Abstract

We find explicit values of cubic and quartic theta-functions and their quotients by parameterizations. In the process, we also find some transformation formulas of these theta-functions.

1. Introduction

For any complex number π‘Ž, define (π‘Ž;π‘ž)𝑛=(π‘Ž;π‘ž)∞(π‘Žπ‘žπ‘›;π‘ž)∞,and(π‘Ž;π‘ž)∞∢=βˆžξ‘π‘˜=1ξ€·1βˆ’π‘Žπ‘žπ‘˜βˆ’1ξ€Έ.(1.1)

Ramanujan’s general theta-function 𝑓(π‘Ž,𝑏) is given by 𝑓(π‘Ž,𝑏)=βˆžξ“π‘˜=βˆ’βˆžπ‘Žπ‘˜(π‘˜+1)/2π‘π‘˜(π‘˜βˆ’1)/2,(1.2) where |π‘Žπ‘|<1. If we set π‘Ž=π‘žπ‘’2𝑖𝑧, 𝑏=π‘žπ‘’βˆ’2𝑖𝑧, and π‘ž=π‘’πœ‹π‘–πœ, where 𝑧 is complex and Im(𝜏)>0, then 𝑓(π‘Ž,𝑏)=πœ—3(𝑧,𝜏), where πœ—3(𝑧,𝜏) [1, page 464] denotes one of the classical theta-functions in its standard notation.

We also define the following three special cases of 𝑓(π‘Ž,𝑏):πœ™(π‘ž)∢=𝑓(π‘ž,π‘ž)=βˆžξ“π‘›=βˆ’βˆžπ‘žπ‘›2=ξ€·βˆ’π‘ž;π‘ž2ξ€Έβˆžξ€·π‘ž2;π‘ž2ξ€Έβˆžξ€·π‘ž;π‘ž2ξ€Έβˆžξ€·βˆ’π‘ž2;π‘ž2ξ€Έβˆž,ξ€·πœ“(π‘ž)∢=π‘“π‘ž,π‘ž3ξ€Έ=βˆžξ“π‘˜=0π‘žπ‘˜(π‘˜+1)/2=ξ€·π‘ž2;π‘ž2ξ€Έβˆžξ€·π‘ž;π‘ž2ξ€Έβˆž,𝑓(βˆ’π‘ž)∢=π‘“βˆ’π‘ž,βˆ’π‘ž2ξ€Έ=βˆžξ“π‘›=βˆ’βˆž(βˆ’1)π‘›π‘žπ‘›(3π‘›βˆ’1)/2=(π‘ž;π‘ž)∞.(1.3)

If π‘ž=𝑒2πœ‹π‘–π‘§ with Im(𝑧)>0, then 𝑓(βˆ’π‘ž)=π‘žβˆ’1/24πœ‚(𝑧), where πœ‚(𝑧) denotes the classical Dedekind eta-function.

In his famous paper [2] and [3, pages 23–39], Ramanujan offered 17 elegant series for 1/πœ‹ and remarked that 14 of these series belong to the β€œcorresponding theories” in which the base π‘ž in classical theory of elliptic functions is replaced by one or other of the functions:π‘žπ‘ŸβˆΆ=π‘žπ‘Ÿξ‚΅ξ‚€πœ‹(π‘₯)=expβˆ’πœ‹cscπ‘Ÿξ‚2𝐹1(1/π‘Ÿ,(π‘Ÿβˆ’1)/π‘Ÿ,1,1βˆ’π‘₯)2𝐹1(ξ‚Ά,1/π‘Ÿ,(π‘Ÿβˆ’1)/π‘Ÿ,1,π‘₯)(1.4) where π‘Ÿ= 3, 4, and 6, where 2𝐹1 denotes the Gaussian hypergeometric function. In the classical theory, the variable π‘ž=π‘ž2. Ramanujan did not offer any proof of these 14 series for 1/πœ‹ or any of his theorems in the β€œcorresponding” or β€œalternative” theories. In 1987, J. M. Borwein and P. B. Borwein [4] proved the formulas for 1/πœ‹. However, in his second notebook [5, Vol. II], Ramanujan recorded, without proof, some of his theorems in alternative theories which were first proved by Berndt et al. [6] in 1995. These theories are now known as the theory of signature π‘Ÿ, where π‘Ÿ= 3, 4, and 6. In particular, the theories of signature 3 and 4 are called cubic and quartic theories, respectively. An account of this work may also be found in Berndt’s book [7].

In Ramanujan’s cubic theory, the theta-functions π‘Ž(π‘ž), 𝑏(π‘ž), and 𝑐(π‘ž) are defined byπ‘Ž(π‘ž)=βˆžξ“π‘š,𝑛=βˆ’βˆžπ‘žπ‘š2+π‘šπ‘›+𝑛2,𝑏(π‘ž)=βˆžξ“π‘š,𝑛=βˆ’βˆžπ‘€π‘šβˆ’π‘›π‘žπ‘š2+π‘šπ‘›+𝑛2,𝑐(π‘ž)=βˆžξ“π‘š,𝑛=βˆ’βˆžπ‘ž(π‘š+1/3)2+(π‘š+1/3)(𝑛+1/3)+(𝑛+1/3)2,(1.5) where 𝑀=exp(2πœ‹π‘–/3). These theta-functions were first introduced by J. M. Borwein and P. B. Borwein [8], who also proved thatπ‘Ž3(π‘ž)=𝑏3(π‘ž)+𝑐3(π‘ž).(1.6) Cubic theta-functions 𝑏(π‘ž) and 𝑐(π‘ž) are related with the Dedekind eta-function by [7, page 109, Lemma 5.1]:𝑓𝑏(π‘ž)=3(βˆ’π‘ž)π‘“ξ€·βˆ’π‘ž3ξ€Έ,𝑐(π‘ž)=3π‘ž1/3𝑓3ξ€·βˆ’π‘ž3𝑓.(βˆ’π‘ž)(1.7)

The Borwein brothers [8, (2.2)] also established the following three transformation formulas:π‘Žξ€·π‘’βˆ’2πœ‹π‘‘ξ€Έ=1π‘‘βˆš3π‘Žξ€·π‘’βˆ’2πœ‹/3𝑑,𝑏𝑒(1.8)βˆ’2πœ‹π‘‘ξ€Έ=1π‘‘βˆš3π‘ξ€·π‘’βˆ’2πœ‹/3𝑑𝑐𝑒,(1.9)βˆ’2πœ‹π‘‘ξ€Έ=1π‘‘βˆš3π‘ξ€·π‘’βˆ’2πœ‹/3𝑑,(1.10) where Re(𝑑)>0. Cooper [9] also found alternate proofs of (1.8)–(1.10).

In quartic theory, Berndt et al. [6] (see also [7, page 146, (9.7)]) established a β€œtransfer” principle of Ramanujan by which formulas in this theory can be derived from those of the classical theory. Taking place of π‘Ž(π‘ž), 𝑏(π‘ž), and 𝑐(π‘ž) in cubic theory is the functions 𝐴(π‘ž), 𝐡(π‘ž), and 𝐢(π‘ž) [10], defined by 𝐴(π‘ž)=πœ™4(π‘ž)+16π‘žπœ“4ξ€·π‘ž2ξ€Έ,𝐡(π‘ž)=πœ™4(π‘ž)βˆ’16π‘žπœ“4ξ€·π‘ž2ξ€Έ,√𝐢(π‘ž)=8π‘žπœ™2(π‘ž)πœ“2ξ€·π‘ž2ξ€Έ,(1.11) which also satisfy the equality: 𝐴2(π‘ž)=𝐡2(π‘ž)+𝐢2(π‘ž).(1.12) Berndt et al. [10] used (1.12) to establish the inversion formula: 𝑧4∢=2𝐹1ξ‚€14,34=√;1;π‘₯𝐴(π‘ž),(1.13) where π‘žβˆΆ=π‘ž4 is given by (1.4). Therefore, they were able to prove the theorems in the quartic theory directly.

The quartic analogues of (1.7) are given by [10, page 139, Theorem 3.1]𝑓𝐡(π‘ž)=2(βˆ’π‘ž)π‘“ξ€·βˆ’π‘ž2ξ€Έξƒͺ4√,𝐢(π‘ž)=8π‘žξƒ©π‘“2ξ€·βˆ’π‘ž2𝑓ξƒͺ(βˆ’π‘ž)4.(1.14)

While proving the explicit values of πœ™(π‘ž) and πœ“(π‘ž) recorded by Ramanujan in his notebooks, Berndt [7], explicitly determined the value of cubic theta-function π‘Ž(π‘’βˆ’2πœ‹) [7, page 328, Corollary 3], namely,π‘Žξ€·π‘’βˆ’2πœ‹ξ€Έπœ™2(π‘’βˆ’πœ‹)=1(12)1/8ξ”βˆš,3βˆ’1(1.15) where πœ™(π‘’βˆ’πœ‹)=πœ‹1/4/Ξ“(3/4) is classical [1]. Certain quotients of 𝐴(π‘ž), 𝐡(π‘ž), and 𝐢(π‘ž) were also evaluated by Berndt et al. [10] while deriving the series for 1/πœ‹ associated with the theory of signature 4.

In this paper, we find several new explicit values of cubic and quartic theta-functions and their quotients by parameterizations. In the process, we also find some transformation formulas of these theta-functions.

We now define some parameters of Dedekind eta-function 𝑓(π‘ž) and Ramanujan’s theta-functions πœ™(π‘ž) and πœ“(π‘ž). For positive real numbers 𝑛 and π‘˜, defineπ‘Ÿπ‘˜,π‘›βˆΆ=𝑓(βˆ’π‘ž)π‘˜1/4π‘ž(π‘˜βˆ’1)/24π‘“ξ€·βˆ’π‘žπ‘˜ξ€Έ,π‘ž=π‘’βˆšβˆ’2πœ‹π‘›/π‘˜,π‘Ÿ(1.16)ξ…žπ‘˜,π‘›βˆΆ=𝑓(π‘ž)π‘˜1/4π‘ž(π‘˜βˆ’1)/24π‘“ξ€·π‘žπ‘˜ξ€Έ,π‘ž=π‘’βˆšβˆ’πœ‹π‘›/π‘˜.(1.17) The parameters π‘Ÿπ‘˜,𝑛 and π‘Ÿξ…žπ‘˜,𝑛 are defined by Yi [11]. She also evaluated several explicit values of π‘Ÿπ‘˜,𝑛 and π‘Ÿξ…žπ‘˜,𝑛 by using eta-function identities and transformation formulas.

In his lost notebook [12, page 212], Ramanujan definedπœ†π‘›=13√3𝑓6(π‘ž)βˆšπ‘žπ‘“6ξ€·π‘ž3ξ€Έ,π‘ž=π‘’βˆšβˆ’πœ‹π‘›/3.(1.18) Closely related to πœ†π‘› is the parameter πœ‡π‘› defined by Ramanathan [13] asπœ‡π‘›=13√3𝑓6(βˆ’π‘ž)βˆšπ‘žπ‘“6ξ€·βˆ’π‘ž3ξ€Έ,π‘ž=π‘’βˆšβˆ’2πœ‹π‘›/3.(1.19)

From the definitions of π‘Ÿπ‘˜,𝑛, πœ‡π‘›, π‘Ÿξ…žπ‘˜,𝑛, and πœ‡π‘›, we note that π‘Ÿξ…ž63,𝑛=πœ†π‘› and π‘Ÿ63,𝑛=πœ‡π‘›. Ramanujan [12] also provided a list of eleven recorded values of πœ†π‘› and ten unrecorded values of πœ†π‘›. All 21 values of πœ†π‘› and several new were established by Berndt et al. [14]. Yi [11], and Baruah and Saikia [15, 16] also found several new values of parameters πœ†π‘› and πœ‡π‘›.

In [11], Yi also introduced the following two parameterizations β„Žπ‘˜,𝑛 and β„Žξ…žπ‘˜,𝑛 along with π‘Ÿπ‘˜,𝑛 and π‘Ÿξ…žπ‘˜,𝑛: β„Žπ‘˜,π‘›βˆΆ=πœ™(π‘ž)π‘˜1/4πœ™ξ€·π‘žπ‘˜ξ€Έ,π‘ž=π‘’βˆšβˆ’πœ‹π‘›/π‘˜,β„Ž(1.20)ξ…žπ‘˜,π‘›βˆΆ=πœ™(βˆ’π‘ž)π‘˜1/4πœ™ξ€·βˆ’π‘žπ‘˜ξ€Έ,π‘ž=π‘’βˆšβˆ’2πœ‹π‘›/π‘˜,(1.21) where π‘˜ and 𝑛 are positive real numbers. Employing modular transformation formulas and theta-function identities, Yi evaluated several many explicit values of β„Žπ‘˜,𝑛 and β„Žξ…žπ‘˜,𝑛 to find explicit values of πœ™(π‘ž) and their quotients.

Motivated by Yi’s work, for any positive real numbers π‘˜ and 𝑛, Baruah and Saikia [17] defined the parameters π‘”π‘˜,𝑛 and π‘”ξ…žπ‘˜,𝑛 byπ‘”π‘˜,π‘›βˆΆ=πœ“(βˆ’π‘ž)π‘˜1/4π‘ž(π‘˜βˆ’1)/8πœ“ξ€·βˆ’π‘žπ‘˜ξ€Έ,π‘ž=π‘’βˆšβˆ’πœ‹π‘›/π‘˜,𝑔(1.22)ξ…žπ‘˜,π‘›βˆΆ=πœ“(π‘ž)π‘˜1/4π‘ž(π‘˜βˆ’1)/8πœ“ξ€·π‘žπ‘˜ξ€Έ,π‘ž=π‘’βˆšβˆ’πœ‹π‘›/π‘˜.(1.23) In [17], they proved many properties of the parameterizations π‘”π‘˜,𝑛 and π‘”ξ…žπ‘˜,𝑛 and established their relationship with Yi’s parameters π‘Ÿπ‘˜,𝑛, π‘Ÿξ…žπ‘˜,𝑛, β„Žπ‘˜,𝑛, β„Žξ…žπ‘˜,𝑛, and Weber-Ramanujan class-invariants 𝐺𝑛 and 𝑔𝑛, where 𝐺𝑛 and 𝑔𝑛 defined byπΊπ‘›βˆΆ=2βˆ’1/4π‘žβˆ’1/24ξ€·βˆ’π‘ž;π‘ž2ξ€Έβˆž,π‘”π‘›βˆΆ=2βˆ’1/4π‘žβˆ’1/24ξ€·π‘ž;π‘ž2ξ€Έβˆž;π‘ž=π‘’βˆšβˆ’πœ‹π‘›.(1.24) They also found several values of the parameters π‘”π‘˜,𝑛 and π‘”ξ…žπ‘˜,𝑛.

In Section 2, we record some known values of above parameters, which will be used in this paper.

In Sections 3 and 4, we deal with explicit evaluations of cubic theta-functions and their quotients. In Sections 5 and 6, we find explicit values of the quartic theta-functions and their quotients.

2. Explicit Values of Parameters

Lemma 2.1. If π‘Ÿπ‘˜,𝑛 is as defined in (1.16), then π‘Ÿ1,1=1,π‘Ÿ2,1=1,π‘Ÿ2,2=21/8,π‘Ÿ2,3=ξ‚€βˆš1+21/6,π‘Ÿ2,4=21/8ξ‚€βˆš1+21/8,π‘Ÿ2,5=ξƒŽβˆš1+52,π‘Ÿ2,6=21/24ξ‚€βˆšξ‚3+11/4,π‘Ÿ2,7=βŽ›βŽœβŽœβŽœβŽβˆšξ”2+1+2√2βˆ’12⎞⎟⎟⎟⎠1/2,π‘Ÿ2,8=23/16ξ‚€βˆš1+21/4,π‘Ÿ2,9=ξ‚€βˆšβˆš2+31/3,π‘Ÿ2,10=ξ‚΅12ξ‚€βˆš1+5ξ‚ξ‚΅ξ”βˆšβˆš5+1+2ξ‚Άξ‚Ά1/4,π‘Ÿ2,12=ξ‚€βˆš1+25/24ξ‚€2ξ‚€βˆš1+√2+61/8,π‘Ÿ2,16=21/8ξ‚€βˆš1+21/44+√2+102ξ‚Ά1/8,π‘Ÿ2,18=ξ‚€βˆš1+31/3ξ‚€βˆš1+√3+2β‹…33/41/3211/24,π‘Ÿ2,20=ξ‚€βˆš1+55/8ξ‚€βˆš2+3√2+51/8√2,π‘Ÿ2,27=ξ‚€βˆš1+25/18ξ‚»βˆšβˆš2+2ξ‚€βˆš1+21/3+ξ‚€βˆš1+22/3ξ‚Ό1/3,π‘Ÿ2,32=23/16ξ‚€βˆš1+21/4ξ‚€16+15β‹…21/4√+122+9β‹…23/41/8,π‘Ÿ2,36=2ξ‚€βˆš1+35√2βˆ’2831/8ξ‚€βˆšβˆš3βˆ’22/3,π‘Ÿ2,49=1+√7+2142√2+ξ‚™βˆšξ”14+√7+2142,π‘Ÿ2,50=25/851/4,π‘Ÿβˆ’12,72=ξ‚€βˆšβˆš2+31/3ξ‚€βˆ’βˆšβˆš2+4+23+33/4ξ‚€βˆš3+11/3213/48ξ‚€βˆšξ‚2βˆ’15/12,π‘Ÿ2,3/2=ξ‚€βˆš1+31/427/24,π‘Ÿ2,5/2=ξ‚΅ξ”βˆšβˆš5+1+2ξ‚Ά1/421/4,π‘Ÿ2,7/2=ξ‚€βˆš3+71/423/8,π‘Ÿ2,9/2=ξ‚€βˆš1+√3+2β‹…33/41/3213/24,π‘Ÿ2,25/2=51/4+125/8,π‘Ÿ2,27/2=ξ‚€βˆš1+31/12ξ‚€βˆš1βˆ’3+22/3√31/323/8ξ€·21/3ξ€Έβˆ’11/3,π‘Ÿ2,63/2=ξ‚΅βˆš7βˆ’2√3+ξ‚€βˆš21+3+3ξ‚ξ”βˆš3+16√21βˆ’277ξ‚Ά1/3213/24ξ‚€βˆšξ‚3βˆ’12/3ξ‚€βˆš3βˆ’71/12,π‘Ÿ2,9/4=ξ‚€βˆšβˆ’1+35√2+2831/821/8ξ‚€βˆšβˆš2+31/3,π‘Ÿ2,9/8=25/48ξ‚€βˆšξ‚2βˆ’15/12ξ‚€βˆšξ‚3βˆ’11/3ξ‚€βˆšβˆš3βˆ’21/3ξ‚€βˆšβˆ’1βˆ’βˆš2+3+33/4√√2βˆ’61/3,π‘Ÿ3,3=31/12ξ‚€βˆš3+231/12=31/8ξ‚€βˆš1+31/621/12,π‘Ÿ3,4=ξ„Άξ„΅ξ„΅βŽ·βˆš3+1√2,π‘Ÿ3,5=ξƒ©βˆš5+12ξƒͺ5/6=ξƒ©βˆš11+552ξƒͺ1/6,π‘Ÿ3,7=βŽ›βŽœβŽœβŽβˆšβˆš3+72ξ‚€βˆš2βˆ’3ξ‚βŽžβŽŸβŽŸβŽ 1/4,π‘Ÿ3,8=ξ‚€βˆšξ‚2+11/3ξ‚€βˆšβˆš2+31/4,π‘Ÿ3,9=31/6ξ€·1+21/3+22/3ξ€Έ1/3=31/6ξ€·21/3ξ€Έβˆ’11/3,π‘Ÿ3,18=31/6ξ‚€βˆš1+25/18ξ‚΅βˆš2+2ξ‚€βˆš1+21/3+ξ‚€βˆš1+22/3ξ‚Ά1/3,π‘Ÿ3,25=121+3βˆšξ”10+5+23√10+3√102ξƒͺ,π‘Ÿ3,49=3+3√223√7+3√23√72+49+133√223√7+83√23√722√3,π‘Ÿ4,4=25/16ξ‚€βˆš1+21/4,π‘Ÿ4,5=βŽ›βŽœβŽœβŽœβŽβˆš1+√5+2+√1+52⎞⎟⎟⎟⎠1/2,π‘Ÿ4,8=21/4ξ‚€βˆš1+23/84+√2+102ξ‚Ά1/8,π‘Ÿ4,9=12ξ‚€βˆš1+24√√3+3,π‘Ÿ4,7=ξ‚€βˆš8+371/4,π‘Ÿ4,9=12+31/4√2+√32,π‘Ÿ4,25=12ξ‚€3+4√√5+5+4√53=4√5+14√,π‘Ÿ5βˆ’14,49=14βŽ›βŽœβŽœβŽξ‚™βˆš4+7+√21+8ξ‚™7+βˆšξ”7+√21+87⎞⎟⎟⎠2,π‘Ÿ5,5=ξ‚€βˆš25+1051/6=ξƒŽβˆš5+52,π‘Ÿ6,6=31/8ξ”βˆšξ‚€βˆš3+11+√3+233/41/3213/24.(2.1) For values of π‘Ÿ4,7,π‘Ÿ4,9, and π‘Ÿ4,49 see [18]. For remaining values we refer to [11] or [17].
We also note that π‘Ÿπ‘˜,1=1,π‘Ÿπ‘˜,1/𝑛=1π‘Ÿπ‘˜,𝑛,π‘Ÿπ‘˜,𝑛=π‘Ÿπ‘›,π‘˜.(2.2)

Lemma 2.2. One has (i)β„Ž1,1=1,(ii)β„Ž2,2=2√2βˆ’2,(iii)β„Ž3,3=ξ‚€2βˆšξ‚3βˆ’31/4=31/8ξ”βˆš3βˆ’121/4,(iv)β„Ž4,4=23/44√,2+1(v)β„Ž5,5=ξ”βˆš5βˆ’2(5,vi)β„Ž6,6=23/431/8βˆšξ‚€ξ‚€βˆš2βˆ’13βˆ’11/6ξ‚€βˆšβˆ’4+32+35/4√+23βˆ’33/4√+22β‹…33/41/3.(2.3)

We refer to [19, page 19, Theorem 5.4] or [11, page 150, Theorem 9.2.4] for proofs of the above assertions.

Lemma 2.3. One has (i)β„Žξ…ž1,1=1,(ii)β„Žξ…ž2,2=21/16ξ‚€βˆšξ‚2βˆ’11/4,(iii)β„Žξ…ž3,3=21/331/8ξ‚€βˆšξ‚3βˆ’11/6ξ‚€βˆš1+√3+24√331/3,(iv)β„Žξ…ž4,4=21/4ξ‚€16+154√√2+122+94√231/8,(v)β„Žξ…ž5,5=12ξ‚€4βˆšξ‚ξ”5βˆ’1√5+5,(vi)β„Žξ…ž6,6=21/431/8ξ‚€βˆšξ‚2βˆ’11/12ξ‚€βˆšξ‚3+11/6ξ‚€βˆšβˆ’1βˆ’βˆš3+2β‹…33/41/3ξ‚€βˆš2βˆ’32+35/4+33/41/3,(vii)β„Žξ…ž3,1=2βˆ’1/4ξ”βˆš3βˆ’1.(2.4)

For proofs (i)–(vi), see [19, page 21, Theorem 5.6] or [11, page 152, Theorem 9.2.6]. For proof of (vii), see [19, page 15, Theorem 4.11] or [11, page 145, Theorems 9.1.10].

Lemma 2.4. One has (i)π‘”ξ…ž1,1=1,(ii)π‘”ξ…ž2,2=23/8,(iii)π‘”ξ…ž3,3=31/3ξ‚€βˆš1+√3+2β‹…33/41/3ξ‚€βˆš1+31/6√2,(iv)π‘”ξ…ž4,4=23/8ξ‚€βˆš1+21/2,(v)π‘”ξ…ž5,5=ξ‚€βˆš5+51/2ξ€·51/4ξ€Έ+12,(vi)π‘”ξ…ž6,6=31/8ξ‚€βˆš1+35/6ξ‚€βˆš1+√3+2β‹…33/42/3229/24,(vii)π‘”ξ…ž9,9=π‘Ž+(2(π‘βˆ’2𝑐))1/3+(2(𝑏+2𝑐))1/32,(2.5) where βˆšπ‘Ž=2+2β‹…31/4√+2√3+2β‹…33/4√,𝑏=82+45√2+48√3+252β‹…33/4,𝑐=3ξ‚€βˆš88+472β‹…31/4√+50√3+272β‹…33/4.(2.6)

For proofs we refer to [17, page 1781, Theorem 6.7].

3. Theorems on Explicit Evaluation of π‘Ž(π‘ž), 𝑏(π‘ž), and 𝑐(π‘ž)

In this section, we present some general formulas for the explicit evaluations of cubic theta-functions and their quotients by parameterizations given in Section 1. In the process, we also establish some transformation formulas of quotients of cubic theta-functions.

Theorem 3.1. For any positive real number 𝑛, one has π‘ξ‚€π‘’βˆšβˆ’2πœ‹π‘›/3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹π‘›/3=π‘Ÿ43,𝑛=πœ‡π‘›2/3,(3.1) where π‘Ÿπ‘˜,𝑛 and πœ‡π‘› are as defined in (1.16) and (1.19), respectively.

Proof. Using the definitions of 𝑏(π‘ž) and 𝑐(π‘ž) from (1.7), one has 3𝑏(π‘ž)𝑐=(π‘ž)𝑓(βˆ’π‘ž)π‘ž1/12π‘“ξ€·βˆ’π‘ž3ξ€Έξƒͺ4.(3.2) Setting π‘ž=π‘’βˆšβˆ’2πœ‹π‘›/3 and then employing the definitions of π‘Ÿπ‘˜,𝑛 and πœ‡π‘›, we finish the proof.

Remark 3.2. Replacing 𝑛 by 1/𝑛 in Theorem 3.1 and noting that π‘Ÿ3,1/𝑛=1/π‘Ÿ3,𝑛 from (2.2), we also have π‘ξ‚€π‘’βˆšβˆ’2πœ‹π‘›/3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹π‘›/3=π‘ξ‚€π‘’βˆšβˆ’2πœ‹/3π‘›ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹/3𝑛.(3.3) Thus, if we know the value of one quotient of (3.3), then the other quotient follows readily.

From Theorem 3.1 and (1.6), the following theorem is apparent.

Theorem 3.3. One has π‘Žξ‚€π‘’βˆšβˆ’2πœ‹π‘›/3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹π‘›/3=ξ‚€π‘Ÿ123,𝑛+11/3.(3.4)

Theorem 3.4. For any positive real number 𝑛, one has π‘ξ‚€π‘’βˆšβˆ’2πœ‹π‘›ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹π‘›/3=π‘Ÿ9,π‘›βˆš3.(3.5)

Proof. From the definitions 𝑏(π‘ž) and 𝑐(π‘ž) in (1.7), we observe that π‘ξ€·π‘ž3ξ€Έ=𝑐(π‘ž)𝑓(βˆ’π‘ž)3π‘ž1/3π‘“ξ€·βˆ’π‘ž9ξ€Έ.(3.6) Setting π‘ž=π‘’βˆšβˆ’2πœ‹π‘›/3 in (3.6) and then employing the definition of π‘Ÿπ‘˜,𝑛, we arrive at the desired result.

Remark 3.5. Noting that π‘Ÿ9,1/𝑛=1/π‘Ÿ9,𝑛 from (2.2) and using Theorem 3.4, we find that 𝑒3π‘βˆšβˆ’2πœ‹π‘›ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹π‘›/3=π‘ξ‚€π‘’βˆšβˆ’2πœ‹/3π‘›ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹/𝑛.(3.7) Now, from (3.7), it is obvious that if we know the value of one quotient then the other quotient can easily be evaluated.

In the next theorem, we give a relation between 𝑐(π‘ž) and the parameter β„Žπ‘˜,𝑛 as defined in (1.21).

Theorem 3.6. For any positive real number 𝑛, one has π‘ξ‚€π‘’βˆšβˆ’8πœ‹π‘›/3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹π‘›/3=14ξ‚€βˆš1βˆ’3ξ€·β„Žξ…ž3,𝑛2.(3.8)

Proof. From [10, page 111, Lemma 5.5], we note that π‘ξ€·π‘ž1βˆ’44𝑐=(π‘ž)πœ™(βˆ’π‘ž)πœ™ξ€·βˆ’π‘ž3ξ€Έξƒͺ2.(3.9) Now applying the definition of β„Žξ…žπ‘˜,𝑛, with π‘˜=3, in (3.9), we complete the proof.

The next theorem connects π‘Ž(π‘ž) with the parameter π‘Ÿπ‘˜,𝑛 defined in (1.16).

Theorem 3.7. For any positive real number 𝑛, one has π‘Ž12ξ‚€π‘’βˆšβˆ’2πœ‹π‘›/3=ξ‚€π‘Ÿ27123,𝑛+14π‘’βˆšβˆ’2πœ‹π‘›/3𝑓24ξ‚€βˆ’π‘’βˆšβˆ’2πœ‹π‘›/3ξ‚π‘Ÿ363,𝑛.(3.10)

Proof. From [20, page 196, (2.9)], we note that 27π‘žπ‘“24(βˆ’π‘ž)=π‘Ž12(π‘ž)(1βˆ’π›Ό(π‘ž))3𝛼(π‘ž),(3.11) where 𝛼(π‘ž)=𝑐3(π‘ž)/π‘Ž3(π‘ž).
Setting π‘ž=π‘’βˆšβˆ’2πœ‹π‘›/3 and then applying (3.3) in (3.11), we obtain 27π‘’βˆšβˆ’2πœ‹π‘›/3𝑓24ξ‚€βˆ’π‘’βˆšβˆ’2πœ‹π‘›/3=π‘Ž12ξ‚€π‘’βˆšβˆ’2πœ‹π‘›/311βˆ’π‘Ÿ123,𝑛ξƒͺ+131π‘Ÿ123,𝑛ξƒͺ,+1(3.12) which on simplification gives the required result.

Theorem 3.8. One has π‘Žξ€·π‘’βˆ’3π‘›πœ‹ξ€Έ=13{π‘Ž(π‘’βˆ’π‘›πœ‹)+2𝑏(π‘’βˆ’π‘›πœ‹)}.(3.13)

Proof. From [7, page 93, (2.8)], one has 1𝑏(π‘ž)=2ξ€½ξ€·π‘ž3π‘Ž3ξ€Έξ€Ύ.βˆ’π‘Ž(π‘ž)(3.14) Setting π‘ž=π‘’βˆ’π‘›πœ‹ in (3.14), we readily complete the proof.

Theorem 3.9. For any positive real number 𝑛, one has (i)𝑏(π‘’βˆ’π‘›πœ‹π‘“)=3(βˆ’π‘’βˆ’π‘›πœ‹)π‘“ξ€·βˆ’π‘’βˆ’3π‘›πœ‹ξ€Έ,(ii)𝑏(βˆ’π‘’βˆ’π‘›πœ‹π‘“)=3(π‘’βˆ’π‘›πœ‹)π‘“ξ€·π‘’βˆ’3π‘›πœ‹ξ€Έ.(3.15)

Proof. Setting π‘ž=π‘’βˆ’π‘›πœ‹ and π‘ž=βˆ’π‘’βˆ’π‘›πœ‹ in (1.7), we readily arrive at (i) and (ii), respectively.

Theorem 3.10. For all positive real numbers 𝑛, one has 𝑒(i)π‘βˆšβˆ’2πœ‹π‘›/3=31/4π‘’βˆšβˆ’πœ‹βˆšπ‘›/63𝑓2ξ‚€βˆ’π‘’βˆšβˆ’2πœ‹π‘›/3ξ‚π‘Ÿ3,𝑛,ξ‚€(ii)π‘βˆ’π‘’βˆšβˆ’πœ‹π‘›/3=31/4π‘’βˆšβˆ’πœ‹βˆšπ‘›/123𝑓2ξ‚€π‘’βˆšβˆ’πœ‹π‘›/3ξ‚π‘Ÿξ…ž3,𝑛,(3.16) where the parameters π‘Ÿ3,𝑛 and π‘Ÿξ…ž3,𝑛 are defined in (1.16) and (1.17), respectively.

Proof. We rewrite 𝑏(π‘ž) in (1.7) as 𝑏(π‘ž)=𝑓2(βˆ’π‘ž)π‘ž1/12𝑓(βˆ’π‘ž)π‘ž1/12π‘“ξ€·βˆ’π‘ž3ξ€Έ.(3.17) Setting π‘ž=π‘’βˆšβˆ’2πœ‹π‘›/3 and employing the definition of π‘Ÿ3,𝑛, we arrive at (i). To prove (ii), we replace π‘ž by βˆ’π‘ž in (3.17) and then use the definition of π‘Ÿξ…ž3,𝑛.

Theorem 3.11. For all positive real number 𝑛, we have (i)𝑐(π‘’βˆ’π‘›πœ‹)=3π‘’βˆ’π‘›πœ‹/3𝑓3ξ€·βˆ’π‘’βˆ’3π‘›πœ‹ξ€Έπ‘“(βˆ’π‘’βˆ’π‘›πœ‹),(ii)𝑐(βˆ’π‘’βˆ’π‘›πœ‹)=βˆ’3π‘’βˆ’π‘›πœ‹/3𝑓3ξ€·π‘’βˆ’3π‘›πœ‹ξ€Έπ‘“(π‘’βˆ’π‘›πœ‹).(3.18)

Proof. It follows readily from (1.7) with π‘ž=π‘’βˆ’π‘›πœ‹ and π‘ž=βˆ’π‘’βˆ’π‘›πœ‹.

Theorem 3.12. For all positive real number 𝑛, one has π‘ξ‚€π‘’βˆšβˆ’2πœ‹π‘›/3=33/4π‘’βˆšβˆ’πœ‹βˆšπ‘›/23𝑓2ξ‚€βˆ’π‘’βˆšβˆ’2πœ‹3π‘›ξ‚π‘Ÿ3,𝑛.(3.19)

Proof. We set π‘ž=π‘’βˆšβˆ’2πœ‹π‘›/3 in (1.7) and then employ the definition of the parameter π‘Ÿπ‘˜,𝑛 to finish the proof.

4. Explicit Values of π‘Ž(π‘ž), 𝑏(π‘ž), and 𝑐(π‘ž)

In this section, we find explicit values of cubic theta-functions and their quotients by using the results established in the previous section.

Theorem 4.1. One has 𝑏𝑒(i)βˆšβˆ’2πœ‹/3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹/3𝑏𝑒=1,(ii)βˆšβˆ’2πœ‹2/3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹2/3=ξ‚€βˆš1+22/3,𝑏𝑒(iii)βˆ’2πœ‹ξ€Έπ‘ξ€·π‘’βˆ’2πœ‹ξ€Έ=31/2ξ‚€βˆš1+32/321/3,𝑏𝑒(iv)βˆšβˆ’4πœ‹/3ξ‚π‘ξ‚€π‘’βˆšβˆ’4πœ‹/3=ξƒ©βˆš1+3√2ξƒͺ2,𝑏𝑒(v)βˆšβˆ’2πœ‹5/3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹5/3=ξƒ©βˆš1+52ξƒͺ10/3,𝑏𝑒(vi)βˆšβˆ’2πœ‹7/3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹7/3=√√3+72ξ‚€βˆš2βˆ’3,𝑏𝑒(vii)βˆšβˆ’4πœ‹2/3ξ‚π‘ξ‚€π‘’βˆšβˆ’4πœ‹2/3=ξ‚€βˆš1+24/3ξ‚€βˆšβˆš2+3,𝑏𝑒(viii)βˆšβˆ’2πœ‹3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹3=32/3ξ€·21/3ξ€Έβˆ’14/3,(𝑏𝑒ix)βˆšβˆ’6πœ‹2/3ξ‚π‘ξ‚€π‘’βˆšβˆ’6πœ‹2/3=32/3ξ‚€βˆš1+210/9ξ‚΅βˆš2+2ξ‚€βˆš1+21/3+ξ‚€βˆš1+22/3ξ‚Ά4/3,𝑏𝑒(x)βˆšβˆ’2πœ‹13/3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹13/3=βŽ›βŽœβŽœβŽœβŽξ”βˆš11+13+√3+132√2⎞⎟⎟⎟⎠4,𝑏𝑒(xi)βˆšβˆ’10πœ‹/3ξ‚π‘ξ‚€π‘’βˆšβˆ’10πœ‹/3=1161+3βˆšξ”10+5+23√10+3√102ξƒͺ4,𝑏𝑒(xi)βˆšβˆ’14πœ‹/3ξ‚π‘ξ‚€π‘’βˆšβˆ’14πœ‹/3=βŽ›βŽœβŽœβŽœβŽ3+3√223√7+3√23√72+49+133√223√7+83√23√722√3⎞⎟⎟⎟⎠4.(4.1)

Proof. It follows directly from Theorem 3.1 and the corresponding values of π‘Ÿ3,𝑛 listed in Lemma 2.1.

More values can be calculated by employing Theorem 3.1 and the corresponding values of πœ‡π‘› evaluated in [15, 16].

Theorem 4.2. One has π‘Žξ‚€π‘’(i)βˆšβˆ’2πœ‹/3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹/3=3βˆšπ‘Žξ‚€π‘’2,(ii)βˆšβˆ’2πœ‹2/3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹2/3=21/3ξ‚€βˆš2+21/3,π‘Žξ€·π‘’(iii)βˆ’2πœ‹ξ€Έπ‘ξ€·π‘’βˆ’2πœ‹ξ€Έ=βŽ›βŽœβŽœβŽœβŽ33/2ξ‚€βˆš1+322⎞⎟⎟⎟⎠+11/3,π‘Žξ‚€π‘’(iv)βˆšβˆ’4πœ‹/3ξ‚π‘ξ‚€π‘’βˆšβˆ’4πœ‹/3=βŽ›βŽœβŽœβŽœβŽβŽ›βŽœβŽœβŽξ‚€βˆš1+3ξ‚βˆš2⎞⎟⎟⎠6⎞⎟⎟⎟⎠+11/3,π‘Žξ‚€π‘’(v)βˆšβˆ’2πœ‹5/3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹5/3=βŽ›βŽœβŽœβŽξƒ©βˆš1+52ξƒͺ10⎞⎟⎟⎠+11/3,π‘Žξ‚€π‘’(vi)βˆšβˆ’2πœ‹7/3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹7/3=βŽ›βŽœβŽœβŽβŽ›βŽœβŽœβŽβˆšβˆš3+72ξ‚€βˆš2βˆ’3ξ‚βŽžβŽŸβŽŸβŽ 3⎞⎟⎟⎠+11/3,π‘Žξ‚€π‘’(vii)βˆšβˆ’4πœ‹2/3ξ‚π‘ξ‚€π‘’βˆšβˆ’4πœ‹2/3=ξ‚΅ξ‚€βˆš1+24ξ‚€βˆšβˆš2+34ξ‚Ά+11/3,π‘Žξ‚€π‘’(viii)βˆšβˆ’10πœ‹/3ξ‚π‘ξ‚€π‘’βˆšβˆ’10πœ‹/3=βŽ›βŽœβŽœβŽœβŽβŽ›βŽœβŽœβŽœβŽ1+3βˆšξ”16+5+23√10+3√1022⎞⎟⎟⎟⎠12⎞⎟⎟⎟⎠+11/3,π‘Žξ‚€π‘’(ix)βˆšβˆ’6πœ‹/3ξ‚π‘ξ‚€π‘’βˆšβˆ’6πœ‹/3=9ξ€·21/4ξ€Έβˆ’14ξƒͺ+11/3,π‘Žξ‚€π‘’(x)βˆšβˆ’14πœ‹/3ξ‚π‘ξ‚€π‘’βˆšβˆ’14πœ‹/3=βŽ›βŽœβŽœβŽœβŽβŽ›βŽœβŽœβŽœβŽ3+3√23√7+3√23√72+49+133√23√7+83√23√722√3⎞⎟⎟⎟⎠⎞⎟⎟⎟⎠+11/3,π‘Žξ€·π‘’(xi)βˆ’6πœ‹ξ€Έπ‘ξ€·π‘’βˆ’6πœ‹ξ€Έ=ξ‚΅34ξ‚€βˆš1+210/3ξ‚΅βˆš2+2ξ‚€βˆš1+24+ξ‚€βˆš1+28ξ‚Άξ‚Ά+11/3.(4.2)

Proof. It follows easily from (3.3) and the corresponding values of π‘Ÿ3,𝑛 listed in Lemma 2.1.

Theorem 4.3. One has 𝑏𝑒(i)βˆ’2πœ‹ξ€Έπ‘ξ€·π‘’βˆ’2πœ‹/3ξ€Έ=1√3,𝑏𝑒(ii)βˆšβˆ’2πœ‹2ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹2/3=ξ‚€βˆšβˆš3+21/3√3,𝑏𝑒(iii)βˆšβˆ’2πœ‹3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹/3=βŽ›βŽœβŽœβŽ13ξ‚€3βˆšξ‚βŽžβŽŸβŽŸβŽ 2βˆ’11/3,𝑏𝑒(iv)βˆ’4πœ‹ξ€Έπ‘ξ€·π‘’βˆ’4πœ‹/3ξ€Έ=12√3ξ‚€βˆš1+2β‹…31/4+√3,𝑏𝑒(v)βˆšβˆ’25πœ‹ξ‚π‘ξ‚€π‘’βˆšβˆ’25πœ‹/3=1√3ξ‚€βˆš104+60√3+45√5+26151/6.(4.3)

Proof. It follows from Theorem 3.4 and the corresponding values of π‘Ÿ9,𝑛 in listed in Lemma 2.1.

Theorem 4.4. One has 𝑐𝑒(i)βˆšβˆ’8πœ‹/3ξ‚π‘ξ‚€π‘’βˆšβˆ’2πœ‹/3=14ξƒ©βˆšβˆš2+3βˆ’3√2ξƒͺ,𝑐𝑒(ii)βˆ’8πœ‹ξ€Έπ‘ξ€·π‘’βˆ’2πœ‹ξ€Έ=14βŽ›βŽœβŽœβŽœβŽβˆš1βˆ’3βŽ›βŽœβŽœβŽœβŽ22/331/4ξ‚€βˆšξ‚3βˆ’11/3ξ‚€βˆš1+√3+24√332/3⎞⎟⎟⎟⎠⎞⎟⎟⎟⎠.(4.4)

Proof. We set 𝑛=1 and 3 in Theorem 3.6 and then employ the values of β„Žξ…ž3,1 and β„Žξ…ž3,3 from Lemma 2.3(vii) and (iii), respectively, to finish the proof.

For the remaining part of this paper, we set π‘ŽβˆΆ=πœ™(π‘’βˆ’πœ‹)=πœ‹1/4/Ξ“(3/4).

Lemma 4.5. One has (i)𝑓(βˆ’π‘’βˆ’πœ‹)=π‘Ž2βˆ’3/8π‘’πœ‹/24,(ii)𝑓(π‘’βˆ’πœ‹)=π‘Ž2βˆ’1/4π‘’πœ‹/24,ξ€·(iii)π‘“βˆ’π‘’βˆ’2πœ‹ξ€Έ=π‘Ž2βˆ’1/2π‘’πœ‹/12,(ξ€·iv)π‘“βˆ’π‘’βˆ’3πœ‹ξ€Έ=π‘Žπ‘’πœ‹/4ξ‚€βˆš1+√3+2β‹…33/41/333/8217/24ξ‚€βˆš1+31/6,ξ€·(v)π‘“βˆ’π‘’βˆ’4πœ‹ξ€Έ=π‘Ž2βˆ’7/8π‘’πœ‹/6,ξ€·(vi)π‘“βˆ’π‘’βˆ’6πœ‹ξ€Έ=π‘Ž2βˆ’7/123βˆ’3/8π‘’πœ‹/4ξ‚€βˆšξ‚3βˆ’11/4,ξ€·(vii)π‘“βˆ’π‘’βˆ’12πœ‹ξ€Έ=π‘Žπ‘’πœ‹/225/2433/8ξ”βˆš1+3ξ‚€βˆš1+√3+2β‹…33/41/3,ξ€·(viii)π‘“βˆ’π‘’βˆ’πœ‹/3ξ€Έ=π‘Ž27/2431/8π‘’πœ‹/72ξ”βˆš1+3ξ‚€βˆš1+√3+2β‹…33/41/3,(ξ€·ix)π‘“βˆ’π‘’βˆ’2πœ‹/3ξ€Έ=π‘Ž2βˆ’7/1231/8π‘’πœ‹/36ξ‚€βˆšξ‚3βˆ’11/6,𝑒(x)π‘“βˆ’2πœ‹ξ€Έ=π‘Ž2βˆ’13/16π‘’πœ‹/12ξ‚€βˆšξ‚2+11/4,𝑒(xi)π‘“βˆ’3πœ‹ξ€Έ=π‘Ž2βˆ’1/33βˆ’3/8π‘’πœ‹/8ξ‚€βˆšξ‚3+11/6,𝑒(xii)π‘“βˆ’6πœ‹ξ€Έ=π‘Žπ‘’πœ‹/4ξ‚€βˆš2βˆ’32+35/4+33/41/3215/1633/8ξ‚€βˆšξ‚2βˆ’11/12ξ‚€βˆšξ‚3+11/6.(4.5)

For a proof of the lemma, we refer to [7, page 326, Entry 6] and [11, page 125–129].

Theorem 4.6. One has (i)𝑏(π‘’βˆ’πœ‹π‘Ž)=233/8ξ‚€βˆš1+31/625/12ξ‚€βˆš1+√3+2β‹…33/41/3,𝑒(ii)π‘βˆ’2πœ‹ξ€Έ=π‘Ž233/8211/12ξ‚€βˆšξ‚3βˆ’11/6,𝑒(iii)π‘βˆ’4πœ‹ξ€Έ=π‘Ž22βˆ’29/1233/8ξ‚€βˆš1+31/2ξ‚€βˆš1+√3+2β‹…33/41/3,𝑒(iv)π‘βˆ’πœ‹/3ξ€Έ=π‘Ž225/433/8ξ‚€βˆš1+33/2ξ‚€βˆš1+√3+2β‹…33/4,𝑒(v)π‘βˆ’2πœ‹/3ξ€Έ=π‘Ž231/8ξ‚€βˆšξ‚3βˆ’11/3213/12ξ‚€βˆšξ‚3+11/6,(vi)𝑏(βˆ’π‘’βˆ’πœ‹π‘Ž)=233/825/12ξ‚€βˆšξ‚3+11/6,ξ€·(vii)π‘βˆ’π‘’βˆ’2πœ‹ξ€Έ=π‘Ž233/8ξ‚€βˆšξ‚2+13/4ξ‚€βˆšξ‚2βˆ’11/12ξ‚€βˆšξ‚3+11/623/2ξ‚€βˆš2βˆ’32+35/4+33/41/3.(4.6)

Proof. To prove (i)–(v), we set 𝑛=1, 2, 4, 1/3, and 2/3, respectively, in Theorem 3.9(i) and use the corresponding values of 𝑓(Β±π‘’βˆ’πœ‹π‘›) from Lemma 4.5.
To prove (vi) and (vii), we set 𝑛= 1 and 2, respectively, in Theorem 3.9(ii) and then use the corresponding values 𝑓(Β±π‘’βˆ’πœ‹π‘›) from Lemma 4.5.

Theorem 4.7. One has 𝑒(i)π‘βˆ’4πœ‹/3ξ€Έ=π‘Ž237/8ξ‚€βˆš1+31/6217/12ξ‚€βˆš1+√3+2β‹…33/41/3,𝑒(ii)π‘βˆ’2πœ‹/3ξ€Έ=π‘Ž22βˆ’13/1237/8ξ‚€βˆšξ‚3+11/6,(𝑒iii)π‘βˆ’πœ‹/3ξ€Έ=2βˆ’17/1237/8π‘Ž2ξ‚€βˆš1+31/2ξ‚€βˆš1+√3+2β‹…33/41/3,𝑒(iv)π‘βˆ’4πœ‹ξ€Έ=π‘Ž233/821/4ξ‚€βˆš1+33/2ξ‚€βˆš1+√3+2β‹…33/4,𝑒(v)π‘βˆ’2πœ‹ξ€Έ=π‘Ž2ξ‚€βˆšξ‚3βˆ’11/333/8213/12ξ‚€βˆšξ‚3+11/6,(vi)𝑐(π‘’βˆ’πœ‹π‘Ž)=2ξ‚€βˆš1+√3+2β‹…33/431/827/4ξ‚€βˆš1+31/2,𝑒(vii)π‘βˆ’8πœ‹ξ€Έ=14βŽ›βŽœβŽœβŽœβŽβˆš1βˆ’3βŽ›βŽœβŽœβŽœβŽ22/3β‹…31/4ξ‚€βˆšξ‚3βˆ’11/3ξ‚€βˆš1+√3+2+4√322/3βŽžβŽŸβŽŸβŽŸβŽ βŽžβŽŸβŽŸβŽŸβŽ Γ—π‘Ž2ξ‚€βˆšξ‚3βˆ’11/333/8β‹…213/12ξ‚€βˆšξ‚3+11/6.(4.7)

Proof. To prove (i)–(v), we set 𝑑=1/2,1,2,1/6, and 1/3, respectively, in (1.9) and then apply the corresponding values of 𝑏(π‘’βˆ’π‘›πœ‹) from Theorem 4.6.
To prove (vi), we set 𝑛=1 in Theorem 3.11 and use the corresponding values of 𝑓(βˆ’π‘’βˆ’π‘›πœ‹) from Lemma 4.5. At last, (vii) follows from Theorems 4.7(v) and 4.4(ii).

Remark 4.8. Setting 𝑑=1/2 in (1.10) and then employing the value of 𝑐(π‘’βˆ’πœ‹) from Theorem 4.7(vi), we can also evaluate 𝑏(π‘’βˆ’4πœ‹/3).

Theorem 4.9. One has 𝑒(i)π‘Žβˆ’2πœ‹ξ€Έ=π‘Ž2ξ‚€βˆš10+631/32ξ‚€βˆš3+231/4,𝑒(ii)π‘Žβˆ’2πœ‹/3ξ€Έ=π‘Ž2√3ξ‚€βˆš10+631/32ξ‚€βˆš3+231/4,𝑒(iii)π‘Žβˆ’6πœ‹ξ€Έ=π‘Ž23βŽ›βŽœβŽœβŽœβŽ31/4ξ‚€βˆš1+21/6+ξ‚€βˆš10+631/32ξ‚€βˆš3+231/4⎞⎟⎟⎟⎠,(𝑒iv)π‘Žβˆ’2πœ‹/9ξ€Έ=√3π‘Ž2⎧βŽͺ⎨βŽͺβŽ©βŽ›βŽœβŽœβŽœβŽ31/4ξ‚€βˆš1+21/6+ξ‚€βˆš10+631/32ξ‚€βˆš3+231/4⎞⎟⎟⎟⎠⎫βŽͺ⎬βŽͺ⎭.(4.8)

Proof. To prove (i), we set 𝑛=3 in Theorem 3.7 and use 𝑓(βˆ’π‘’βˆ’2πœ‹) from Lemma 4.5 and the values of π‘Ÿ3,3 from Lemma 2.1.
To prove (ii), we set 𝑑=1 in (1.8) and then employ Theorem 4.9(i).
To prove (iii), we set 𝑛=2 in Theorem 3.8 and then employ the values of π‘Ž(π‘’βˆ’2πœ‹) and 𝑏(π‘’βˆ’2πœ‹) from Theorems 4.9(i) and 4.6(ii), respectively.
To prove (iv), we set 𝑑=3 in (1.8) and use the value of π‘Ž(π‘’βˆ’6πœ‹).

5. Theorems on Explicit Evaluations of 𝐴(π‘ž), 𝐡(π‘ž), and 𝐢(π‘ž)

In this section, we use the parameters π‘Ÿπ‘˜,𝑛, β„Žπ‘˜,𝑛, and π‘”ξ…žπ‘˜,𝑛 defined in (1.16), (1.20), and (1.23), respectively, to establish some formulas for the explicit evaluations of quartic theta-functions and their quotients.

Theorem 5.1. For any positive real number 𝑛, one has π΅ξ‚€π‘’βˆšβˆ’πœ‹2π‘›ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹2𝑛=π‘Ÿ122,𝑛=𝑔122𝑛.(5.1)

Proof. Employing the definition of 𝐡(π‘ž) and 𝐢(π‘ž) given in (1.14), we find that 𝐡(π‘ž)𝐢=(π‘ž)𝑓(βˆ’π‘ž)21/4π‘ž1/24π‘“ξ€·βˆ’π‘ž2ξ€Έξƒͺ12.(5.2) Setting π‘ž=π‘’βˆšβˆ’2πœ‹π‘›/2 in (5.2) and then using the definition of π‘Ÿπ‘˜,𝑛, we arrive at the first equality. Second equality readily follows from (1.24) and (5.2).

Remark 5.2. From Theorem 5.1 and (2.2), we have the following transformation formula: π΅ξ‚€π‘’βˆšβˆ’πœ‹2/π‘›ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹2/𝑛=πΆξ‚€π‘’βˆšβˆ’πœ‹2π‘›ξ‚π΅ξ‚€π‘’βˆšβˆ’πœ‹2𝑛.(5.3) Thus, if we know the value of one of the quotient of (5.3), then the other one follows immediately.

Theorem 5.3. One has π΅ξ‚€π‘’βˆšβˆ’2πœ‹π‘›ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹π‘›ξ‚=π‘Ÿ44,𝑛2.(5.4)

Proof. Theorem follows easily from (1.14) and the definition of π‘Ÿπ‘˜,𝑛 with π‘˜=4.

Remark 5.4. Using the fact that π‘Ÿ4,1/𝑛=1/π‘Ÿ4,𝑛 in Theorem 5.3, we have the following transformation formula 𝑒4π΅βˆšβˆ’2πœ‹/π‘›ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹/𝑛=πΆξ‚€π‘’βˆšβˆ’πœ‹π‘›ξ‚π΅ξ‚€π‘’βˆšβˆ’2πœ‹π‘›ξ‚.(5.5) Hence, if we know one quotient of (5.5) then the other quotient follows immediately.

Lemma 5.5. One has ξ€·(i)πœ™βˆ’π‘’βˆ’2π‘›πœ‹ξ€Έ=π‘Ž21/8𝑛1/4β„Žξ…žπ‘›,𝑛=π‘Žπ‘Ÿ2,2𝑛2𝑛1/421/4π‘Ÿπ‘›,𝑛,(ii)πœ™(π‘’βˆ’π‘›πœ‹π‘Ž)=𝑛1/4β„Žπ‘›,𝑛=π‘ŽπΊ2𝑛2𝑛1/4π‘Ÿπ‘›,𝑛,(iii)πœ“(π‘’βˆ’π‘›πœ‹)=π‘Ž2βˆ’5/8π‘’π‘›πœ‹/8𝑛1/4π‘”ξ…žπ‘›,𝑛=π‘Ž2βˆ’3/4π‘’π‘›πœ‹/8𝑛1/4π‘Ÿ2,𝑛2/2π‘Ÿπ‘›,𝑛,𝑒(iv)πœ“βˆ’πœ‹/𝑛=π‘Žπ‘›1/42βˆ’3/4π‘Ÿ2,2𝑛2π‘’π‘›πœ‹/8π‘Ÿπ‘›,𝑛,(5.6) where the parameters π‘Ÿπ‘˜,𝑛, β„Žπ‘˜,𝑛, β„Žξ…žπ‘˜,𝑛, π‘”ξ…žπ‘˜,𝑛, and 𝐺𝑛 are as defined in (1.16), (1.20), (1.21), (1.23), and (1.24), respectively.

For proofs of (i) and (ii), we refer to [11, page 150] or [19]. For proofs of (iii) and (iv), we refer to [17, Theorem 6.2(ii)] and [17, Theorem 6.3(ii)], respectively.

Theorem 5.6. For any positive real number 𝑛, one has 𝑒(i)π΅βˆ’2πœ‹π‘›ξ€Έ=π‘Ž4√2π‘›β„Žξ…ž4𝑛,𝑛=π‘Ž4π‘Ÿ42,2𝑛22π‘›π‘Ÿ4𝑛,𝑛,𝑒(ii)π΅βˆ’2πœ‹/𝑛=π‘Ž4π‘›π‘Ÿ42,2/𝑛22π‘Ÿ4𝑛,𝑛,(5.7) where β„Žξ…žπ‘˜,𝑛 is as defined in (1.21).

Proof. From [21, page 39, Entry 24(iii)], we note that π‘“πœ™(βˆ’π‘ž)=2(βˆ’π‘ž)π‘“ξ€·βˆ’π‘ž2ξ€Έ.(5.8) Employing (5.8) in (1.14), we obtain 𝐡(π‘ž)=πœ™4(βˆ’π‘ž).(5.9) Setting π‘ž=π‘’βˆ’2πœ‹π‘› in (5.9) and then employing Lemma 5.5(i), we arrive at (i).
To prove (ii), we replace 𝑛 by 1/𝑛 in (i) and employ the result π‘Ÿ1/𝑛,1/𝑛=π‘Ÿπ‘›,𝑛, which is easily derivable from (2.2).

Theorem 5.7. One has (i)𝐡(βˆ’π‘’βˆ’π‘›πœ‹π‘Ž)=4π‘›β„Ž4𝑛,𝑛=π‘ŽπΊ8𝑛2π‘›π‘Ÿ4𝑛,𝑛,ξ€·(ii)π΅βˆ’π‘’βˆ’πœ‹/𝑛=π‘›π‘Ž4β„Ž4𝑛,𝑛=π‘Ž4𝑛𝐺8𝑛2π‘Ÿ4𝑛,𝑛,(5.10) where β„Žξ…žπ‘˜,𝑛 is as defined in (1.21).

Proof. Replacing π‘ž by βˆ’π‘ž in (5.9) and setting π‘ž=π‘’βˆ’π‘›πœ‹, we have 𝐡(βˆ’π‘’βˆ’π‘›πœ‹)=πœ™4(π‘’βˆ’π‘›πœ‹),(5.11) Employing Lemma 5.5(ii) in (5.11), we finish the proof of (i).
To prove (ii), we replace 𝑛 by 1/𝑛 in (i) and use the results β„Žπ‘›,𝑛=β„Ž1/𝑛,1/𝑛 [19] and 𝐺1/𝑛=𝐺𝑛.

Remark 5.8. The following transformation formula is apparent from Theorem 5.7(i) and (ii), 𝑛2𝐡(βˆ’π‘’βˆ’π‘›πœ‹ξ€·)=π΅βˆ’π‘’βˆ’πœ‹/𝑛.(5.12)

Theorem 5.9. For any positive real number 𝑛, one has 𝐢(π‘’βˆ’π‘›πœ‹βˆš)=2π‘Ž4π‘’π‘›πœ‹/2π‘›π‘”ξ…ž4𝑛,𝑛,(5.13) where π‘”ξ…žπ‘˜,𝑛 is as defined in (1.23).

Proof. From [21, page 39, Entry 24(iii)], we notice that π‘“πœ“(π‘ž)=2ξ€·βˆ’π‘ž2𝑓.(βˆ’π‘ž)(5.14) Thus, from (5.14) and (1.14), we find that 𝐢(π‘’βˆ’π‘›πœ‹)=8π‘’βˆ’π‘›πœ‹/2πœ“4(π‘’βˆ’π‘›πœ‹),(5.15) Setting π‘ž=π‘’βˆ’π‘›πœ‹ in (5.15) and employing Lemma 5.5(iii), we easily complete the proof.

Theorem 5.10. One has πΆξ€·π‘’βˆ’πœ‹/𝑛=π‘›π‘Ž4π‘Ÿ42,2𝑛2π‘Ÿ4𝑛,𝑛.(5.16)

Proof. Applying (5.14) in the definition of 𝐢(π‘ž) given in (1.14) and setting π‘ž=π‘’βˆ’πœ‹/𝑛, we find that πΆξ€·π‘’βˆ’πœ‹/𝑛=8π‘’βˆ’πœ‹/2π‘›πœ“4ξ€·π‘’βˆ’πœ‹/𝑛,(5.17) Now, employing Lemma 5.5(iv) in (5.17), we finish the proof.

6. Explicit Values of Quartic Theta-Functions

In this section, we find explicit values of the quartic theta-functions 𝐴(π‘ž), 𝐡(π‘ž), and 𝐢(π‘ž), and also their quotients by using the results established in the previous section.

Theorem 6.1. One has 𝐡𝑒(i)βˆšβˆ’πœ‹2ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹2𝐡𝑒=1,(ii)βˆ’2πœ‹ξ€ΈπΆξ€·π‘’βˆ’2πœ‹ξ€Έ=23/2,𝐡𝑒(iii)βˆšβˆ’πœ‹6ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹6ξ‚βˆš=3+2𝐡𝑒2,(iv)βˆšβˆ’πœ‹22ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹22=23/2ξ‚€βˆš1+23/2,𝐡𝑒(v)βˆšβˆ’πœ‹10ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹10=ξƒ©βˆš1+52ξƒͺ6,𝐡𝑒(vi)βˆšβˆ’πœ‹23ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹33=√2ξ‚€βˆšξ‚3+13,𝐡𝑒(vii)βˆšβˆ’πœ‹14ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹14=βŽ›βŽœβŽœβŽœβŽβˆšξ”2+12√2βˆ’12⎞⎟⎟⎟⎠6,𝐡𝑒(viii)βˆ’4πœ‹ξ€ΈπΆξ€·π‘’βˆ’4πœ‹ξ€Έ=29/4ξ‚€βˆš1+23,𝐡𝑒(ix)βˆšβˆ’πœ‹32ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹32=ξ‚€βˆšβˆš3+24,𝐡𝑒(x)βˆšβˆ’πœ‹25ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹25=18ξ‚€βˆš1+53ξ‚΅ξ”βˆšβˆš5+1+2ξ‚Ά3,𝐡𝑒(xi)βˆšβˆ’πœ‹26ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹26=ξ‚€βˆš1+25/2ξ‚€βˆš2(1+√2+6)3/2,𝐡𝑒(xii)βˆšβˆ’πœ‹42ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹42=23/2ξ‚€βˆš1+234+√2+102ξ‚Ά3/2,𝐡𝑒(xiii)βˆ’6πœ‹ξ€ΈπΆξ€·π‘’βˆ’6πœ‹ξ€Έ=2βˆ’11/2ξ‚€βˆš1+34ξ‚€βˆš1+√3+2β‹…33/44,𝐡𝑒(xiv)βˆšβˆ’πœ‹210ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹210=2βˆ’6ξ‚€βˆš1+515/2ξ‚€βˆš2+3√2+53/2,𝐡𝑒(xv)βˆ’5πœ‹ξ€ΈπΆξ€·π‘’βˆ’5πœ‹ξ€Έ=ξ€·51/4ξ€Έ+112215/2,𝐡𝑒(xvi)βˆšβˆ’πœ‹36ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹66=ξ‚€βˆš1+210/3ξ‚»βˆšβˆš2+2ξ‚€βˆš1+21/3+ξ‚€βˆš1+22/3ξ‚Ό4,𝐡𝑒(xvii)βˆ’8πœ‹ξ€ΈπΆξ€·π‘’βˆ’8πœ‹ξ€Έ=29/4ξ‚€βˆš1+23ξ‚€16+15β‹…21/4√+122+9β‹…23/43/2,(𝐡𝑒xviii)βˆšβˆ’πœ‹62ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹62=ξ‚€2ξ‚€βˆš1+35√2βˆ’2833/2ξ‚€βˆšβˆš3βˆ’28,𝐡𝑒(xix)βˆšβˆ’πœ‹72ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹72=βŽ›βŽœβŽœβŽœβŽœβŽξ”1+√7+2142√2+ξ‚™βˆšξ”14+√7+2142⎞⎟⎟⎟⎟⎠12,𝐡𝑒(xx)βˆ’10πœ‹ξ€ΈπΆξ€·π‘’βˆ’10πœ‹ξ€Έ=215/2ξ€·51/4ξ€Έβˆ’112,𝐡𝑒(xxi)βˆ’12πœ‹ξ€ΈπΆξ€·π‘’βˆ’12πœ‹ξ€Έ=βˆšξ‚€ξ‚€βˆš2+3βˆšξ‚ξ‚€βˆš3+11+√2βˆ’βˆš3+2β‹…33/4√64221/4ξ‚€βˆšξ‚2βˆ’15,𝐡𝑒(xxii)βˆ’3πœ‹ξ€ΈπΆξ€·π‘’βˆ’3πœ‹ξ€Έ=ξ‚€βˆš1+√3+2β‹…31/44213/2,𝐡𝑒(xxiii)βˆšβˆ’3πœ‹/2ξ‚πΆξ‚€π‘’βˆšβˆ’3πœ‹/2=ξ‚€βˆšβˆ’1+35√2+2833/223/2ξ‚€βˆšβˆš2+34,𝐡𝑒(xxiv)βˆšβˆ’πœ‹3ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹3=ξ‚€βˆšξ‚3+1327/2,(𝐡𝑒xxv)βˆšβˆ’πœ‹32ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹32=ξ‚€βˆš1+3βˆšξ‚ξ‚€1βˆ’3+22/3β‹…βˆš3429/2ξ€·21/3ξ€Έβˆ’14,𝐡𝑒(xxvi)βˆšβˆ’πœ‹7ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹7=ξ‚€βˆš3+7329/2,𝐡𝑒(xxvii)βˆšβˆ’πœ‹37ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹37=ξ‚΅βˆš7βˆ’2√3+ξ‚€βˆš21+3+3ξ‚ξ”βˆš3+16√21βˆ’277ξ‚Ά4213/2ξ‚€βˆšξ‚3βˆ’18ξ‚€βˆš3βˆ’7.(6.1)

Proof. We employ the values of π‘Ÿ2,𝑛 from Lemma 2.1 in Theorem 5.1 to finish the proof.

Theorem 6.2. One has 𝐡𝑒(i)βˆ’2πœ‹ξ€ΈπΆ(π‘’βˆ’πœ‹)=12,𝐡𝑒(ii)βˆšβˆ’πœ‹22ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹2=ξƒ©βˆš2+12ξƒͺ1/2,𝐡𝑒(iii)βˆšβˆ’2πœ‹3ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹3=12ξ‚€βˆšβˆš2+3,𝐡𝑒(iv)βˆ’4πœ‹ξ€ΈπΆξ€·π‘’βˆ’2πœ‹ξ€Έ=21/4ξ‚€βˆšξ‚,𝐡𝑒2+1(v)βˆšβˆ’2πœ‹5ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹5=18ξƒ©βˆš1+ξ‚™5+2ξ‚€βˆš1+5ξƒͺ2,𝐡𝑒(vi)βˆšβˆ’2πœ‹7ξ‚πΆξ‚€π‘’βˆšβˆ’πœ‹7=ξ‚€βˆš127+4871/22,𝐡𝑒(vii)βˆ’6πœ‹ξ€ΈπΆξ€·π‘’βˆ’3πœ‹ξ€Έ=1212+31/4√2+√32ξƒͺ4,𝐡𝑒(viii)βˆ’10πœ‹ξ€ΈπΆξ€·π‘’βˆ’5πœ‹ξ€Έ=1232+√52+ξ‚™12ξ‚€βˆš5+35ξƒͺ4,𝐡𝑒(ix)βˆ’14πœ‹ξ€ΈπΆξ€·π‘’βˆ’7πœ‹ξ€Έ=12βŽ›βŽœβŽœβŽœβŽœβŽξ‚™βˆš4+7+√21+8ξ‚™7+βˆšξ”7+√21+872⎞⎟⎟⎟⎟⎠8.(6.2)

Proof. It follows easily from Theorem 5.3 and the values of π‘Ÿ4,𝑛 from Lemma 2.1.

Theorem 6.3. One has 𝑒(i)π΅βˆ’2πœ‹ξ€Έ=2βˆ’1/2π‘Ž4,𝑒(ii)π΅βˆ’4πœ‹ξ€Έ=2βˆ’7/4π‘Ž4ξ‚€βˆš1+2,𝑒(iii)π΅βˆ’6πœ‹ξ€Έ=π‘Ž4ξ‚€βˆš1+√3+2β‹…4√334/3211/6β‹…33/2ξ‚€βˆšξ‚3βˆ’12/3,𝑒(iv)π΅βˆ’8πœ‹ξ€Έ=2βˆ’7/2π‘Ž4ξ‚€16+154√√2+122+94√231/2,(𝑒v)π΅βˆ’10πœ‹ξ€Έ=π‘Ž427/25ξ‚€4βˆšξ‚5βˆ’14ξ‚€βˆš5+51/2,𝑒(vi)π΅βˆ’12πœ‹ξ€Έ=π‘Ž4ξ‚€βˆš2βˆ’32+35/4+33/44/333/2219/12ξ‚€βˆšξ‚2βˆ’11/3ξ‚€βˆšξ‚3+12/3ξ‚€βˆšβˆ’1βˆ’βˆš3+2β‹…33/44/3,𝑒(vii)π΅βˆ’3πœ‹ξ€Έ=π‘Ž4ξ‚€βˆš1+√3+2β‹…31/44/3ξ‚€βˆš1+√3+2β‹…33/4424β‹…33/2ξ‚€βˆš1+32/3,𝑒(viii)π΅βˆ’5πœ‹ξ€Έ=π‘Ž4ξ€·51/4ξ€Έ+14ξ€·3+2β‹…51/4ξ€Έ52β‹…22ξ‚€βˆš1+5.(6.3)

Proof. (i)–(vi) follow readily from the first equality of Theorem 5.6(i) and the corresponding values of β„Žξ…žπ‘›,𝑛 in Lemma 2.3(i)–(vi), respectively. To prove (vii) and (viii), we employ the corresponding values of π‘Ÿπ‘˜,𝑛 listed in Lemma 2.1 to the second equality of Theorem 5.6(i).

Theorem 6.4. One has (i)𝐡(π‘’βˆ’πœ‹π‘Ž)=42,𝑒(ii)π΅βˆ’πœ‹/2ξ€Έ=π‘Ž42ξ‚€βˆš1+22,𝑒(iii)π΅βˆ’πœ‹/3ξ€Έ=24√3π‘Ž4ξ‚€βˆš1+310/3ξ‚€βˆš1+√3+2β‹…33/48/3.(6.4)

Proof. We set 𝑛= 2, 3, and 6, respectively, in Theorem 5.6(ii) and then use the corresponding values of π‘Ÿπ‘˜,𝑛 from Lemma 2.1 to complete the proofs.

Theorem 6.5. One has (i)𝐡(βˆ’π‘’βˆ’πœ‹)=π‘Ž4,ξ€·(ii)π΅βˆ’π‘’βˆ’2πœ‹ξ€Έ=π‘Ž48ξ‚€βˆšξ‚2βˆ’22,ξ€·(iii)π΅βˆ’π‘’βˆ’3πœ‹ξ€Έ=2π‘Ž433/2ξ‚€βˆšξ‚3βˆ’12,ξ€·(iv)π΅βˆ’π‘’βˆ’4πœ‹ξ€Έ=π‘Ž4ξ‚€4βˆšξ‚2+14,ξ€·32(v)π΅βˆ’π‘’βˆ’5πœ‹ξ€Έ=π‘Ž45ξ‚€βˆš5βˆ’252,ξ€·(vi)π΅βˆ’π‘’βˆ’6πœ‹ξ€Έ=π‘Ž4ξ‚€βˆšβˆ’4+32+35/4√+23βˆ’33/4√+22β‹…33/44/324β‹…33βˆšξ‚€ξ‚€βˆš2βˆ’13βˆ’12/3.(6.5)

Proof. We employ the values of β„Žπ‘›,𝑛 given in Lemma 2.2 in Theorem 5.7(i) to finish the proof.

Theorem 6.6. One has ξ€·(i)π΅βˆ’π‘’βˆ’πœ‹/2ξ€Έ=π‘Ž42ξ‚€βˆšξ‚2βˆ’22,(ξ€·ii)π΅βˆ’π‘’βˆ’πœ‹/3ξ€Έ=3π‘Ž42√,ξ€·3βˆ’3(iii)π΅βˆ’π‘’βˆ’πœ‹/4ξ€Έ=π‘Ž42ξ‚€4βˆšξ‚2+14,ξ€·(iv)π΅βˆ’π‘’βˆ’πœ‹/5ξ€Έ=5π‘Ž4ξ‚€βˆš5βˆ’252,ξ€·(v)π΅βˆ’π‘’βˆ’πœ‹/6ξ€Έ=√3π‘Ž4ξ‚€βˆšβˆ’4+32+35/4√+23βˆ’33/4√+22β‹…33/44/322√3βˆšξ‚€ξ‚€βˆš2βˆ’13βˆ’12/3.(6.6)

Proof. We use the values of β„Žπ‘›,𝑛 from Lemma 2.2 in Theorem 5.7(ii).

Theorem 6.7. One has (i)𝐢(π‘’βˆ’πœ‹βˆš)=2π‘Ž4,𝑒(ii)πΆβˆ’2πœ‹ξ€Έ=π‘Ž44,𝑒(iii)πΆβˆ’3πœ‹ξ€Έ=25/2π‘Ž437/3ξ‚€βˆš1+√3+2β‹…33/44/3ξ‚€βˆš1+32/3,𝑒(iv)πΆβˆ’4πœ‹ξ€Έ=π‘Ž423ξ‚€βˆš1+22,𝑒(v)πΆβˆ’5πœ‹ξ€Έ=29/2π‘Ž45ξ‚€βˆš5+52ξ€·51/4ξ€Έ+14,𝑒(vi)πΆβˆ’6πœ‹ξ€Έ=213/3π‘Ž433/2ξ‚€βˆš1+310/3ξ‚€βˆš1+√3+2β‹…33/48/3,𝑒(vii)πΆβˆ’9πœ‹ξ€Έ=π‘Ž4√29π‘”ξ…ž49,9,(6.7) where π‘”ξ…ž9,9 is given in Lemma 2.4(vii).

Proof. The proof of the theorem follows from Theorem 5.9 and the values of π‘”ξ…žπ‘›,𝑛 from Lemma 2.4.

Theorem 6.8. One has 𝑒(i)πΆβˆ’πœ‹/2ξ€Έ=25/4π‘Ž4ξ‚€βˆš1+2,𝑒(ii)πΆβˆ’πœ‹/3ξ€Έ=2βˆ’3/2√3π‘Ž4ξ‚€βˆš1+32/3ξ‚€βˆš2β‹…33/4+βˆšξ‚3+14/3,𝑒(iii)πΆβˆ’πœ‹/4ξ€Έ=23/2π‘Ž4ξ‚€16+15β‹…21/4√+122+9β‹…23/41/2,(𝑒iv)πΆβˆ’πœ‹/5ξ€Έ=5β‹…29/2π‘Ž4ξ‚€βˆš5+52ξ€·51/4ξ€Έβˆ’14,𝑒(v)πΆβˆ’πœ‹/6ξ€Έ=217/331/2π‘Ž4βˆšξ‚€ξ‚€βˆš2+3βˆšξ‚ξ‚€1+3βˆšξ‚ξ‚€1+√2βˆ’βˆš3+12β‹…33/44/3ξ‚€βˆš1+32ξ‚€βˆš1+√3+2β‹…33/44/3ξ‚€βˆšξ‚2βˆ’15/3.(6.8)

Proof. We set 𝑛=2,3,4,5, and 6 in Theorem 5.10 and then employ the corresponding values of π‘Ÿπ‘˜,𝑛 listed in Lemma 2.1.