About this Journal Submit a Manuscript Table of Contents
Advances in Astronomy
Volume 2012 (2012), Article ID 854867, 7 pages
Research Article

Kinematic Approach to the 24th Solar Cycle Prediction

Geophysical Center of the Russian Academy of Sciences, Molodezhnaya Street 3, 119296 Moscow, Russia

Received 14 November 2011; Revised 20 January 2012; Accepted 10 February 2012

Academic Editor: J. Javaraiah

Copyright © 2012 Vladimir Kaftan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Dikpati, G. de Toma, and P. A. Gilman, “Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool,” Geophysical Research Letters, vol. 33, no. 5, Article ID L05102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Dikpati, G. De Toma, and P. A. Gilman, “Polar flux, cross-equatorial flux, and dynamo-generated tachocline toroidal flux as predictors of solar cycles,” Astrophysical Journal Letters, vol. 675, no. 1, pp. 920–930, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Dikpati, P. A. Gilman, and G. De Toma, “The waldmeier effect: an artifact of the definition of wolf sunspot number?” Astrophysical Journal Letters, vol. 673, no. 1, pp. L99–L101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Dikpati, “Predicting solar “climate“ by assimilating magnetic data into a flux-transport dynamo,” Astronomische Nachrichten, vol. 328, no. 10, pp. 1092–1095, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Dikpati and P. A. Gilman, “Simulating and predicting solar cycles using a flux-transport dynamo,” Astrophysical Journal, vol. 649, no. 1 I, pp. 498–514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Svalgaard, E. W. Cliver, and Y. Kamide, “Sunspot cycle 24: smallest cycle in 100 years?” Geophysical Research Letters, vol. 32, no. 1, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Brajša, H. Wöhl, A. Hanslmeier et al., “On solar cycle predictions and reconstructions,” Astronomy and Astrophysics, vol. 496, no. 3, pp. 855–861, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Petrovay, “Solar cycle prediction,” Living Reviews in Solar Physics, vol. 7, pp. 1–59, 2010. View at Google Scholar · View at Scopus
  9. V.I. Kaftan, “Kinematic modeling of the solar activity. 24th solar cycle prediction,” in Proceedings of the Experimental and Theoretical Research of the Principles of Solar-Geophysical Activity Predicting, pp. 145–150, Troitsk, Moscow, Russia, 2006, (Russian).
  10. V. I. Kaftan, “Analysis of periodicities of cosmogeophysical processes and Caspian Sea level changes,” in Book of Abstracts: Caspian Region: Economics, Ecology, Mineral Resources. International Conference “Caspiy-95”, p. 14, Moscow, Russia, 1995, (Russian). View at Google Scholar
  11. V. I. Kaftan, Temporal Analysis of Spatial Data: Kinematic Models, Ph.D. thesis, Moscow State University of Transportation, Moscow, Russia, 2003, (Russian).
  12. A. Worthing and J. Geffner, Treatment of Experimental Data, Wiley, New York, NY, USA, 1944.
  13. G. V. Demianov, V. I. Kaftan, and V. I. Zubinsky, “Participation of the Central Research Institute of Geodesy, Aerial Surveying and Cartography in the third Baltic Sea Level GPS campaign,” in Final results of the Baltic Sea Level 1997 GPS campaign, Research Works of the SSC 8.1 of the International Association of Geodesy, M. Poutanen and J. Kakkuri, Eds., pp. 127–132, Finnish Geodetic Institute, Kirkkonummi, Finland, 1999. View at Google Scholar
  14. V. I. Kaftan, “Kinematic modeling of the main solar cycle,” in Multi-Wavelength Investigations of Solar Activity, A. V. Stepanov, E. E. Benevolenskaya, and A. G. Kosovichev, Eds., pp. 111–112, Cambridge University Press, Cambridge, UK, 2004. View at Google Scholar
  15. V. I. Kaftan and M. B. Krainev, “Estimation of the effect of solar activity on the intensity of galactic cosmic rays,” Geomagnetism and Aeronomy, vol. 47, no. 2, pp. 137–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Komitov, P. Duchlev, K. Stoychev, M. Dechev, and K. Koleva, “Determination of the sunspot minimum epoch between the cycles No 23 and 24 and prediction of the cycle No 24 magnitude on the base of the ‘Waldmeier’s Rule‘,” Bulgarian Astronomical Journal, vol. 16, pp. 44–49, 2011. View at Google Scholar
  17. K. Tapping and J. Valdés, “Did the sun change its behaviour during the decline of cycle 23 and into cycle 24?” Solar Physics, vol. 272, no. 2, pp. 337–350, 2011. View at Google Scholar
  18. K. L. Harvey, “What is solar cycle minimum?” Journal of Geophysical Research A, vol. 104, no. 9, Article ID 1999JA900211, pp. 19759–19764, 1999. View at Google Scholar · View at Scopus