Research Article | Open Access
Xifang Cao, Chuanyou Xu, "A Bäcklund Transformation for the Burgers Hierarchy", Abstract and Applied Analysis, vol. 2010, Article ID 241898, 9 pages, 2010. https://doi.org/10.1155/2010/241898
A Bäcklund Transformation for the Burgers Hierarchy
Abstract
We give a Bäcklund transformation in a unified form for each member in the Burgers hierarchy. By applying the Bäcklund transformation to the trivial solutions, we generate some solutions of the Burgers hierarchy.
1. Introduction
Let
and for , define the differential expressions recursively as follows:
Then the Burgers hierarchy is defined by
The first few members of the hierarchy (1.3) are
with (1.4) being just the Burgers equation.
There is much literature on the Burgers hierarchy. Olver [1] derived the hierarchy (1.3) from the point of view of infinitely many symmetries. The work in [2] showed that the Cole-Hopf transformation
transforms solutions of the linear equation
to that of (1.3). With the help of the Cole-Hopf transformation (1.9), Taflin [3] and Tasso [4] showed, respectively, that the Burgers equation (1.4) and the second member (1.5) of the hierarchy (1.3) can be written in the Hamiltonian form. More recently, Talukdar et al. [5] constructed an appropriate Lagrangian by solving the inverse problem of variational calculus and then Hamiltonized (1.5) to get the relevant Poisson structure. Furthermore, they pointed out that their method is applicable to each member of (1.3). Pickering [6] proved explicitly that each member of (1.3) passes the Weiss-Tabor-Carnevale Painlevé test.
This paper is devoted to the study of Bäcklund transformation for the Burgers hierarchy. Bäcklund transformation was named after the Swedish mathematical physicist and geometer Albert Victor Bäcklund(1845-1922), who found in 1883 [7], when studying the surfaces of constant negative curvature, that the sine-Gordon equation
has the following property: if solves (1.9), then for an arbitrary non-zero constant , the system on
is integrable; moreover, also solves (1.9). So (1.10) gives a transformation , now called Bäcklund transformation, which takes one solution of (1.9) into another. For example, substituting the trivial solution into (1.10) yields one-soliton solution:
where is an arbitrary constant. By repeating this procedure one can get multiple-soliton solutions. Some other nonlinear partial differential equations (PDEs), such as KdV equation [8]
modified KdV equation [9]
Burgers equation (1.4) [10], and a generalized Burgers equation [11]
also possess Bäcklund transformations. Now Bäcklund transformation has become a useful tool for generating solutions to certain nonlinear PDEs. Much literature is devoted to searching Bäcklund transformations for some nonlinear PDEs (see, e.g., [12–15]). In this paper, we give a Bäcklund transformation for each member in the Burgers hierarchy. As an application, by applying our Bäcklund transformation to the trivial solutions, we generate some new solutions of (1.3).
2. Bäcklund Transformation
First, the differential expressions have the following property.
Theorem 2.1. For an arbitrary constant , let Then
Proof. We use induction to prove (2.2).
First, for ,
So (2.2) is true for .
Next, fix a , and assume that (2.2) is true for . Then
that is, (2.2) is valid for .
Therefore, (2.2) is always true for .
Now we state our main result.
Theorem 2.2. If is a solution of (1.3), then the system on is integrable; moreover, also satisfies (1.3). Therefore, (2.5) defines a Bäcklund transformation , in a unified form, for each member of the Burgers hierarchy (1.3).
Proof. By (1.3) and (2.5) we have
therefore ; that is, (2.5) is an integrable system associated with (1.3).
From the first equation of (2.5) we have
So
On the other hand, by (2.2)
Substituting (2.9) and (2.10) into the second equation of (2.5) yields
that is, also satisfies the Burgers hierarchy (1.3).
3. Exact Solutions
In this section we always assume that is an arbitrary nonzero constant.
From a known solution of (1.3), the first equation of (2.5) gives
with the “integration constant" satisfying a first-order ordinary differential equation determined by the second equation of (2.5).
Example 3.1. Take the trivial solution of (1.3). Then from (1.2) we have So (2.5) becomes Solving (3.3) gives the following solution of (1.3): where is an arbitrary constant.
Note that (3.4) is a traveling wave solution.
Example 3.2. By the Cole-Hopf transformation (1.7), is a solution of (1.3). Then from (1.2) we have So (2.5) becomes Solving (3.7) gives the following solution of (1.3):
Note that (3.8) is not a traveling wave solution.
Example 3.3. By the Cole-Hopf transformation (1.7), is a solution of (1.3) for . Then from (1.2) we have So (2.5) becomes Solving (3.11) gives the following solution of (1.3) for :
Note that (3.12) is not a traveling wave solution.
Example 3.4. By the Cole-Hopf transformation (1.7), is a solution of (1.3) for . Then from (1.2) we have So (2.5) becomes Solving (3.15) gives the following solution of (1.3) for :
Note that (3.16) is not a traveling wave solution.
Remark 3.5. In general, for an arbitrary positive integer , is a solution of (1.3) for . Substituting (3.17) into (2.5) gives the following solution of (1.3) for : where
Acknowledgment
This work is supported by the National Natural Science Foundation of China through the Grant no. 10571149.
References
- P. J. Olver, “Evolution equations possessing infinitely many symmetries,” Journal of Mathematical Physics, vol. 18, no. 6, pp. 1212–1215, 1977. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- D. V. Choodnovsky and G. V. Choodnovsky, “Pole expansions of nonlinear partial differential equations,” Nuovo Cimento B, vol. 40, no. 2, pp. 339–353, 1977. View at: Publisher Site | Google Scholar | MathSciNet
- E. Taflin, “Analytic linearization, Hamiltonian formalism, and infinite sequences of constants of motion for the Burgers equation,” Physical Review Letters, vol. 47, no. 20, pp. 1425–1428, 1981. View at: Publisher Site | Google Scholar | MathSciNet
- H. Tasso, “Hamiltonian formulation of odd Burgers hierarchy,” Journal of Physics A, vol. 29, no. 23, pp. 7779–7784, 1996. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- B. Talukdar, S. Ghosh, and U. Das, “Inverse variational problem and canonical structure of Burgers equations,” Journal of Mathematical Physics, vol. 46, no. 4, Article ID 043506, p. 8, 2005. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- A. Pickering, “The Weiss-Tabor-Carnevale Painlevé test and Burgers' hierarchy,” Journal of Mathematical Physics, vol. 35, no. 2, pp. 821–833, 1994. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- C. Rogers and W. F. Shadwick, Bäcklund Transformations and Their Applications, vol. 161 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1982. View at: MathSciNet
- H. D. Wahlquist and F. B. Estabrook, “Bäcklund transformation for solutions of the Korteweg-de Vries equation,” Physical Review Letters, vol. 31, pp. 1386–1390, 1973. View at: Publisher Site | Google Scholar | MathSciNet
- G. L. Lamb Jr., “Bäcklund transformations for certain nonlinear evolution equations,” Journal of Mathematical Physics, vol. 15, pp. 2157–2165, 1974. View at: Publisher Site | Google Scholar | MathSciNet
- Z.-S. Lü, “An explicit Bäcklund transformation of Burgers equation with applications,” Communications in Theoretical Physics, vol. 44, no. 6, pp. 987–989, 2005. View at: Publisher Site | Google Scholar | MathSciNet
- W.-P. Hong, “On Bäcklund transformation for a generalized Burgers equation and solitonic solutions,” Physics Letters A, vol. 268, no. 1-2, pp. 81–84, 2000. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- R. Conte, M. Musette, and A. M. Grundland, “Bäcklund transformation of partial differential equations from the Painlevé-Gambier classification. II. Tzitzéica equation,” Journal of Mathematical Physics, vol. 40, no. 4, pp. 2092–2106, 1999. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- A. M. Grundland and D. Levi, “On higher-order Riccati equations as Bäcklund transformations,” Journal of Physics A, vol. 32, no. 21, pp. 3931–3937, 1999. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- D. Levi, “Toward a unification of the various techniques used to integrate nonlinear partial differential equations: Bäcklund and Darboux transformations vs. dressing method,” Reports on Mathematical Physics, vol. 23, no. 1, pp. 41–56, 1986. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- H. Wu, “On Bäcklund transformations for nonlinear partial differential equations,” Journal of Mathematical Analysis and Applications, vol. 192, no. 1, pp. 151–179, 1995. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
Copyright
Copyright © 2010 Xifang Cao and Chuanyou Xu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.