’π‘‘+𝑠)2π‘˜sinπ‘˜πœ‹,0≀𝑠≀𝑑≀2πœ‹,cosπ‘˜(πœ‹+π‘‘βˆ’π‘ )2π‘˜sinπ‘˜πœ‹,0≀𝑑≀𝑠≀2πœ‹.(4.2) Then,ξ€œ02πœ‹πΎ(𝑑,𝑠)𝑑𝑠=π‘˜βˆ’2,ξ‚€ξ‚ξ‚π½π‘’ξ…žξ…ž(𝑑)=𝑒(𝑑)βˆ’π‘˜2𝐽𝑒(𝑑),π‘‘βˆˆπΌ,𝐽𝑒(𝑖)(0)=𝐽𝑒(𝑖)(2πœ‹),𝑖=0,1,(4.3) and one easily check that (4.1) is equivalent to the problemβˆ’π‘’ξ…žξ…ž(𝑑)+π‘˜2𝑒(𝑑)=𝑓𝑑,𝐽𝑒,π‘’βˆ’π‘˜2𝑒𝐽𝑒,π‘‘βˆˆπΌ,(𝑖)(0)=𝑒(𝑖)(2πœ‹),𝑖=0,1.(4.4) If π‘’βˆˆπΆ2(𝐼) is a (positive) solution of problem (4.4), then 𝑦=π½π‘’βˆˆπΆ4(𝐼)  is a (positive) solution of problem (4.1). Moreover, the problem (4.4) is equivalent to integral equationξ€œπ‘’(𝑑)=02πœ‹πΊπ‘˜ξ‚€ξ‚(𝑑,𝑠)𝑓𝑠,𝐽𝑒(𝑠),𝑒(𝑠)βˆ’π‘˜2𝐽𝑒(𝑠)𝑑𝑠.(4.5) For any π‘’βˆˆπΈ, define mapping π‘‡βˆΆπΈβ†’πΈ byξ€œ(𝑇𝑒)(𝑑)=02πœ‹πΊπ‘˜ξ‚€ξ‚(𝑑,𝑠)𝑓𝑠,𝐽𝑒(𝑠),𝑒(𝑠)βˆ’π‘˜2𝐽𝑒(𝑠)𝑑𝑠.(4.6) For any 𝜍>𝜏>0, one can obtain that π‘‡βˆΆπ‘ƒπ‘˜πœβ§΅π‘ƒπ‘˜πœβ†’π‘ƒπ‘˜β€‰β€‰is completely continuous.

Similar to the proof of Theorem 3.1, we can obtain the following result.

Theorem 4.1. Assume that (π»π‘˜1) and (π»π‘˜2) are satisfied, then there exist two positive constants 𝛼, 𝛽  such that (4.1) has at least positive solution 𝑦 with π‘˜βˆ’2𝛼<β€–yβ€–<π‘˜βˆ’2𝛽.(4.7)
Assume (π»π‘˜1) and (π»π‘˜3) are satisfied, then there exist two positive constants 𝛽, 𝛾 such that (4.1) has at least positive solution 𝑦 with π‘˜βˆ’2𝛽<‖𝑦‖<π‘˜βˆ’2𝛾.(4.8)
Assume (π»π‘˜1), (π»π‘˜2), and (π»π‘˜3) are satisfied, then there exist positive constants 𝛼, 𝛽, 𝛾 such that (4.1) has at least two positive solutions 𝑦1, 𝑦2 with π‘˜βˆ’2‖‖𝑦𝛼<1β€–β€–<π‘˜βˆ’2‖‖𝑦𝛽<2β€–β€–<π‘˜βˆ’2𝛾,(4.9) where (π»π‘˜π‘—)(𝑗=1,2,3)  is condition obtained by replacing πœ† and 𝜌 by π‘˜ in the condition (π»πœ†π‘—) defined in Section 3.

Example 4.2. Consider the differential equation 𝑦(4)(𝑑)βˆ’πœ‡π‘¦β€²ξ…ž1(𝑑)+𝑦(𝑑)=𝑒20πœ‹πœ‡π‘¦β€²β€²(𝑑)+1+π‘‘ξ‚Άπ‘¦πœ‡π‘¦(𝑑),π‘‘βˆˆπΌ,(𝑖)(0)=𝑦(𝑖)(2πœ‹),𝑖=0,1,2,3,(4.10) where πœ‡>4 is a constant.
LetξƒŽπœ†=πœ‡βˆ’βˆšπœ‡2βˆ’42ξƒŽ,𝜌=πœ‡+βˆšπœ‡2βˆ’42𝑒,𝑓(𝑑,𝑒,𝑣)=𝑣+(1+𝑑)(πœ‡π‘’)βˆ’1,120πœ‹πœ‡β„Ž(𝑒)≑1,𝑔(𝑒)=𝑒𝑒,𝑝(𝑑,𝑣)=𝑣20πœ‹πœ‡,π‘ž(𝑑,𝑣)=1+𝑑20πœ‹πœ‡2.(4.11) Then, for all (𝑑,𝑒,𝑣)βˆˆπΌΓ—(0,∞)×𝑅, 0<𝑓(𝑑,𝑒,𝑣)≀𝑝(𝑑,𝑣)β„Ž(𝑒)+π‘ž(𝑑,𝑣)𝑔(𝑒).(4.12) Noting that sup𝑒>0⎧βŽͺ⎨βŽͺβŽ©π‘’max(π›Ώπœ†βˆ’1)𝑒≀𝑣≀(1βˆ’π›Ώπœ†)π‘’ξ‚†βˆ«02πœ‹ξ€·πœŒπ‘(𝑑,𝑣)π‘‘π‘‘β„Žβˆ’2π‘’ξ€Έξ€·πœŒ/π‘”βˆ’2𝑒+∫02πœ‹ξ‚‡π‘”ξ€·πœŒπ‘ž(𝑑,𝑣)π‘‘π‘‘βˆ’2π›Ώπœ†π‘’ξ€ΈβŽ«βŽͺ⎬βŽͺ⎭>10πœ‡π›Ώπœ†π‘’+3πœ‹πœ‡βˆ’1𝜌2,limπœ‡β†’+βˆžπ‘€πœ†πœ‡π›Ώπœ†=14πœ‹,limπœ‡β†’+∞𝜌2πœ‡=1,(4.13) we obtain that (π»πœ†1) holds when πœ‡ is sufficiently large. On the other hand, it is easy to check that (π»πœ†2) is satisfied since 𝑓(𝑑,𝑒,𝑣)β†’+βˆžβ€‰β€‰as 𝑒→0+ for any π‘‘βˆˆπΌ and π‘£βˆˆπ‘…. Hence, (4.10) has at least a positive solution when πœ‡ is sufficiently large.

Acknowledgment

A Project Supported by the NNSF of China (10871063) and ScientificResearch Fund of human Provincial Education Department (10C0258).