Review Article

Piezoelectric Energy Harvesting Devices: An Alternative Energy Source for Wireless Sensors

Table 9

Summary of piezoelectric nanogenerators*.

Output Performance

Key material attributesGenerator type and dimensions (length × diameter)VoltageCurrentCurrent densityPower or power densityReference

n-ZnO synthesized by PVD. Eg: 3.37 eV; EA: 2.15 eVAC type 50 μm × 200 μm2.03 V107 nA11 mW/cm3[31]
n-ZnO synthesised by solution growth. Eg 3.37 eV; EA: 4.35 eVDC type 2 μm × 100 nm2 μA/cm2[32]
n-ZnO synthesised by CVD. Eg: 3.37 eV; EA: 4.35 eVDC type 3 μm × 90 nm20 mV0.5 μA/cm2[33]
InN by use of VLS. Eg: 0.7–0.9 eV; EA: 5.8 eVDC type 5 μm × 25–100 nm1.0 V[35]
GaN synthesised by CVD. Eg: 3.4 eV; EA: 4.1 eVDC type 10–20 μm × 25–70 nm20 mV[36]
PVDF synthesised by E-SP. Eg: 9.23 eV: EA: −0.53 eVAc type 6.5 μm × 500 nm5–30 mV0.5–3 nA [38]
PZT synthesised HT process. Eg: 2.4 eV; EA: 2.15 eVAC type 5 μm × 500 nm0.7 V4 μA/cm22.8 mW/cm3[40]
BaTiO3 synthesised by HTCR growth. Eg: 3.3 eV; EA: 2.90 eVAC type 15 μm × 280 nm25 mV[79]

: physical vapour deposition, CVD: chemical vapour deposition, E-SP: electro-spinning process, HT: hydrothermal, HTCR: high temperature chemical reaction, Eg: energy gap, EA: electron affinity, and “—” = not stated.