Table of Contents Author Guidelines Submit a Manuscript
Erratum

An erratum for this article has been published. To view the erratum, please click here.

Advances in Astronomy
Volume 2012, Article ID 709038, 13 pages
http://dx.doi.org/10.1155/2012/709038
Research Article

Are Nuclear Star Clusters the Precursors of Massive Black Holes?

1European Southern Observatory, Karl-Schwarzschild Straße 2, 85748 Garching bei München, Germany
2Excellence Cluster Universe, Boltzmann Straße 2, 85748 Garching bei München, Germany
3Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany

Received 15 August 2011; Revised 17 November 2011; Accepted 27 November 2011

Academic Editor: Francesca Civano

Copyright © 2012 Nadine Neumayer and C. Jakob Walcher. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Ferrarese and D. Merritt, “A fundamental relation between supermassive black holes and their host galaxies,” Astrophysical Journal Letters, vol. 539, no. 1, pp. L9–L12, 2000. View at Google Scholar
  2. K. Gebhardt, R. Bender, G. Bower et al., “A relationship between nuclear black hole mass and galaxy velocity dispersion,” Astrophysical Journal Letters, vol. 539, no. 1, pp. L13–L16, 2000. View at Google Scholar
  3. N. Häring and H.-W. Rix, “On the black hole mass-bulge mass relation,” Astrophysical Journal Letters, vol. 604, no. 2, pp. L89–L92, 2004. View at Publisher · View at Google Scholar
  4. C. M. Carollo, M. Stiavelli, and J. Mack, “Spiral galaxies with WFPC2. II. The nuclear properties of 40 objects,” Astronomical Journal, vol. 116, no. 1, pp. 68–84, 1998. View at Google Scholar
  5. P. Côté, S. Piatek, L. Ferrarese et al., “The ACS virgo cluster survey. VIII. The nuclei of early-type galaxies,” Astrophysical Journal, vol. 165, no. 1, pp. 57–94, 2006. View at Publisher · View at Google Scholar
  6. T. Böker, S. Laine, R. P. Van Der Marel et al., “A Hubble Space Telescope census of nuclear star clusters in late-type spiral galaxies. I. Observations and image analysis,” Astronomical Journal, vol. 123, no. 3, pp. 1389–1410, 2002. View at Publisher · View at Google Scholar
  7. A. W. Graham, C. A. Onken, E. Athanassoula, and F. Combes, “An expanded Mbh-σ diagram, and a new calibration of active galactic nuclei masses,” Monthly Notices of the Royal Astronomical Society, vol. 412, no. 4, pp. 2211–2228, 2011. View at Publisher · View at Google Scholar
  8. T. Böker, M. Sarzi, D. E. Mclaughlin et al., “A Hubble Space Telescope census of nuclear star clusters in late-type spiral galaxies. II. Cluster sizes and structural parameter correlations,” Astronomical Journal, vol. 127, no. 1, pp. 105–118, 2004. View at Google Scholar
  9. C. J. Walcher, R. P. Van Der Marel, D. Mclaughlin et al., “Masses of star clusters in the nuclei of bulgeless spiral galaxies,” Astrophysical Journal, vol. 618, no. 1, pp. 237–246, 2005. View at Publisher · View at Google Scholar
  10. J. Rossa, R. P. Van Der Marel, T. Böker et al., “Hubble Space Telescope stis spectra of nuclear star clusters in spiral galaxies: dependence of age and mass on hubble type,” Astronomical Journal, vol. 132, no. 3, pp. 1074–1099, 2006. View at Publisher · View at Google Scholar
  11. A. C. Seth, J. J. Dalcanton, P. W. Hodge, and V. P. Debattista, “Clues to nuclear star cluster formation from edge-on spirals,” Astronomical Journal, vol. 132, no. 6, pp. 2539–2555, 2006. View at Publisher · View at Google Scholar
  12. C. J. Walcher, T. Böker, S. Charlot et al., “Stellar populations in the nuclei of late-type spiral galaxies,” Astrophysical Journal, vol. 649, no. 2, pp. 692–708, 2006. View at Publisher · View at Google Scholar
  13. B. Binggeli, F. Barazza, and H. Jerjen, “Off-center nuclei in dwarf elliptical galaxies,” Astronomy and Astrophysics, vol. 359, no. 2, pp. 447–456, 2000. View at Google Scholar
  14. N. Neumayer, C. J. Walcher, D. Andersen, S. F. Sánchez, T. Böker, and H. -W. Rix, “Two-dimensional Hα kinematics of bulgeless disc galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 413, no. 3, pp. 1875–1888, 2011. View at Publisher · View at Google Scholar
  15. L. Ferrarese, P. Côté, E. Dalla Bontà et al., “A fundamental relation between compact stellar nuclei, supermassive black holes, and their host galaxies,” Astrophysical Journal Letters, vol. 644, no. 1, pp. L21–L24, 2006. View at Publisher · View at Google Scholar
  16. E. H. Wehner and W. E. Harris, “Supermassive black holes to dwarf elliptical nuclei: a mass continuum,” Astrophysical Journal Letters, vol. 644, no. 1, pp. L17–L20, 2006. View at Publisher · View at Google Scholar
  17. B. G. Elmegreen, F. Bournaud, and D. M. Elmegreen, “Nuclear black hole formation in clumpy galaxies at high redshift,” Astrophysical Journal Letters, vol. 684, no. 2, pp. 829–834, 2008. View at Publisher · View at Google Scholar
  18. J. A. Regan and M. G. Haehnelt, “Pathways to massive black holes and compact star clusters in pre-galactic dark matter haloes with virial temperatures 10 000 K,” Monthly Notices of the Royal Astronomical Society, vol. 396, no. 1, pp. 343–353, 2009. View at Publisher · View at Google Scholar
  19. L. Mayer, S. Kazantzidis, A. Escala, and S. Callegari, “Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers,” Nature, vol. 466, no. 7310, pp. 1082–1083, 2010. View at Publisher · View at Google Scholar
  20. V. Bromm and N. Yoshida, “The first galaxies,” Annual Review of Astronomy and Astrophysics, vol. 49, no. 1, pp. 373–407, 2011. View at Publisher · View at Google Scholar
  21. M. Hartmann, V. P. Debattista, A. Seth, M. Cappellari, and T. R. Quinn, “Constraining the role of star cluster mergers in nuclear cluster formation: simulations confront integral-field data,” Monthly Notices of the Royal Astronomical Society, vol. 418, no. 4, pp. 2697–2714, 2011. View at Publisher · View at Google Scholar
  22. T. Ebisuzaki, J. Makino, and T. G. Tsuru, “Missing link found? The "runaway" path to supermassive black holes,” Astrophysical Journal Letters, vol. 562, no. 1, pp. L19–L22, 2001. View at Google Scholar
  23. S. F. Portegies Zwart, H. Baumgardt, P. Hut, J. Makino, and S. L.W. McMillan, “Formation of massive black holes through runaway collisions in dense young star clusters,” Nature, vol. 428, no. 6984, pp. 724–726, 2004. View at Publisher · View at Google Scholar
  24. M. A. Gürkan, M. Freitag, and F. A. Rasio, “Formation of massive black holes in dense star clusters. I. Mass segregation and core collapse,” Astrophysical Journal Letters, vol. 604, no. 2, pp. 632–652, 2004. View at Publisher · View at Google Scholar
  25. M. Freitag, F. A. Rasio, and H. Baumgardt, “Runaway collisions in young star clusters—I. Methods and tests,” Monthly Notices of the Royal Astronomical Society, vol. 368, no. 1, pp. 121–140, 2006. View at Publisher · View at Google Scholar
  26. E. Gaburov, A. Gualandris, and S. Portegies Zwart, “On the onset of runaway stellar collisions in dense star clusters—I. Dynamics of the first collision,” Monthly Notices of the Royal Astronomical Society, vol. 384, no. 1, pp. 376–385, 2008. View at Publisher · View at Google Scholar
  27. E. Glebbeek, E. Gaburov, S. E. De Mink, O. R. Pols, and S. F.P. Zwart, “The evolution of runaway stellar collision products,” Astronomy and Astrophysics, vol. 497, no. 1, pp. 255–264, 2009. View at Publisher · View at Google Scholar
  28. A. V. Filippenko and L. C. Ho, “A low-mass central black hole in the bulgeless Seyfert 1 galaxy NGC 4395,” Astrophysical Journal Letters, vol. 588, no. 1, pp. L13–L16, 2003. View at Publisher · View at Google Scholar
  29. A. Seth, M. Agüeros, D. Lee, and A. Basu-Zych, “The coincidence of nuclear star clusters and active galactic nuclei,” Astrophysical Journal Letters, vol. 678, no. 1, pp. 116–130, 2008. View at Publisher · View at Google Scholar
  30. R. Schödel, A. Eckart, T. Alexander et al., “The structure of the nuclear stellar cluster of the Milky Way,” Astronomy and Astrophysics, vol. 469, no. 1, pp. 125–146, 2007. View at Publisher · View at Google Scholar
  31. R. Genzel, F. Eisenhauer, and S. Gillessen, “The Galactic center massive black hole and nuclear star cluster,” Reviews of Modern Physics, vol. 82, no. 4, pp. 3121–3195, 2010. View at Publisher · View at Google Scholar
  32. M. Freitag, M. Atakan Gürkan, and F. A. Rasio, “Runaway collisions in young star clusters—II. Numerical results,” Monthly Notices of the Royal Astronomical Society, vol. 368, no. 1, pp. 141–161, 2006. View at Publisher · View at Google Scholar
  33. A. W. Graham and S. P. Driver, “A log-quadratic relation for predicting supermassive black hole masses from the host bulge sérsic index,” Astrophysical Journal Letters, vol. 655, no. 1, pp. 77–87, 2007. View at Publisher · View at Google Scholar
  34. J. E. Greene, C. Y. Peng, M. Kim et al., “Precise black hole masses from megamaser disks: black hole-bulge relations at low mass,” Astrophysical Journal Letters, vol. 721, no. 1, pp. 26–45, 2010. View at Publisher · View at Google Scholar
  35. A. V. Filippenko and W. L. W. Sargent, “Discovery of an extremely low luminosity Seyfert 1 nucleus in the dwarf galaxy NGC 4395,” Astrophysical Journal, vol. 342, pp. L11–L14, 1989. View at Publisher · View at Google Scholar
  36. J. C. Shields, C. J. Walcher, T. Böker, L. C. Ho, H. -W. Rix, and R. P. Van Der Marel, “An accreting black hole in the nuclear star cluster of the bulgeless galaxy NGC 1042,” Astrophysical Journal Letters, vol. 682, no. 1, pp. 104–109, 2008. View at Publisher · View at Google Scholar
  37. A. J. Barth, L. E. Strigari, M. C. Bentz, J. E. Greene, and L. C. Ho, “Dynamical constraints on the masses of the nuclear star cluster and black hole in the late-type spiral galaxy NGC 3621,” Astrophysical Journal Letters, vol. 690, no. 1, pp. 1031–1044, 2009. View at Publisher · View at Google Scholar
  38. M. Gliozzi, S. Satyapal, M. Eracleous, L. Titarchuk, and C. C. Cheung, “A chandra view of NGC 3621: a bulgeless galaxy hosting an agn in its early phase?” Astrophysical Journal Letters, vol. 700, no. 2, pp. 1759–1767, 2009. View at Publisher · View at Google Scholar
  39. S. Satyapal, D. Vega, R. P. Dudik, N. P. Abel, and T. Heckman, “Spitzer uncovers active galactic nuclei missed by optical surveys in seven late-type galaxies,” Astrophysical Journal Letters, vol. 677, no. 2, pp. 926–942, 2008. View at Publisher · View at Google Scholar
  40. J. E. Greene and L. C. Ho, “A new sample of low-mass black holes in active galaxies,” Astrophysical Journal Letters, vol. 670, no. 1, pp. 92–104, 2007. View at Publisher · View at Google Scholar
  41. A. J. Barth, J. E. Greene, and L. C. Ho, “Low-mass seyfert 2 galaxies in the sloan digital sky survey,” Astronomical Journal, vol. 136, no. 3, pp. 1179–1200, 2008. View at Publisher · View at Google Scholar
  42. W. McAlpine, S. Satyapal, M. Gliozzi, C. C. Cheung, R. M. Sambruna, and M. Eracleous, “Black holes in bulgeless galaxies: an XMM-Newton investigation of NGC 3367 and NGC 4536,” Astrophysical Journal Letters, vol. 728, article 25, 2011. View at Publisher · View at Google Scholar
  43. K. Gebhardt, T. R. Lauer, J. Kormendy et al., “M33: a galaxy with no supermassive black hole,” Astronomical Journal, vol. 122, no. 5, pp. 2469–2476, 2001. View at Publisher · View at Google Scholar
  44. D. Merritt, L. Ferrarese, and C. L. Joseph, “No supermassive black hole in M33?” Science, vol. 293, no. 5532, pp. 1116–1118, 2001. View at Publisher · View at Google Scholar
  45. P. Erwin and D. Gadotti, “Do nuclear star clusters and supermassive black holes follow the same host-galaxy correlations?” in Proceedings of the American Institute of Physics Conference, V. P. Debattista and C. C. Popescu, Eds., vol. 1240, pp. 223–226, 2010. View at Publisher · View at Google Scholar
  46. J. Kormendy, R. Bender, and M. E. Cornell, “Supermassive black holes do not correlate with galaxy disks or pseudobulges,” Nature, vol. 469, no. 7330, pp. 374–376, 2011. View at Publisher · View at Google Scholar
  47. M. Volonteri, G. Lodato, and P. Natarajan, “The evolution of massive black hole seeds,” Monthly Notices of the Royal Astronomical Society, vol. 383, no. 3, pp. 1079–1088, 2008. View at Publisher · View at Google Scholar
  48. T. Di Matteo, V. Springel, and L. Hernquist, “Energy input from quasars regulates the growth and activity of black holes and their host galaxies,” Nature, vol. 433, no. 7026, pp. 604–607, 2005. View at Publisher · View at Google Scholar
  49. P. F. Hopkins, L. Hernquist, T. J. Cox, T. Di Matteo, B. Robertson, and V. Springel, “A unified, merger-driven model of the origin of starbursts, quasars, the cosmic X-ray background, supermassive black holes, and galaxy spheroids,” Astrophysical Journal, vol. 163, no. 1, pp. 1–49, 2006. View at Publisher · View at Google Scholar
  50. C. Y. Peng, “How mergers may affect the mass scaling relation between geuvitationally bound systems,” Astrophysical Journal Letters, vol. 671, no. 2, pp. 1098–1107, 2007. View at Publisher · View at Google Scholar
  51. E. Noyola, K. Gebhardt, M. Kissler-Patig et al., “Very large telescope kinematics for omega Centauri: further support for a central black hole,” Astrophysical Journal Letters, vol. 719, no. 1, pp. L60–L64, 2010. View at Publisher · View at Google Scholar
  52. K. Jahnke and A. Macciò, “The Non-causal Origin of the Black-hole-galaxy Scaling Relations,” The Astrophysical Journal, vol. 734, no. 2, article 92, 2011. View at Publisher · View at Google Scholar
  53. E. Emsellem, G. Monnet, and R. Bacon, “The multi-gaussian expansion method: a tool for building realistic photometric and kinematical models of stellar systems I. The formalism,” Astronomy and Astrophysics, vol. 285, pp. 723–738, 1994. View at Google Scholar
  54. M. Cappellari, “Efficient multi-Gaussian expansion of galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 333, no. 2, pp. 400–410, 2002. View at Publisher · View at Google Scholar
  55. J. Krist, Astronomical Data Analysis Software and Systems IV, vol. 77 of Astronomical Society of the Pacific Conference Series, 1995, edited by R. A. Shaw, H. E. Payne and J. J. E. Hayes.
  56. M. Cappellari, “Measuring the inclination and mass-to-light ratio of axisymmetric galaxies via anisotropic Jeans models of stellar kinematics,” Monthly Notices of the Royal Astronomical Society, vol. 390, no. 1, pp. 71–86, 2008. View at Publisher · View at Google Scholar
  57. P. Serra and S. C. Trager, “On the interpretation of the age and chemical composition of composite stellar populations determined with line-strength indices,” Monthly Notices of the Royal Astronomical Society, vol. 374, no. 3, pp. 769–774, 2007. View at Publisher · View at Google Scholar
  58. K. Gültekin, D. O. Richstone, K. Gebhardt et al., “The M-σ and M-L relations in galactic bulges, and determinations of their intrinsic scatter,” Astrophysical Journal Letters, vol. 698, no. 1, pp. 198–221, 2009. View at Publisher · View at Google Scholar
  59. B. M. Peterson, M. C. Bentz, L. -B. Desroches et al., “Multiwavelength monitoring of the dwarf seyfert 1 galaxy NGC 4395. I. A reverberation-based measurement of the black hole mass,” Astrophysical Journal, vol. 632, no. 2, pp. 799–808, 2005. View at Publisher · View at Google Scholar
  60. A. J. Barth, L. C. Ho, R. E. Rutledge, and W. L.W. Sargent, “POX 52: a dwarf Seyfert 1 galaxy with an intermediate-mass black hole,” Astrophysical Journal Letters, vol. 607, no. 1, pp. 90–102, 2004. View at Publisher · View at Google Scholar
  61. M. Valluri, L. Ferrarese, D. Merritt, and C. L. Joseph, “The low end of the supermassive black hole mass function: constraining the mass of a nuclear black hole in NGC 205 via stellar kinematics,” Astrophysical Journal, vol. 628, no. 1, pp. 137–152, 2005. View at Publisher · View at Google Scholar
  62. T. Böker, R. P. Van Der Marel, and W. D. Vacca, “CO band head spectroscopy of IC 342: mass and age of the nuclear star cluster 1,” Astronomical Journal, vol. 118, no. 2, pp. 831–842, 1999. View at Google Scholar
  63. A. C. Seth, M. Cappellari, N. Neumayer et al., “The NGC 404 nucleus: star cluster and possible intermediate-mass black hole,” Astrophysical Journal Letters, vol. 714, no. 1, pp. 713–731, 2010. View at Publisher · View at Google Scholar
  64. K. Gebhardt, R. M. Rich, and C. H.O. Luis, “An intermediate-mass black hole in the globular cluster G1: improved significance from New Keck and Hubble Space Telescope observations,” Astrophysical Journal, vol. 634, no. 2, pp. 1093–1102, 2005. View at Publisher · View at Google Scholar
  65. E. Noyola, K. Gebhardt, and M. Bergmann, “Gemini and Hubble Space Telescope evidence for an intermediate-mass black hole in ω Centauri,” Astrophysical Journal Letters, vol. 676, no. 2, pp. 1008–1015, 2008. View at Publisher · View at Google Scholar
  66. B. Jalali, H. Baumgardt, M. Kissler-Patig et al., “A Dynamical N-body Model for the Central Region of ω Centauri,” http://adsabs.harvard.edu/abs/2011arXiv1111.5011J.
  67. N. Lützgendorf, M. Kissler-Patig, E. Noyola et al., “Kinematic signature of an intermediate-mass black hole in the globular cluster NGC 6388,” Astronomy & Astrophysics, vol. 533, artilce A36, 2011. View at Publisher · View at Google Scholar
  68. J. Anderson and R. P. Van Der Marel, “New limits on an intermediate-mass black hole in omega centauri. I. Hubble Space Telescope photometry and proper motions,” Astrophysical Journal Letters, vol. 710, no. 2, pp. 1032–1062, 2010. View at Publisher · View at Google Scholar
  69. R. P. Van Der Marel and J. Anderson, “New limits on an intermediate-mass black hole in omega centauri. II. Dynamical models,” Astrophysical Journal Letters, vol. 710, no. 2, pp. 1063–1088, 2010. View at Publisher · View at Google Scholar
  70. H. Baumgardt, J. Makino, H. U. T. Piet, S. McMillan, and S. P. Zwart, “A dynamical model for the globular cluster G1,” Astrophysical Journal Letters, vol. 589, no. 1, pp. L25–L28, 2003. View at Publisher · View at Google Scholar
  71. J. E. Greene, L. C. Ho, and A. J. Barth, “Black holes in pseudobulges and spheroidals: a change in the black hole-bulge scaling relations at low mass,” Astrophysical Journal Letters, vol. 688, no. 1, pp. 159–179, 2008. View at Publisher · View at Google Scholar
  72. K. Ganda, R. F. Peletier, M. Balcells, and J. Falcón-Barroso, “The nature of late-type spiral galaxies: structural parameters, optical and near-infrared colour profiles and dust extinction,” Monthly Notices of the Royal Astronomical Society, vol. 395, no. 3, pp. 1669–1694, 2009. View at Publisher · View at Google Scholar
  73. T. Weinzirl, S. Jogee, S. Khochfar, A. Burkert, and J. Kormendy, “Bulge n and B/T in high-mass galaxies: constraints on the origin of bulges in hierarchical models,” Astrophysical Journal Letters, vol. 696, no. 1, pp. 411–447, 2009. View at Publisher · View at Google Scholar
  74. C. Y. Peng, L. C. Ho, C. D. Impey, and H.-W. Rix, “Detailed structural decomposition of galaxy images,” Astronomical Journal, vol. 124, no. 1, pp. 266–293, 2002. View at Publisher · View at Google Scholar
  75. A. W. Graham and L. R. Spitler, “Quantifying the coexistence of massive black holes and dense nuclear star clusters,” Monthly Notices of the Royal Astronomical Society, vol. 397, no. 4, pp. 2148–2162, 2009. View at Publisher · View at Google Scholar
  76. K. Gültekin, S. Tremaine, A. Loeb, and D. O. Richstone, “Observational Selection Effects and the M-σ Relation,” The Astrophysical Journal, vol. 738, no. 1, article 17, 2011. View at Google Scholar
  77. C. Scorza and F. C. Van Den Bosch, “Nuclear stellar discs in early-type galaxies—II. Photometric properties,” Monthly Notices of the Royal Astronomical Society, vol. 300, no. 2, pp. 469–478, 1998. View at Google Scholar
  78. K. Gebhardt and J. Thomas, “The black hole mass, stellar mass-to-light ratio, and Dark Halo in m87,” Astrophysical Journal Letters, vol. 700, no. 2, pp. 1690–1701, 2009. View at Publisher · View at Google Scholar
  79. P. J. Young, J. A. Westphal, J. Kristian, C. P. Wilson, and F. P. Landauer, “Evidence for a supermassive object in the nucleus of the galaxy M87 from SIT and CCD area photometry,” Astrophysical Journal, vol. 221, pp. 721–730, 1978. View at Publisher · View at Google Scholar
  80. G. A. Bower, R. F. Green, A. C. Quillen et al., “The ionization source in the nucleus of M84,” Astrophysical Journal Letters, vol. 534, no. 1, pp. 189–200, 2000. View at Google Scholar
  81. J. L. Walsh, A. J. Barth, and M. Sarzi, “The supermassive black hole in M84 revisited,” Astrophysical Journal Letters, vol. 721, no. 1, pp. 762–776, 2010. View at Publisher · View at Google Scholar
  82. L. Ferrarese, H. C. Ford, and W. Jaffe, “Evidence for a massive black hole in the active galaxy NGC 4261 from bubble space telescope images and spectra,” Astrophysical Journal Letters, vol. 470, no. 1, pp. 444–459, 1996. View at Google Scholar
  83. S. P. Rusli, J. Thomas, P. Erwin, R. P. Saglia, N. Nowak, and R. Bender, “The central black hole mass of the high-σ but low-bulge-luminosity lenticular galaxy NGC 1332,” Monthly Notices of the Royal Astronomical Society, vol. 410, no. 2, pp. 1223–1236, 2011. View at Publisher · View at Google Scholar
  84. N. Devereux, H. Ford, Z. Tsvetanov, and G. Jacoby, “STIS spectroscopy of the central 10 parsecs of M81: evidence for a massive black hole,” Astronomical Journal, vol. 125, no. 3, pp. 1226–1235, 2003. View at Publisher · View at Google Scholar
  85. M. J. Jee, J. P. Blakeslee, M. Sirianni, A. R. Martel, R. L. White, and H. C. Ford, “Principal component analysis of the time- and position-dependent point-spread function of the advanced camera for surveys,” Publications of the Astronomical Society of the Pacific, vol. 119, no. 862, pp. 1403–1409, 2007. View at Publisher · View at Google Scholar
  86. L. Ferrarese, P. Côté, A. Jordán et al., “The ACS Virgo Cluster survey. VI. Isophotal analysis and the structure of early-type galaxies,” Astrophysical Journal, Supplement Series, vol. 164, no. 2, pp. 334–434, 2006. View at Publisher · View at Google Scholar
  87. T. R. Lauer, K. Gebhardt, S. M. Faber et al., “The centers of early-type galaxies with Hubble Space Telescope. VI. Bimodal central surface brightness profiles,” Astrophysical Journal, vol. 664, no. 1, pp. 226–256, 2007. View at Publisher · View at Google Scholar
  88. G. De Francesco, A. Capetti, and A. Marconi, “Measuring supermassive black holes with gas kinematics: the active so galaxy NGC 3998,” Astronomy and Astrophysics, vol. 460, no. 2, pp. 439–448, 2006. View at Publisher · View at Google Scholar
  89. N. Cretton and F. C. Van Den Bosch, “Evidence for a massive black hole in the S0 galaxy NGC 4342,” Astrophysical Journal Letters, vol. 514, no. 2, pp. 704–724, 1999. View at Google Scholar
  90. K. Gebhardt, D. Richstone, J. Kormendy et al., “Axisymmetric, three-integral models of galaxies: a massive black hole in NGC 3379,” Astronomical Journal, vol. 119, no. 3, pp. 1157–1171, 2000. View at Google Scholar
  91. D. Merritt and A. Szell, “Dynamical cusp regeneration,” Astrophysical Journal, vol. 648, no. 2, pp. 890–899, 2006. View at Publisher · View at Google Scholar
  92. M. Koleva, P. Prugniel, S. De Rijcke, and W. W. Zeilinger, “Age and metallicity gradients in early-type galaxies: a dwarf-to-giant sequence,” Monthly Notices of the Royal Astronomical Society, vol. 417, no. 3, pp. 1643–1671, 2011. View at Publisher · View at Google Scholar
  93. H. Zinnecker, C. J. Keable, J. S. Dunlop, R. D. Cannon, and W. K. Griths, “The harlow-shapley symposium on globular cluster systems in galaxies,” in Proceedings of the 126th Symposium of the International Astronomical Union (IAU '88), J. E. Grindlay and A. G. D. Philip, Eds., vol. 126, p. 603, 1988.
  94. K. C. Freeman, The Globular Cluster-Galaxy Connection, vol. 48 of Astronomical Society of the Pacific Conference Series, 1993, edited by G. H. Smith and J. P. Brodie.
  95. K. Bekki and K. C. Freeman, “Formation of ω Centauri from an ancient nucleated dwarf galaxy in the young Galactic disc,” Monthly Notices of the Royal Astronomical Society, vol. 346, no. 2, pp. L11–L15, 2003. View at Publisher · View at Google Scholar
  96. T. Böker, “Are globular clusters the remnant nuclei of progenitor disk galaxies?” Astrophysical Journal Letters, vol. 672, no. 2, pp. L111–L114, 2008. View at Publisher · View at Google Scholar
  97. M. Milosavljević, “On the origin of nuclear star clusters in late-type spiral galaxies,” Astrophysical Journal Letters, vol. 605, no. 1, pp. L13–L16, 2004. View at Publisher · View at Google Scholar
  98. K. Bekki, W. J. Couch, and Y. Shioya, “Dissipative transformation of nonnucleated dwarf galaxies into nucleated systems,” Astrophysical Journal Letters, vol. 642, no. 2, pp. L133–L136, 2006. View at Publisher · View at Google Scholar
  99. J. Pflamm-Altenburg and P. Kroupa, “Recurrent gas accretion by massive star clusters, multiple stellar populations and mass thresholds for spheroidal stellar systems,” Monthly Notices of the Royal Astronomical Society, vol. 397, no. 1, pp. 488–494, 2009. View at Publisher · View at Google Scholar
  100. S. D. Tremaine, J. P. Ostriker, and L. Spitzer, “The formation of the nuclei of galaxies. I—M31,” Astrophysical Journal, vol. 196, pp. 407–411, 1975. View at Publisher · View at Google Scholar
  101. R. Capuzzo-Dolcetta, “The evolution of the globular cluster system in a triaxial galaxy: can a galactic nucleus form by globular cluster capture?” Astrophysical Journal Letters, vol. 415, no. 2, pp. 616–630, 1993. View at Google Scholar
  102. D. E. Mclaughlin, “Was the compact nucleus in M87 formed by destroyed globular clusters?” Astronomical Journal, vol. 109, no. 5, pp. 2034–2037, 1995. View at Google Scholar
  103. K. Bekki, W. J. Couch, M. J. Drinkwater, and Y. Shioya, “Cluster cannibalism and scaling relations of galactic stellar nuclei,” Astrophysical Journal Letters, vol. 610, no. 1, pp. L13–L16, 2004. View at Publisher · View at Google Scholar
  104. P. Miocchi, R. C. Dolcetta, P. Di Matteo, and A. Vicari, “Merging of globular clusters in inner galactic regions. I. Do they survive the tidal interaction?” Astrophysical Journal Letters, vol. 644, no. 2, pp. 940–953, 2006. View at Publisher · View at Google Scholar
  105. M. Agarwal and M. Milosavljević, “Nuclear star clusters from clustered star formation,” Astrophysical Journal Letters, vol. 729, article 35, 2011. View at Publisher · View at Google Scholar
  106. S. Nayakshin, M. I. Wilkinson, and A. King, “Competitive feedback in galaxy formation,” Monthly Notices of the Royal Astronomical Society, vol. 398, no. 1, pp. L54–L57, 2009. View at Publisher · View at Google Scholar
  107. D. Merritt, “Dynamics of galaxy cores and supermassive black holes,” Reports on Progress in Physics, vol. 69, no. 9, pp. 2513–2579, 2006. View at Publisher · View at Google Scholar
  108. K. Bekki and A. W. Graham, “On the transition from nuclear-cluster- to black-hole-dominated galaxy cores,” Astrophysical Journal Letters, vol. 714, no. 2, pp. L313–L317, 2010. View at Publisher · View at Google Scholar
  109. K. Gebhardt, J. Adams, D. Richstone et al., “The black hole mass in M87 from Gemini/NIFS adaptive optics observations,” Astrophysical Journal Letters, vol. 729, article 119, 2011. View at Publisher · View at Google Scholar
  110. G. A. Bower, R. F. Green, A. Danks et al., “Kinematics of the nuclear ionized gas in the radio galaxy M84 (NGC 4374),” Astrophysical Journal Letters, vol. 492, no. 2, pp. L111–L114, 1998. View at Google Scholar
  111. K. Gebhardt, D. Richstone, S. Tremaine et al., “Axisymmetric dynamical models of the central regions of galaxies,” Astrophysical Journal Letters, vol. 583, no. 1, pp. 92–115, 2003. View at Publisher · View at Google Scholar
  112. M. Sarzi, H.-W. Rix, J. C. Shields et al., “Supermassive black holes in bulges,” Astrophysical Journal Letters, vol. 550, no. 1, pp. 65–74, 2001. View at Publisher · View at Google Scholar
  113. K. L. Shapiro, M. Cappellari, T. De Zeeuw et al., “The black hole in NGC 3379: a comparison of gas and stellar dynamical mass measurements with HST and integral-field data,” Monthly Notices of the Royal Astronomical Society, vol. 370, no. 2, pp. 559–579, 2006. View at Publisher · View at Google Scholar