TY - JOUR
A2 - Zafer, Ağacik
AU - Bairamov, Elgiz
AU - Seyyidoglu, M. Seyyit
PY - 2010
DA - 2010/03/08
TI - Non-Self-Adjoint Singular Sturm-Liouville Problems with Boundary Conditions Dependent on the Eigenparameter
SP - 982749
VL - 2010
AB - Let A denote the operator generated in L2(ℛ+) by the Sturm-Liouville problem: -y′′+q(x)y=λ2y, x∈ℛ+=[0,∞), (y′/y)(0)=(β1λ+β0)/(α1λ+α0), where q is a complex valued function and α0,α1,β0,β1∈𝒞, with α0β1-α1β0≠0. In this paper, using the uniqueness theorems of analytic functions, we investigate the eigenvalues and the spectral singularities of A. In particular, we obtain the conditions on q under which the operator A has a finite number of the eigenvalues and the spectral singularities.
SN - 1085-3375
UR - https://doi.org/10.1155/2010/982749
DO - 10.1155/2010/982749
JF - Abstract and Applied Analysis
PB - Hindawi Publishing Corporation
KW -
ER -