Abstract

Based on the notion of generalized exponential dichotomy, this paper considers the topological decoupling problem between two kinds of nonlinear differential equations. The topological equivalent function is given.

1. Introduction and Motivation

Well-known Hartman’s linearization theorem for differential equations states that a 1 : 1 correspondence exists between solutions of a linear autonomous system Μ‡π‘₯=𝐴π‘₯ and those of the perturbed system Μ‡π‘₯=𝐴π‘₯+𝑓(π‘₯), as long as 𝑓 fulfills some goodness conditions, like smallness, continuity, or being Hartman [1]. Based on the exponential dichotomy, Palmer [2] extended this result to the nonautonomous system. Some other improvements of Palmer’s linearization theorem are reported in the literature. For examples, one can refer to Shi [3], Jiang [4], and Reinfelds [5, 6]. Recently, Xia et al. [7] generalized Palmer’s linearization theorem to the dynamic systems on time scales. Consider the linear systemΜ‡π‘₯=𝐴(𝑑)π‘₯,(1.1) where π‘₯βˆˆβ„π‘› and 𝐴(𝑑) is a 𝑛×𝑛 matrix function.

Definition 1.1. System (1.1) is said to possess an exponential dichotomy [8] if there exists a projection 𝑃 and constants 𝐾>0,𝛼>0 such that β€–β€–π‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1β€–β€–(𝑠)β‰€πΎπ‘’βˆ’π›Ό(π‘‘βˆ’π‘ )β€–β€–π‘ˆ[]π‘ˆ,for𝑠≀𝑑,𝑠,π‘‘βˆˆβ„,(𝑑)πΌβˆ’π‘ƒβˆ’1β€–β€–(𝑠)≀𝐾𝑒𝛼(π‘‘βˆ’π‘ ),for𝑑≀𝑠,𝑠,π‘‘βˆˆβ„(1.2) hold, where π‘ˆ(𝑑) is a fundamental matrix of linear system Μ‡π‘₯=𝐴(𝑑)π‘₯.

However, Lin [9] argued that the notion of exponential dichotomy considerably restricts the dynamics. It is thus important to look for more general types of hyperbolic behavior. Lin [9] proposed the notion of generalized exponential dichotomy which is more general than the classical notion of exponential dichotomy.

Definition 1.2. System (1.1) is said to have a generalized exponential dichotomy if there exists a projection 𝑃 and 𝐾β‰₯0 such that ||π‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1(||ξ‚΅βˆ’ξ€œπ‘ )≀𝐾exp𝑑𝑠||𝛼(𝜏)π‘‘πœ,(𝑑β‰₯𝑠),π‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1(||ξ‚΅ξ€œπ‘ )≀𝐾exp𝑑𝑠𝛼(𝜏)π‘‘πœ,(𝑑≀𝑠),(1.3) where 𝛼(𝑑) is a continuous function with 𝛼(𝑑)β‰₯0, satisfying lim𝑑→+βˆžβˆ«π‘‘0𝛼(πœ‰)π‘‘πœ‰=+∞,limπ‘‘β†’βˆ’βˆžβˆ«0𝑑𝛼(πœ‰)π‘‘πœ‰=+∞.

Example 1.3. Consider the system βŽ›βŽœβŽœβŽΜ‡π‘₯1Μ‡π‘₯2⎞⎟⎟⎠=βŽ›βŽœβŽœβŽœβŽœβŽβˆ’13√001|𝑑|+13√|βŽžβŽŸβŽŸβŽŸβŽŸβŽ βŽ›βŽœβŽœβŽπ‘₯𝑑|+11π‘₯2⎞⎟⎟⎠.(1.4) Then, system (1.4) has a generalized exponential dichotomy, but the classical exponential dichotomy cannot be satisfied.
For this reason, basing on generalized exponential dichotomy, we consider the topological decoupling problem between two kinds of nonlinear differential equations. We prove that there is a 1 : 1 correspondence existing between solutions of topological decoupling systems, namely, Μ‡π‘₯(𝑑)=𝐴(𝑑)π‘₯(𝑑)+𝑓(𝑑,π‘₯) and Μ‡π‘₯(𝑑)=𝐴(𝑑)π‘₯(𝑑)+𝑔(𝑑,π‘₯).

2. Existence of Equivalent Function

Consider the following two nonlinear nonautonomous systems:Μ‡π‘₯=𝐴(𝑑)π‘₯+𝑓(𝑑,π‘₯),(2.1)Μ‡π‘₯=𝐴(𝑑)π‘₯+𝑔(𝑑,π‘₯),(2.2) where π‘₯βˆˆβ„π‘›, 𝐴(𝑑),  𝐡(𝑑) are 𝑛×𝑛 matrices.

Definition 2.1. Suppose that there exists a function π»βˆΆβ„Γ—β„π‘›β†’β„π‘› such that (i)for each fixed 𝑑, 𝐻(𝑑,β‹…) is a homeomorphism of ℝ𝑛 into ℝ𝑛;(ii)𝐻(𝑑,π‘₯)β†’βˆž as |π‘₯|β†’βˆž, uniformly with respect to 𝑑;(iii)assume that 𝐺(𝑑,β‹…)=π»βˆ’1(𝑑,β‹…) has property (ii) too;(iv)if π‘₯(𝑑) is a solution of system (2.1), then 𝐻(𝑑,π‘₯(𝑑)) is a solution of system (2.2).If such a map 𝐻 exists, then (2.1) is topologically conjugated to (2.2). 𝐻 is called an equivalent function.

Theorem 2.2. Suppose that Μ‡π‘₯=𝐴(𝑑)π‘₯ has a generalized exponential dichotomy. If 𝑓(𝑑,π‘₯),𝑔(𝑑,π‘₯) fulfill ||||||𝑓𝑓(𝑑,π‘₯)≀𝐹(𝑑),𝑑,π‘₯1ξ€Έξ€·βˆ’π‘“π‘‘,π‘₯2ξ€Έ||||π‘₯β‰€π‘Ÿ(𝑑)1βˆ’π‘₯2||,||||||𝑔𝑔(𝑑,π‘₯)≀𝐺(𝑑),𝑑,π‘₯1ξ€Έξ€·βˆ’π‘”π‘‘,π‘₯2ξ€Έ||||π‘₯β‰€π‘Ÿ(𝑑)1βˆ’π‘₯2||,𝑁𝑁(𝑑,𝐹,𝐺)≀𝐡,(𝑑,π‘Ÿ)≀𝐿<1,(2.3) where ξ€œπ‘(𝑑,𝐹,𝐺)=π‘‘βˆ’βˆžξ‚΅βˆ’ξ€œπΎexp𝑑𝑠(+ξ€œπ›Ό(πœ‘)π‘‘πœ‘πΉ(𝑠)+𝐺(𝑠))𝑑𝑠,𝑑+βˆžξ‚΅ξ€œπΎexp𝑑𝑠(ξ€œπ›Ό(πœ‘)π‘‘πœ‘πΉ(𝑠)+𝐺(𝑠))𝑑𝑠,𝑁(𝑑,π‘Ÿ)=π‘‘βˆ’βˆžξ‚΅βˆ’ξ€œπΎexpπ‘‘π‘ ξ‚Άξ€œπ›Ό(πœ‘)π‘‘πœ‘π‘Ÿ(𝑠)𝑑𝑠+𝑑+βˆžξ‚΅ξ€œπΎexp𝑑𝑠𝛼(πœ‘)π‘‘πœ‘π‘Ÿ(𝑠)𝑑𝑠,(2.4) where 𝐹(𝑑),𝐺(𝑑),π‘Ÿ(𝑑)β‰₯0 are integrable functions and 𝐡, 𝐿 are positive constants, then the nonlinear nonautonomous system (2.1) is topologically equivalent to the nonlinear nonautonomous system (2.2). Moreover, the equivalent functions 𝐻(𝑑,π‘₯),𝐺(𝑑,𝑦) fulfill ||||||||𝐻(𝑑,π‘₯)βˆ’π‘₯≀𝐡,𝐺(𝑑,𝑦)βˆ’π‘¦β‰€π΅.(2.5)

In what follows, we always suppose that the conditions of Theorem 2.2 are satisfied. Denote that 𝑋(𝑑,𝑑0,π‘₯0) is a solution of (2.2) satisfying the initial condition 𝑋(𝑑0)=π‘₯0 and that π‘Œ(𝑑,𝑑0,𝑦0) is a solution of (2.1) satisfying the initial condition π‘Œ(𝑑0)=𝑦0. To prove the main results, we first prove some lemmas.

Lemma 2.3. For each (𝜏,πœ‰), system π‘§ξ…ž=𝐴(𝑑)π‘§βˆ’π‘“(𝑑,𝑋(𝑑,𝜏,πœ‰))+𝑔(𝑑,𝑋(𝑑,𝜏,πœ‰)+𝑧)(2.6) has a unique bounded solution β„Ž(𝑑,(𝜏,πœ‰)) with |β„Ž(𝑑,(𝜏,πœ‰))|≀𝐡.

Proof. Let 𝔹 be the set of all the continuous bounded functions π‘₯(𝑑) with |π‘₯(𝑑)|≀𝐡. For each (𝜏,πœ‰) and any 𝑧(𝑑)βˆˆπ”Ή, define the mapping 𝑇 as follows: ξ€œπ‘‡π‘§(𝑑)=π‘‘βˆ’βˆžπ‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1([]βˆ’ξ€œπ‘ )𝑔(𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠𝑑+βˆžπ‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1[](𝑠)𝑔(𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠.(2.7)
Simple computation leads to ||||β‰€ξ€œπ‘‡π‘§(𝑑)π‘‘βˆ’βˆž||π‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1(||(+ξ€œπ‘ )𝐹(𝑠)+𝐺(𝑠))𝑑𝑠𝑑+∞||π‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1||β‰€ξ€œ(𝑠)(𝐹(𝑠)+𝐺(𝑠))π‘‘π‘ π‘‘βˆ’βˆžξ‚΅βˆ’ξ€œπΎexp𝑑𝑠+ξ€œπ›Ό(πœ‘)π‘‘πœ‘(𝐹(𝑠)+𝐺(𝑠))𝑑𝑠𝑑+βˆžξ‚΅ξ€œπΎexp𝑑𝑠𝛼(πœ‘)π‘‘πœ‘(𝐹(𝑠)+𝐺(𝑠))𝑑𝑠≀𝐡,(2.8) which implies that 𝑇 is a self-map of a sphere with radius 𝐡. For any 𝑧1(𝑑),𝑧2(𝑑)βˆˆπ”Ή, ||𝑇𝑧1(𝑑)βˆ’π‘‡π‘§2(||β‰€ξ€œπ‘‘)π‘‘βˆ’βˆž||π‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1(||𝑧𝑠)π‘Ÿ(𝑠)1(𝑠)βˆ’π‘§2(ξ€Έ+ξ€œπ‘ )𝑑𝑠𝑑+∞||π‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1||𝑧(𝑠)π‘Ÿ(𝑠)1(𝑠)βˆ’π‘§2≀‖‖𝑧(𝑠)𝑑𝑠1βˆ’π‘§2β€–β€–ξ‚Έξ€œπ‘‘βˆ’βˆžξ‚΅βˆ’ξ€œπΎexp𝑑𝑠+ξ€œπ›Ό(πœ‘)π‘‘πœ‘π‘Ÿ(𝑠)𝑑𝑠𝑑+βˆžξ‚΅ξ€œπΎexp𝑑𝑠‖‖𝑧𝛼(πœ‘)π‘‘πœ‘π‘Ÿ(𝑠)𝑑𝑠≀𝐿1βˆ’π‘§2β€–β€–.(2.9)
Due to the fact that 𝐿<1, 𝑇 has a unique fixed point, namely, 𝑧0(𝑑), and 𝑧0(ξ€œπ‘‘)=π‘‘βˆ’βˆžπ‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1(𝑔𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧0(ξ€Έξ€»βˆ’ξ€œπ‘ )βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠𝑑+βˆžπ‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1𝑔(𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧0ξ€Έξ€»(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠,(2.10) it is easy to show that 𝑧0(𝑑) is a bounded solution of (2.6). Now, we are going to show that the bounded solution is unique. For this purpose, we assume that there is another bounded solution 𝑧1(𝑑) of (2.6). Thus, 𝑧1(𝑑) can be written as follows: 𝑧1(𝑑)=π‘ˆ(𝑑)π‘ˆβˆ’1(0)π‘₯0+ξ€œπ‘‘0π‘ˆ(𝑑)π‘ˆβˆ’1𝑔(𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1ξ€Έξ€»(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠=π‘ˆ(𝑑)π‘ˆβˆ’1(0)π‘₯0+ξ€œπ‘‘0[]π‘ˆπ‘ˆ(𝑑)𝑃+(πΌβˆ’π‘ƒ)βˆ’1𝑔(𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1ξ€Έξ€»(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠=π‘ˆ(𝑑)π‘ˆβˆ’1(0)π‘₯0+ξ€œπ‘‘βˆ’βˆžπ‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1𝑔(𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1ξ€Έξ€»βˆ’ξ€œ(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠0βˆ’βˆžπ‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1𝑔(𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1ξ€Έξ€»+ξ€œ(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠0+βˆžπ‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1𝑔(𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1ξ€Έξ€»βˆ’ξ€œ(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠𝑑+βˆžπ‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1𝑔(𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1ξ€Έξ€»(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠.(2.11)
Note that ξ€œ0βˆ’βˆžπ‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1𝑔(𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1ξ€Έξ€»(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠=π‘ˆ(𝑑)π‘ˆβˆ’1ξ€œ(0)0βˆ’βˆžπ‘ˆ(0)π‘ƒπ‘ˆβˆ’1𝑔(𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1ξ€Έξ€»(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))π‘‘π‘ β‰€π‘ˆ(𝑑)π‘ˆβˆ’1(||||ξ€œ0)0βˆ’βˆžπ‘ˆ(0)π‘ƒπ‘ˆβˆ’1(𝑔𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1(ξ€Έξ€»||||𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))π‘‘π‘ β‰€π‘ˆ(𝑑)π‘ˆβˆ’1ξ€œ(0)0βˆ’βˆžξ‚΅βˆ’ξ€œπΎexp0𝑠𝛼(πœ‘)π‘‘πœ‘(𝐹(𝑠)+𝐺(𝑠))𝑑𝑠,(2.12) which implies that ∫0βˆ’βˆžπ‘ˆ(0)π‘ƒπ‘ˆβˆ’1(𝑠)[𝑔(𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1(𝑠))βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))]𝑑𝑠 is convergent; denote it by π‘₯1. That is, ξ€œ0βˆ’βˆžπ‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1𝑔(𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1ξ€Έξ€»(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠=π‘ˆ(𝑑)π‘ˆβˆ’1(0)π‘₯1.(2.13) Similarly, ξ€œ0+βˆžπ‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1𝑔(𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1ξ€Έξ€»(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠=π‘ˆ(𝑑)π‘ˆβˆ’1(0)π‘₯2.(2.14) Therefore, it follows from the expression of 𝑧1(𝑑) that 𝑧1(𝑑)=π‘ˆ(𝑑)π‘ˆβˆ’1ξ€·π‘₯(0)0βˆ’π‘₯1+π‘₯2ξ€Έ+ξ€œπ‘‘βˆ’βˆžξ€Ίπ‘”ξ€·π‘ˆ(𝑑)π‘ƒπ‘ˆ(𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1ξ€Έξ€»βˆ’ξ€œ(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠𝑑+βˆžπ‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1𝑔(𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1ξ€Έξ€»(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠.(2.15)
Noticing that 𝑧1(𝑑) is bounded, βˆ«π‘‘βˆ’βˆžπ‘ˆ(𝑑)π‘ƒπ‘ˆ(𝑠)[𝑔(𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1∫(𝑠))βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))]π‘‘π‘ βˆ’π‘‘+βˆžπ‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1(𝑠)[𝑔(𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1(𝑠))βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))]𝑑𝑠 is also bounded. So, π‘ˆ(𝑑)π‘ˆβˆ’1(0)(π‘₯0βˆ’π‘₯1+π‘₯2) is bounded. But we see that π‘§ξ…ž=𝐴(𝑑)𝑧 does not have a nontrivial bounded solution. Thus, π‘ˆ(𝑑)π‘ˆβˆ’1(0)(π‘₯0βˆ’π‘₯1+π‘₯2)=0; it follows that 𝑧1(ξ€œπ‘‘)=π‘‘βˆ’βˆžπ‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1(𝑔𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1(ξ€Έξ€»βˆ’ξ€œπ‘ )βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠𝑑+βˆžπ‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1𝑔(𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1ξ€Έξ€»(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠.(2.16) Simple calculating shows ||𝑧1(𝑑)βˆ’π‘§0(||β‰€ξ€œπ‘‘)π‘‘βˆ’βˆž||π‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1(||||𝑧𝑠)π‘Ÿ(𝑠)1(𝑠)βˆ’π‘§0(||+ξ€œπ‘ )𝑑𝑠𝑑+∞||π‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1||||𝑧(𝑠)π‘Ÿ(𝑠)1(𝑠)βˆ’π‘§0||≀‖‖𝑧(𝑠)𝑑𝑠1βˆ’π‘§0β€–β€–ξ‚Έξ€œπ‘‘βˆ’βˆžξ‚΅βˆ’ξ€œπΎexp𝑑𝑠+ξ€œπ›Ό(πœ‘)π‘‘πœ‘π‘Ÿ(𝑠)𝑑+βˆžξ‚΅ξ€œπΎexp𝑑𝑠‖‖𝑧𝛼(πœ‘)π‘‘πœ‘π‘Ÿ(𝑠)≀𝐿1βˆ’π‘§0β€–β€–.(2.17)

Therefore, ‖𝑧1βˆ’π‘§0‖≀𝐿‖𝑧1βˆ’π‘§0β€–, consequently 𝑧1(𝑑)≑𝑧0(𝑑). This implies that the bounded solution of (2.6) is unique. We may call it β„Ž(𝑑(𝜏,πœ‰)). From the above proof, it is easy to see that |β„Ž(𝑑,(𝜏,πœ‰))|≀𝐡.

Lemma 2.4. For each (𝜏,πœ‰), the system π‘§ξ…ž=𝐴(𝑑)𝑧+𝑓(𝑑,𝑋(𝑑,𝜏,πœ‰)+𝑧)βˆ’π‘”(𝑑,𝑋(𝑑,𝜏,πœ‰))(2.18) has a unique bounded solution ̃𝑔(𝑑,(𝜏,πœ‰)) and |̃𝑔(𝑑,(𝜏,πœ‰))|≀𝐡.

Proof. The proof is similar to that of Lemma 2.3.

Lemma 2.5. Let π‘₯(𝑑) be any solution of the system (2.1), then 𝑧(𝑑)=0 is the unique bounded solution of system π‘§ξ…ž=𝐴(𝑑)𝑧+𝑓(𝑑,π‘₯(𝑑)+𝑧)βˆ’π‘“(𝑑,π‘₯(𝑑)).(2.19)

Proof. Obviously, 𝑧≑0 is a bounded solution of system (2.19). We show that the bounded solution is unique. If not, then there is another bounded solution 𝑧1(𝑑), which can be written as follows: 𝑧1(𝑑)=π‘ˆ(𝑑)π‘ˆβˆ’1(0)𝑧1(ξ€œ0)+𝑑0π‘ˆ(𝑑)π‘ˆβˆ’1(𝑓𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠.(2.20) By Lemma 2.3, we can get 𝑧1(ξ€œπ‘‘)=π‘‘βˆ’βˆžπ‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1(𝑓𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1(ξ€Έξ€»βˆ’ξ€œπ‘ )βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠𝑑+βˆžπ‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1𝑓(𝑠)𝑠,𝑋(𝑠,𝜏,πœ‰)+𝑧1ξ€Έξ€»(𝑠)βˆ’π‘“(𝑠,𝑋(𝑠,𝜏,πœ‰))𝑑𝑠.(2.21) It follows that ||𝑧1(||β‰€ξ€œπ‘‘)π‘‘βˆ’βˆž||π‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1(||||𝑧𝑠)π‘Ÿ(𝑠)1(||+ξ€œπ‘ )𝑑𝑠𝑑+∞||π‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1||||𝑧(𝑠)π‘Ÿ(𝑠)1||β‰€ξ€œ(𝑠)π‘‘π‘ π‘‘βˆ’βˆžξ‚΅βˆ’ξ€œπΎexp𝑑𝑠||𝑧𝛼(πœ‘)π‘‘πœ‘π‘Ÿ(𝑠)1||+ξ€œ(𝑠)𝑑𝑠𝑑+βˆžξ‚΅ξ€œπΎexp𝑑𝑠||𝑧𝛼(πœ‘)π‘‘πœ‘π‘Ÿ(𝑠)1||||𝑧(𝑠)𝑑𝑠≀𝐿1||.(𝑑)(2.22) That is, ‖𝑧1‖≀𝐿|𝑧1|. Consequently, 𝑧1(𝑑)≑0. This completes the proof of Lemma 2.5.

Lemma 2.6. Let 𝑦(𝑑) be any solution of the system (2.2), then 𝑧(𝑑)=0 is the unique bounded solution of system π‘§ξ…ž=𝐴(𝑑)𝑧+𝑔(𝑑,𝑦(𝑑)+𝑧)βˆ’π‘”(𝑑,𝑦(𝑑)).(2.23)

Proof. Obviously, 𝑧≑0 is a bounded solution of system (2.23). We will show that the bounded solution is unique. If not, then there is another bounded solution 𝑧1(𝑑). Then, 𝑧1(𝑑) can be written as follows: 𝑧1(𝑑)=π‘ˆ(𝑑)π‘ˆβˆ’1(0)𝑧1(ξ€œ0)+𝑑0π‘ˆ(𝑑)π‘ˆβˆ’1(𝑔𝑠)𝑠,π‘Œ(𝑠,𝜏,πœ‰)+𝑧1(𝑠)βˆ’π‘”(𝑠,π‘Œ(𝑠,𝜏,πœ‰))𝑑𝑠.(2.24)
By Lemma 2.3, we can get 𝑧1(ξ€œπ‘‘)=π‘‘βˆ’βˆžπ‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1(𝑔𝑠)𝑠,π‘Œ(𝑠,𝜏,πœ‰)+𝑧1(ξ€Έξ€»βˆ’ξ€œπ‘ )βˆ’π‘”(𝑠,π‘Œ(𝑠,𝜏,πœ‰))𝑑𝑠𝑑+βˆžπ‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1𝑔(𝑠)𝑠,π‘Œ(𝑠,𝜏,πœ‰)+𝑧1ξ€Έξ€»(𝑠)βˆ’π‘”(𝑠,π‘Œ(𝑠,𝜏,πœ‰))𝑑𝑠.(2.25) Then, it follows that ||𝑧1(||β‰€ξ€œπ‘‘)π‘‘βˆ’βˆž||π‘ˆ(𝑑)π‘ƒπ‘ˆβˆ’1(||||𝑧𝑠)π‘Ÿ(𝑠)1(||+ξ€œπ‘ )𝑑𝑠𝑑+∞||π‘ˆ(𝑑)(πΌβˆ’π‘ƒ)π‘ˆβˆ’1||||𝑧(𝑠)π‘Ÿ(𝑠)1||β‰€ξ€œ(𝑠)π‘‘π‘ π‘‘βˆ’βˆžξ‚΅βˆ’ξ€œπΎexp𝑑𝑠||𝑧𝛼(πœ‘)π‘‘πœ‘π‘Ÿ(𝑠)1||+ξ€œ(𝑠)𝑑𝑠𝑑+βˆžξ‚΅ξ€œπΎexp𝑑𝑠||𝑧𝛼(πœ‘)π‘‘πœ‘π‘Ÿ(𝑠)1||||𝑧(𝑠)𝑑𝑠≀𝐿1||.(𝑑)(2.26) That is, ‖𝑧1‖≀𝐿‖𝑧1β€–. Consequently, 𝑧1(𝑑)≑0. This completes the proof of Lemma 2.6.

Now, we define two functions as follows:𝐻(𝑑,π‘₯)=π‘₯+β„Ž(𝑑,(𝑑,π‘₯)),(2.27)𝐺(𝑑,π‘₯)=𝑦+̃𝑔(𝑑,(𝑑,𝑦)).(2.28)

Lemma 2.7. For any fixed (𝑑0,π‘₯0),𝐻(𝑑,𝑋(𝑑,𝑑0,π‘₯0)) is a solution of the system (2.2).

Proof. Replace (𝜏,πœ‰) by (𝑑,𝑋(𝑑,𝜏,πœ‰)) in (2.6); system (2.6) is not changed. Due to the uniqueness of the bounded solution of (2.6), we can get that β„Ž(𝑑,(𝑑,𝑋(𝑑,𝑑0,π‘₯0)))=β„Ž(𝑑,(𝑑0,π‘₯0)). Thus, 𝐻𝑑,𝑋𝑑,𝑑0,π‘₯0ξ€·ξ€Έξ€Έ=𝑋𝑑,𝑑0,π‘₯0𝑑+β„Žπ‘‘,0,π‘₯0ξ€Έξ€Έ.(2.29) Differentiating it, noticing that 𝑋(𝑑,𝑑0,π‘₯0), β„Ž(𝑑,(𝑑0,π‘₯0)) are the solutions of the (2.1), and (2.6), respectively; therefore, we can obtain 𝐻𝑑,𝑋𝑑,𝑑0,π‘₯0ξ€Έξ€Έξ€»ξ…žξ€·=𝐴(𝑑)𝑋𝑑,𝑑0,π‘₯0ξ€Έξ€·ξ€·+𝑓𝑑,𝑋𝑑,𝑑0,π‘₯0𝑑+𝐴(𝑑)β„Žπ‘‘,0,π‘₯0ξ€·ξ€·ξ€Έξ€Έβˆ’π‘“π‘‘,𝑋𝑑,𝑑0,π‘₯0ξ€·ξ€·ξ€Έξ€Έ+𝑔𝑑,𝑋𝑑,𝑑0,π‘₯0𝑑+β„Žπ‘‘,0,π‘₯0ξ€·ξ€·ξ€Έξ€Έξ€Έ=𝐴(𝑑)𝐻𝑑,𝑋𝑑,𝑑0,π‘₯0ξ€·ξ€·ξ€Έξ€Έ+𝑔𝑑,𝐻𝑑,𝑑0,π‘₯0.ξ€Έξ€Έ(2.30) It indicates that 𝐻(𝑑,𝑋(𝑑,𝑑0,π‘₯0)) is the solution of the system (2.2).

Lemma 2.8. For any fixed (𝑑0,𝑦0), 𝐺(𝑑,π‘Œ(𝑑,𝑑0,𝑦0)) is a solution of the system (2.1).

Proof. The proof is similar to Lemma 2.7.

Lemma 2.9. For any π‘‘βˆˆβ„,π‘¦βˆˆβ„π‘›,𝐻(𝑑,𝐺(𝑑,𝑦))≑𝑦.

Proof. Let 𝑦(𝑑) be any solution of the system (2.2). From Lemma 2.8, 𝐺(𝑑,𝑦(𝑑)) is a solution of system (2.1). Then, by Lemma 2.7, we see that 𝐻(𝑑,𝐺(𝑑,𝑦(𝑑))) is a solution of (2.2), written as 𝑦1(𝑑). Denote 𝐽(𝑑)=𝑦1(𝑑)βˆ’π‘¦(𝑑). Differentiating, we have π½ξ…ž(𝑑)=π‘¦ξ…ž1(𝑑)βˆ’π‘¦ξ…ž(𝑑)=𝐴(𝑑)𝑦1ξ€·(𝑑)+𝑔𝑑,𝑦1ξ€Έ(𝑑)βˆ’π΄(𝑑)𝑦(𝑑)βˆ’π‘”(𝑑,𝑦(𝑑))=𝐴(𝑑)𝐽(𝑑)+𝑔(𝑑,𝑦(𝑑)+𝐽(𝑑))βˆ’π‘”(𝑑,𝑦(𝑑)),(2.31) which implies that 𝐽(𝑑) is a solution of system (2.23). On the other hand, following the definition of 𝐻 and 𝐺 and Lemmas 2.3 and 2.4, we can obtain ||||=||||≀||||+||||=||||+||||𝐽(𝑑)𝐻(𝑑,𝐺(𝑑,𝑦(𝑑)))βˆ’π‘¦(𝑑)𝐻(𝑑,𝐺(𝑑,𝑦(𝑑)))βˆ’πΊ(𝑑,𝑦(𝑑))𝐺(𝑑,𝑦(𝑑))βˆ’π‘¦(𝑑)β„Ž(𝑑,(𝑑,𝐺(𝑑,𝑦(𝑑))))̃𝑔(𝑑,(𝑑,𝑦))≀2𝐡.(2.32)
This implies that 𝐽(𝑑) is a bounded solution of system (2.23). However, by Lemma 2.6, system (2.23) has only one zero solution. Hence, 𝐽(𝑑)≑0, consequently 𝑦1(𝑑)≑𝑦(𝑑), that is, 𝐻(𝑑,𝐺(𝑑,𝑦))=𝑦(𝑑). Since 𝑦(𝑑) is any solution of the system (2.2), Lemma 2.9 follows.

Lemma 2.10. For any π‘‘βˆˆβ„,π‘₯βˆˆβ„π‘›,𝐺(𝑑,𝐻(𝑑,π‘₯))≑π‘₯.

Proof. The proof is similar to Lemma 2.10.

Now, we are in a position to prove the main results.

Proof of Theorem 2.2. We are going to show that 𝐻(𝑑,β‹…) satisfies the four conditions of Definition 2.1.Proof of Condition (i). For any fixed 𝑑, it follows from Lemmas 2.9 and 2.10 that 𝐻(𝑑,β‹…) is homeomorphism and 𝐺(𝑑,β‹…)=π»βˆ’1(𝑑,β‹…).Proof of Condition (ii). From (2.27) and Lemma 2.3, we derive |𝐻(𝑑,π‘₯)βˆ’π‘₯|=|β„Ž(𝑑,(𝑑,π‘₯))|≀𝐡. So, |𝐻(𝑑,π‘₯)|β†’βˆž as |π‘₯|β†’βˆž, uniformly with respect to 𝑑.Proof of Condition (iii). From (2.23) and Lemma 2.4, we derive |𝐺(𝑑,𝑦)βˆ’π‘¦|=|̃𝑔(𝑑,(𝑑,𝑦))|≀𝐡. So, |𝐺(𝑑,𝑦)|β†’βˆž as |π‘₯|β†’βˆž, uniformly with respect to 𝑑.Proof of Condition (iv). Using Lemmas 2.7 and 2.8, we easily prove that Condition (iv) is true.

Hence, systems (2.1) and (2.2) are topologically conjugated. This completes the proof of Theorem 2.2.

Acknowledgments

The authors would like to express their gratitude to the editor and anonymous reviewers for their careful reading which improved the presentation of this paper. This work was supported by the National Natural Science Foundation of China under Grant (no. 10901140) and ZJNSFC under Grant (no. Y6100029).