Abstract and Applied Analysis

Abstract and Applied Analysis / 2000 / Article

Open Access

Volume 5 |Article ID 924095 | 17 pages | https://doi.org/10.1155/S1085337500000063

A Picard-Maclaurin theorem for initial value PDEs

Received15 Feb 1999

Abstract

In 1988, Parker and Sochacki announced a theorem which proved that the Picard iteration, properly modified, generates the Taylor series solution to any ordinary differential equation (ODE) on n with a polynomial generator. In this paper, we present an analogous theorem for partial differential equations (PDEs) with polynomial generators and analytic initial conditions. Since the domain of a solution of a PDE is a subset of n, we identify one component of the domain to achieve the analogy with ODEs. The generator for the PDE must be a polynomial and autonomous with respect to this component, and no partial derivative with respect to this component can appear in the domain of the generator. The initial conditions must be given in the designated component at zero and must be analytic in the nondesignated components. The power series solution of such a PDE, whose existence is guaranteed by the Cauchy theorem, can be generated to arbitrary degree by Picard iteration. As in the ODE case these conditions can be met, for a broad class of PDEs, through polynomial projections.

Copyright © 2000 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

122 Views | 701 Downloads | 10 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder