Abstract

We consider a nonlinear equation ๐น(๐œ€,๐œ†,๐‘ข)=0, where the parameter ๐œ€ is a perturbation parameter, ๐น is a differentiable mapping from Rร—Rร—๐‘‹ to ๐‘Œ, and ๐‘‹, ๐‘Œ are Banach spaces. We obtain an abstract bifurcation theorem by using the generalized saddle-node bifurcation theorem.

1. Introduction

In [1, 2], Crandall and Rabinowitz proved two celebrated theorems which are now regarded as foundation of the analytical bifurcation theory in infinite-dimensional spaces and both results are based on the implicit function theorem. In [3], we obtained the generalized saddle-node bifurcation theorem by the generalized inverse. In [4], we proved a perturbed problem using Morse Lemma. For a more general introduction to bifurcation theory and other related methods in nonlinear analysis, see, for example, [5โ€“7]. On the other hand, [8โ€“11] provide a more detailed introduction to mathematical models in some recent new results in the application of bifurcation theory including chemical reactions, population ecology, and nonautonomous differential equations.

In this paper, we continue the work of [3] and obtain an abstract bifurcation theorem under the opposite condition in [4]. We consider the solution set of ๐น(๐œ€,๐œ†,๐‘ข)=0,(1.1) where ๐œ€ indicates the perturbation. Fix ๐œ€=๐œ€0; let (๐œ†0,๐‘ข0) be a solution of ๐น(๐œ€0,โ‹…,โ‹…)=0. From the implicit function theorem, a necessary condition for bifurcation is that ๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0) is not invertible; we call (๐œ€0,๐œ†0,๐‘ข0) a degenerate solution. In [12], Shi shows the persistence and the bifurcation of degenerate solutions when ๐œ€ varies near ๐œ€0 by the implicit function theorem and the saddle-node bifurcation theorem. In this paper, we prove a new perturbed bifurcation theorem by the generalized saddle-node bifurcation theorem.

In the paper, we use โ€–โ‹…โ€– as the norm of Banach space ๐‘‹ and โŸจโ‹…,โ‹…โŸฉ as the duality pair of a Banach space ๐‘‹ and its dual space ๐‘‹โˆ—. For a nonlinear operator ๐น, we use ๐น๐‘ข as the partial derivative of ๐น with respect to argument ๐‘ข. For a linear operator ๐ฟ, we use ๐‘(๐ฟ) as the null space of ๐ฟ and ๐‘…(๐ฟ) as the range of ๐ฟ.

2. Preliminaries

Definition 2.1 (see [13]). Let ๐‘‹, ๐‘Œ be Banach spaces, and let ๐ดโˆˆโ„’(๐‘‹,๐‘Œ) be a linear operator. Then, ๐ด+โˆˆโ„’(๐‘Œ,๐‘‹) is called the generalized inverse of ๐ด if it satisfies(i)๐ด๐ด+๐ด=๐ด,(ii)๐ด+๐ด๐ด+=๐ด+.

Definition 2.2 (see [13]). Let ๐‘‹,๐‘Œ, and ๐ด be the same as in Definition 2.1. If ๐ดโˆˆโ„’(๐‘‹,๐‘Œ) has the bounded linear generalized inverse ๐ด+, then ๐ด is called a generalized regular operator.

Lemma 2.3 (see [13]). Let ๐ดโˆˆโ„’(๐‘‹,๐‘Œ), then ๐ด is a generalized regular operator if and only if ๐‘(๐ด),๐‘…(๐ด) are topologically complemented in ๐‘‹,๐‘Œ, respectively. In this case, ๐ผโˆ’๐ด+๐ด, ๐ด๐ด+ are bounded linear projectors from ๐‘‹, ๐‘Œ into ๐‘(๐ด), ๐‘…(๐ด), respectively.

We recall the generalized saddle-node bifurcation in [3] and give an alternate proof here using the generalized Lyapunov-Schmidt reduction.

Theorem 2.4 (generalized saddle-node bifurcation). Let ๐‘‰โŠ‚๐‘ร—๐‘‹ be a neighborhood of (๐œ†0,๐‘ข0),๐นโˆˆ๐ถ1(๐‘‰,๐‘Œ). Suppose that (i)๐น(๐œ†0,๐‘ข0)=0;(ii)๐น๐‘ข(๐œ†0,๐‘ข0)โˆถ๐‘‹โ†’๐‘Œ is a generalized regular operator, and ๎€ท๐นdim๐‘๐‘ข๎€ท๐œ†0,๐‘ข0๎€ท๐น๎€ธ๎€ธโ‰ฅcodim๐‘…๐‘ข๎€ท๐œ†0,๐‘ข0๎€ธ๎€ธ=1,(2.1)(iii)๐น๐œ†(๐œ†0,๐‘ข0)โˆ‰๐‘…(๐น๐‘ข(๐œ†0,๐‘ข0)).
Let ๐‘=๐‘…((๐น๐‘ข(๐œ†0,๐‘ข0))+), then the subset {(๐œ†,๐‘ข)|๐น(๐œ†,๐‘ข)=0} contains the curve (๐œ†(๐‘ ),๐‘ข(๐‘ ))=(๐œ†(๐‘ ),๐‘ข0+๐‘ ๐‘ค0+๐‘ง(๐‘ )) near (๐œ†0,๐‘ข0), where ๐‘ค0โˆˆ๐‘(๐น๐‘ข(๐œ†0,๐‘ข0))โงต{๐œƒ}, the mapping ๐‘ง(๐‘ ) is continuously differentiable near ๐‘ =0, and ๐œ†(0)=๐œ†0,๐œ†๎…ž(0)=0,๐‘ง๎…ž(0)=๐‘ง(0)=๐œƒ.

Proof. Since ๐ด=๐น๐‘ข(๐œ†0,๐‘ข0) is a generalized regular operator, there exist closed subspaces ๐‘ in ๐‘‹, ๐‘Œ1 in ๐‘Œ satisfing ๐‘‹=๐‘โŠ•๐‘(๐ด), ๐‘Œ=๐‘…(๐ด)โŠ•๐‘Œ1.
Taking an arbitrary ๐‘ค0โˆˆ๐‘(๐ด)โงต{๐œƒ}, from Lemma 2.3, ๐น(๐œ†,๐‘ข)=0 is equivalent to ๎€ท๐ผโˆ’๐ด๐ด+๎€ธ๐น๎€ท๐œ†,๐‘ข0+๐‘ ๐‘ค0๎€ธ+๐‘ง=0,๐ด๐ด+๐น๎€ท๐œ†,๐‘ข0+๐‘ ๐‘ค0๎€ธ+๐‘ง=0,(2.2) where ๐‘ โˆˆ๐‘, ๐‘งโˆˆ๐‘.
Define ๐บโˆถ๐‘ร—๐‘ร—๐‘โ†’๐‘…(๐ด) as ๐บ(๐‘ ,๐œ†,๐‘ง)=๐ด๐ด+๐น๎€ท๐œ†,๐‘ข0+๐‘ ๐‘ค0๎€ธ,๐บ+๐‘ง(๐œ†,๐‘ง)๎€ท0,๐œ†0๎€ธ[(],0๐œ,๐œ“)=๐ด๐ด+๎€ท๐œ๐น๐œ†๎€ท๐œ†0,๐‘ข0๎€ธ+๐น๐‘ข๎€ท๐œ†0,๐‘ข0๎€ธ[๐œ“]๎€ธ,=๐ด๐ด+๐ด[๐œ“][๐œ“],=๐ด(2.3) because of (iii), then ๐บ(๐œ†,๐‘ง)(0,๐œ†0,0)โˆถ๐‘…ร—๐‘โ†’๐‘…(๐ด) is an isomorphism.
For the equation ๐บ(๐‘ ,๐œ†,๐‘ง)=0, by the implicit function theorem, there exist ๐œ€>0 and (๐œ†(๐‘ ),๐‘ง(๐‘ ))โˆˆ๐ถ1(โˆ’๐œ€,๐œ€), with ๐œ†(0)=๐œ†0, ๐‘ง(0)=0 satisfying ๐บ(๐‘ ,๐œ†(๐‘ ),๐‘ง(๐‘ ))=0.(2.4) From (2.2), we have ๐น๎€ท๐œ†(๐‘ ),๐‘ข0+๐‘ ๐‘ค0๎€ธ+๐‘ง(๐‘ )=0,๐‘ โˆˆ(โˆ’๐œ€,๐œ€).(2.5) Differentiating (2.5) with respect to ๐‘ , we have ๐น๐œ†๎€ท๐œ†(๐‘ ),๐‘ข0+๐‘ ๐‘ค0๎€ธ๐œ†+๐‘ง(๐‘ )๎…ž(๐‘ )+๐น๐‘ข๎€ท๐œ†(๐‘ ),๐‘ข0+๐‘ ๐‘ค0๐‘ค+๐‘ง(๐‘ )๎€ธ๎€บ0+๐‘ง๎…ž๎€ป(๐‘ )=0.(2.6) Setting ๐‘ =0, ๐น๐œ†๎€ท๐œ†0,๐‘ข0๎€ธ๐œ†๎…ž(0)+๐น๐‘ข๎€ท๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ0+๐‘ง๎…ž๎€ป(0)=0.(2.7) Thus, ๐œ†๎…ž(0)=0 since (iii) and we have ๐น๐‘ข๎€ท๐œ†0,๐‘ข0๐‘ง๎€ธ๎€บ๎…ž๎€ป(0)=0,(2.8) that is, ๐‘ง๎…ž(0)โˆˆ๐‘(๐ด)โˆฉ๐‘, we have ๐‘ง๎…ž(0)=0.

Corollary 2.5. Assume the conditions in Theorem 2.4 are satisfied and ๎€ท๐นdim๐‘๐‘ข๎€ท๐œ†0,๐‘ข0๎€ท๐น๎€ธ๎€ธ=๐‘›,๐‘๐‘ข๎€ท๐œ†0,๐‘ข0๎€ฝ๐‘ค๎€ธ๎€ธ=span1,๐‘ค2,โ€ฆ,๐‘ค๐‘›๎€พ,(2.9) then the direction of the solution curves is determined by ๐œ†๐‘–๎…ž๎…ž๎ซ(0)=โˆ’๐‘™,๐น๐‘ข๐‘ข๎€ท๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ๐‘–,๐‘ค๐‘–๎€ป๎ฌ๎ซ๐‘™,๐น๐œ†๎€ท๐œ†0,๐‘ข0๎€ธ๎ฌ,(2.10) where ๐‘™โˆˆ๐‘…(๐น๐‘ข(๐œ†0,๐‘ข0))โŸ‚, ๐‘–=1,2,โ€ฆ,๐‘›. Furthermore, when ๐น๐‘ข๐‘ข๎€ท๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ๐‘–,๐‘ค๐‘–๎€ป๎€ท๐นโˆ‰๐‘…๐‘ข๎€ท๐œ†0,๐‘ข0๎€ธ๎€ธ(2.11) is satisfied, ๐œ†๐‘–๎…ž๎…ž(0)โ‰ 0, and the solution curve {(๐œ†๐‘–(๐‘ ),๐‘ข๐‘–(๐‘ ))โˆถ|๐‘ |<๐›ฟ} is a parabola-like curve which reaches an extreme point at (๐œ†0,๐‘ข0).

We illustrate our result by a simple example.

Example 2.6. Define ๐น๎ƒฉ๎ƒฉ๐‘ฅ๐‘ฆ๐œ†,๎ƒช๎ƒช=๐œ†โˆ’๐‘ฅ2โˆ’๐‘ฆ2=0,(2.12) where ๎€ท๐‘ˆ=๐‘ฅ๐‘ฆ๎€ธโˆˆ๐‘2, ๐œ†โˆˆ๐‘. From simple calculations, we obtain ๐น๐‘ˆ=๎€ท๎€ธโˆ’2๐‘ฅ,โˆ’2๐‘ฆ,๐น๐œ†=1,๐น๐‘ˆ๐‘ˆ=๎ƒฉ๎ƒชโˆ’200โˆ’2.(2.13) We analyze the bifurcation at ๎€ท(0,00๎€ธ). It is easy to see that ๐‘(๐น๐‘ˆ)=span{๐‘ค1,๐‘ค2}, where ๐‘ค1=๎€ท10๎€ธ, ๐‘ค2=๎€ท01๎€ธ, ๐‘…(๐น๐‘ˆ)={0}. So, obviously, dim๐‘(๐น๐‘ˆ)=2, codim๐‘…(๐น๐‘ˆ)=1, and ๐น๐œ†โˆ‰๐‘…(๐น๐‘ˆ). From the above calculation, ๐น๐‘ˆ๐‘ˆ๎€บ๐‘ค1,๐‘ค1๎€ป=โˆ’2,๐น๐‘ˆ๐‘ˆ๎€บ๐‘ค2,๐‘ค2๎€ป=โˆ’2.(2.14) Obviously, ๐น๐‘ˆ๐‘ˆ๎€ท(0,00๎€ธ)[๐‘ค๐‘–,๐‘ค๐‘–]โˆ‰๐‘…(๐น๐‘ˆ๎€ท(0,00๎€ธ)) and ๐œ†๐‘–๎…ž๎…ž(0)=โˆ’2, ๐‘–=1,2. Thus, we can apply Corollary 2.5 to (2.12). In fact, all solution curves for all ๐‘ค๐‘–โˆˆ๐‘(๐น๐‘ˆ) form a surface (see Figure 1).

3. Main Theorems

Applying Theorem 2.4, we discuss the bifurcation of solutions of the perturbed problem. We consider the solution set of ๐น(๐œ€,๐œ†,๐‘ข)=0,(3.1) where the parameter ๐œ€ indicates the perturbation, ๐นโˆˆ๐ถ1(๐‘€,๐‘Œ), ๐‘€โ‰ก๐‘ร—๐‘ร—๐‘‹, and ๐‘‹, ๐‘Œ are Banach spaces. Let ๎ƒฉ๐น๐ป(๐œ€,๐œ†,๐‘ข,๐‘ค)=๐น(๐œ€,๐œ†,๐‘ข)๐‘ข[๐‘ค]๎ƒช(๐œ€,๐œ†,๐‘ข).(3.2)

Suppose that (๐œ€0,๐œ†0,๐‘ข0,๐‘ค0) is a solution of ๐ป(๐œ€,๐œ†,๐‘ข,๐‘ค)=0. For (๐œ€0,๐œ†0,๐‘ข0)โˆˆ๐‘€ and ๐‘ค0โˆˆ๐‘‹1โ‰ก{๐‘ฅโˆˆ๐‘‹โˆถโ€–๐‘ฅโ€–=1},(3.3) by Hahn-Banach theorem, there exists a closed subspace ๐‘‹3 of ๐‘‹ with codimension 1 such that ๐‘‹=๐ฟ(๐‘ค0)โŠ•๐‘‹3, where ๐ฟ(๐‘ค0)=span{๐‘ค0} and ๐‘‘(๐‘ค0,๐‘‹3)=inf{||๐‘ค0โˆ’๐‘ฅ||โˆถ๐‘ฅโˆˆ๐‘‹3}>0. Let ๐‘‹2=๐‘ค0+๐‘‹3={๐‘ค0+๐‘ฅโˆถ๐‘ฅโˆˆ๐‘‹3}. Then, ๐‘‹2 is a closed hyperplane of ๐‘‹ with codimension 1. Since ๐‘‹3 is a closed subspace of ๐‘‹ and ๐‘‹3 is also a Banach space in the subspace topology, Hence we can regard ๐‘€1=๐‘€ร—๐‘‹2 as a Banach space with product topology. Moreover, the tangent space of ๐‘€1 is homeomorphic to ๐‘€ร—๐‘‹3 (see [12] for more on the setting).

In the following, we will still use the conditions (๐น๐‘–) on ๐น defined in [12].(F1)dim๐‘(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0))=codim๐‘…(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0))=1, and ๐‘(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0))=span{๐‘ค0};(F2)๐น๐œ†(๐œ€0,๐œ†0,๐‘ข0)โˆ‰๐‘…(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0));(F3)๐น๐œ†๐‘ข(๐œ€0,๐œ†0,๐‘ข0)[๐‘ค0]โˆ‰๐‘…(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0));(F4)๐น๐‘ข๐‘ข(๐œ€0,๐œ†0,๐‘ข0)[๐‘ค0,๐‘ค0]โˆ‰๐‘…(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0));(F5)๐น๐œ€(๐œ€0,๐œ†0,๐‘ข0)โˆ‰๐‘…(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0)).

We use the convention that (๐น๐‘–๎…ž) means that the condition defined in (๐น๐‘–) does not hold.

Theorem 3.1. Let ๐นโˆˆ๐ถ2(๐‘€,๐‘Œ), ๐‘‡0=(๐œ€0,๐œ†0,๐‘ข0,๐‘ค0)โˆˆ๐‘€1 such that ๐ป(๐‘‡0)=(0,0). Suppose that the operator ๐น satisfies (๐น1), (๐น2๎…ž), (๐น3), (๐น4๎…ž), and (๐น5) at ๐‘‡0. One also assumes that ๐น๐‘ข๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ฃ๎€ธ๎€บ1,๐‘ค0๎€ป+๐น๐œ†๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ0๎€ป๎€ท๐นโˆˆ๐‘…๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ๎€ธ,(3.4) where ๐‘ฃ1โˆˆ๐‘‹3โงต{0} is the unique solution of ๐น๐œ†๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ+๐น๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ[๐‘ฃ]=0.(3.5) Then, there exists ๐›ฟ>0 such that all the solutions of ๐ป(๐œ€,๐œ†,๐‘ข,๐‘ค)=(0,0) near ๐‘‡0 form two ๐ถ2 curves: ๎€ฝ๐‘‡1๎€ท๐œ€(๐‘ )=1(๐‘ ),๐œ†1(๐‘ ),๐‘ข1(๐‘ ),๐‘ค1๎€ธ๎€พ,๎€ฝ๐‘‡(๐‘ ),๐‘ โˆˆ๐ผ=(โˆ’๐›ฟ,๐›ฟ)2(๎€ท๐œ€๐‘ )=2(๐‘ ),๐œ†2(๐‘ ),๐‘ข2(๐‘ ),๐‘ค2(๎€ธ๎€พ,๐‘ ),๐‘ โˆˆ๐ผ=(โˆ’๐›ฟ,๐›ฟ)(3.6) where ๐œ€๐‘–(๐‘ )=๐œ€0+๐œ๐‘–(๐‘ ), ๐‘ โˆˆ๐ผ; ๐œ๐‘–(โ‹…)โˆˆ๐ถ2(๐ผ,๐‘); ๐œ๐‘–(0)=๐œ๎…ž๐‘–(0)=0, and ๐œ†1(๐‘ )=๐œ†0+๐‘ง11(๐‘ ),๐œ†2(๐‘ )=๐œ†0+๐‘ +๐‘ง21๐‘ข(๐‘ ),๐‘ โˆˆ๐ผ,1(๐‘ )=๐‘ข0+๐‘ ๐‘ค0+๐‘ง12(๐‘ ),๐‘ข2(๐‘ )=๐‘ข0+๐‘ ๐‘ฃ1+๐‘ง22๐‘ค(๐‘ ),๐‘ โˆˆ๐ผ,1(๐‘ )=๐‘ค0+๐‘ ๐œ“0+๐‘ง13(๐‘ ),๐‘ค2(๐‘ )=๐‘ค0+๐‘ ๐œ“1+๐‘ง23(๐‘ ),๐‘ โˆˆ๐ผ,(3.7) where ๐‘ง๐‘–๐‘—(โ‹…)โˆˆ๐ถ2(๐ผ,๐‘), ๐‘ง๐‘–๐‘—(0)=๐‘ง๎…ž๐‘–๐‘—(0)=0โ€‰โ€‰(๐‘–=1,2, ๐‘—=1,2,3), ๐œ“0โˆˆ๐‘‹3, ๐œ“1โˆˆ๐‘‹3 are the unique solution of ๐น๐‘ข๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ0,๐‘ค0๎€ป+๐น๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ[๐œ“]๐น=0,(3.8)๐‘ข๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ฃ๎€ธ๎€บ1,๐‘ค0๎€ป+๐น๐œ†๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ0๎€ป+๐น๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ[๐œ“]=0,(3.9) respectively.

Remark 3.2. Theorem 2.4 complements Theoremโ€‰โ€‰3.2 in [4], where the opposite condition (3.4) is imposed.

Proof. We apply Theorem 2.4 to the operator ๐ป, so we need to verify all the conditions. We define a differential operator ๐พโˆถ๐‘ร—๐‘‹ร—๐‘‹3โ†’๐‘Œร—๐‘Œ,โ€‰ ๐พ[]๐œ,๐‘ฃ,๐œ“=๐ป(๐œ†,๐‘ข,๐‘ค)๎€ท๐œ€0,๐œ†0,๐‘ข0,๐‘ค0๎€ธ[]=๎ƒฉ๐œ,๐‘ฃ,๐œ“๐œ๐น๐œ†๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ+๐น๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ[๐‘ฃ]๐œ๐น๐œ†๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ0๎€ป+๐น๐‘ข๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ๎€บ๐‘ฃ,๐‘ค0๎€ป+๐น๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ[๐œ“]๎ƒช.(3.10)
(1) dim๐‘(๐พ)=2. Suppose that (๐œ,๐‘ฃ,๐œ“)โˆˆ๐‘(๐พ) and (๐œ,๐‘ฃ,๐œ“)โ‰ 0. If ๐œ=0, from ๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0)[๐‘ฃ]=0 and (๐น1), then we have ๐‘ฃ=๐‘˜๐‘ค0 and ๐‘˜๐น๐‘ข๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ0,๐‘ค0๎€ป+๐น๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ[๐œ“]=0.(3.11) From (๐น4๎…ž), we can define ๐œ“0โˆˆ๐‘‹3 is the unique solution of (3.8). Thus, (0,๐‘ค0,๐œ“0)โˆˆ๐‘(๐พ) and (๐œ,๐‘ฃ,๐œ“)=๐‘˜(0,๐‘ค0,๐œ“0).
Next, we consider ๐œโ‰ 0. Without loss of generality, we assume that ๐œ=1. Notice that ๐น๐œ†(๐œ€0,๐œ†0,๐‘ข0)โˆˆ๐‘…(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0)) from (๐น2๎…ž), we can define that ๐‘ฃ1โˆˆ๐‘‹3โงต{0} is unique solution of (3.5). Substituting ๐œ=1, ๐‘ฃ=๐‘ฃ1 into (3.10), we have ๐น๐œ†๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ0๎€ป+๐น๐‘ข๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ฃ๎€ธ๎€บ1,๐‘ค0๎€ป+๐น๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ[๐œ“]=0.(3.12) From (3.4), there exists a unique ๐œ“1โˆˆ๐‘‹3 satisfies (3.9). Then, ๐‘(๐พ)=span๎€ฝ๎€ท0,๐‘ค0,๐œ“0๎€ธ,๎€ท1,๐‘ฃ1,๐œ“1๎€ธ๎€พ,(3.13) that is, dim๐‘(๐พ)=2.
(2) codim๐‘…(๐พ)=1. We only claim that ๐‘…๎€ท๐น(๐พ)=๐‘…๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ๎€ธร—๐‘Œ.(3.14) Let (โ„Ž,๐‘”)โˆˆ๐‘…(๐พ) and (๐œ,๐‘ฃ,๐œ“)โˆˆ๐‘ร—๐‘‹ร—๐‘‹3 satisfy ๐œ๐น๐œ†๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ+๐น๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ[๐‘ฃ]=โ„Ž,(3.15)๐œ๐น๐œ†๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ0๎€ป+๐น๐‘ข๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ๎€บ๐‘ฃ,๐‘ค0๎€ป+๐น๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ[๐œ“]=๐‘”.(3.16) Using (3.15) and (๐น2๎…ž), then (โ„Ž,๐‘”)โˆˆ๐‘…(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0))ร—๐‘Œ and ๐‘…(๐พ)โŠ‚๐‘…(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0))ร—๐‘Œ.
Conversely, for any (โ„Ž,๐‘”)โˆˆ๐‘…(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0))ร—๐‘Œ, from (๐น3), set ๐œ1=โŸจ๐‘™,๐‘”โŸฉ๎ซ๐‘™,๐น๐œ†๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ0๎€ป๎ฌ,(3.17) where ๐‘™โˆˆ๐‘…(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0))โŸ‚โŠ‚๐‘Œโˆ—. From (๐น2๎…ž), we have โ„Žโˆ’๐œ1๐น๐œ†๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ๎€ท๐นโˆˆ๐‘…๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ๎€ธ.(3.18) Set ๐‘ฃ2=[๐น๐‘ข|๐‘‹3]โˆ’1[โ„Žโˆ’๐œ1๐น๐œ†(๐œ€0,๐œ†0,๐‘ข0)]โˆˆ๐‘‹3, we obtain that ๐œ1๐น๐œ†๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ+๐น๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ฃ๎€ธ๎€บ2๎€ป=โ„Ž.(3.19) Substituting ๐œ=๐œ1, ๐‘ฃ=๐‘ฃ2 into (3.16), we have ๐œ1๐น๐œ†๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ0๎€ป+๐น๐‘ข๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ฃ๎€ธ๎€บ2,๐‘ค0๎€ป+๐น๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ[๐œ“]=๐‘”.(3.20) Using (๐น1), (๐น3), then there exists ๐‘ฃ3โˆˆ๐‘‹3, ๐œ2โˆˆ๐‘ satisfies ๐น๐‘ข๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ฃ๎€ธ๎€บ2,๐‘ค0๎€ป=๐œ2๐น๐œ†๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ0๎€ป+๐น๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ฃ๎€ธ๎€บ3๎€ป.(3.21) Substituting (3.21) into (3.20), we have ๎€ท๐œ1+๐œ2๎€ธ๐น๐œ†๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ0๎€ป+๐น๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ๎€บ๐œ“+๐‘ฃ3๎€ป=๐‘”.(3.22) Applying ๐‘™ to (3.22), we have ๐œ2=0 because of the definition of ๐œ1 and ๐‘”โˆ’๐œ1๐น๐œ†๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ0๎€ป๎€ท๐นโˆˆ๐‘…๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ๎€ธ.(3.23) Thus we can define ๐œ“2=๎€บ๐น๐‘ขโˆฃ๐‘‹3๎€ปโˆ’1๎€ฝ๐‘”โˆ’๐œ1๐น๐œ†๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๐‘ค๎€ธ๎€บ0๎€ป๎€พโˆ’๐‘ฃ3โˆˆ๐‘‹3.(3.24) Therefore, ๐พ(๐œ1,๐‘ฃ2,๐œ“2)=(โ„Ž,๐‘”), that is, ๐‘…(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0))ร—๐‘ŒโŠ‚๐‘…(๐พ). Hence, ๐‘…(๐พ)=๐‘…(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0))ร—๐‘Œ. That is, codim๐‘…(๐พ)=1.
(3) ๐ป๐œ€(๐œ€0,๐œ†0,๐‘ข0,๐‘ค0)โˆ‰๐‘…(๐พ). Since ๐‘…(๐พ)=๐‘…(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0))ร—๐‘Œ, we need only to show that ๐น๐œ€(๐œ€0,๐œ†0,๐‘ข0)โˆ‰๐‘…(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0)) but that is exactly assumed in (๐น5). So, the statement of the theorem follows from Theorem 2.4.

4. Calculations of Bifurcation Directions

In Theorem 3.1, we have ๐œ€1(0)=๐œ€2(0)=๐œ€0, ๐œ€๎…ž1(0)=๐œ€๎…ž2(0)=0, ๐œ†1(0)=๐œ†2(0)=๐œ†0, ๐‘ข1(0)=๐‘ข2(0)=๐‘ข0, ๐‘ค1(0)=๐‘ค2(0)=๐‘ค0, ๐œ†๎…ž1(0)=0, ๐‘ข๎…ž1(0)=๐‘ค0, ๐‘ค๎…ž1(0)=๐œ“0, ๐œ†๎…ž2(0)=1, ๐‘ข๎…ž2(0)=๐‘ฃ1, ๐‘ค๎…ž2(0)=๐œ“1.

To completely determine the turning direction of curve of degenerate solutions, we need some calculations.

Let {๐‘‡๐‘–(๐‘ )=(๐œ€๐‘–(๐‘ ),๐œ†๐‘–(๐‘ ),๐‘ข๐‘–(๐‘ ),๐‘ค๐‘–(๐‘ ))โˆถ๐‘ โˆˆ(โˆ’๐›ฟ,๐›ฟ)} be a curve of degenerate solutions which we obtain in Theorem 3.1. Differentiating ๐ป(๐œ€๐‘–(๐‘ ),๐œ†๐‘–(๐‘ ),๐‘ข๐‘–(๐‘ ),๐‘ค๐‘–(๐‘ ))=0 with respect to ๐‘ , we obtain ๐น๐œ€๐œ€๎…ž๐‘–(๐‘ )+๐น๐œ†๐œ†๎…ž๐‘–(๐‘ )+๐น๐‘ข๎€บ๐‘ข๎…ž๐‘–๎€ป๐น(๐‘ )=0,๐œ€๐‘ข๎€บ๐‘ค๐‘–(๎€ป๐œ€๐‘ )๎…ž๐‘–(๐‘ )+๐น๐œ†๐‘ข๎€บ๐‘ค๐‘–(๎€ป๐œ†๐‘ )๎…ž๐‘–(๐‘ )+๐น๐‘ข๐‘ข๎€บ๐‘ค๐‘–(๐‘ ),๐‘ข๎…ž๐‘–(๎€ป๐‘ )+๐น๐‘ข๎€บ๐‘ค๎…ž๐‘–(๎€ป๐‘ )=0.(4.1) Setting ๐‘ =0 in (4.1), we get exactly ๐น๐‘ข[๐‘ค0]=0, (3.5), (3.8), and (3.9). We differentiate (4.1) again, and we have (omit the subscript ๐‘– in the equation) ๐น๐œ€๐œ€๎€บ๐œ€๎…ž๎€ป(๐‘ )2+๐น๐œ€๐œ€๎…ž๎…ž(๐‘ )+๐น๐œ†๐œ†๎€บ๐œ†๎…ž๎€ป(๐‘ )2+๐น๐œ†๐œ†๎…ž๎…ž(๐‘ )+๐น๐‘ข๐‘ข๎€บ๐‘ข๎…ž(๐‘ ),๐‘ข๎…ž๎€ป(๐‘ )+๐น๐‘ข๎€บ๐‘ข๎…ž๎…ž๎€ป(๐‘ )+2๐น๐œ€๐œ†๐œ€๎…ž(๐‘ )๐œ†๎…ž(๐‘ )+2๐น๐œ€๐‘ข๎€บ๐‘ข๎…ž๎€ป๐œ€(๐‘ )๎…ž(๐‘ )+2๐น๐œ†๐‘ข๎€บ๐‘ข๎…ž๎€ป๐œ†(๐‘ )๎…ž๐น(๐‘ )=0,(4.2)๐œ€๐œ€๐‘ข[]๎€บ๐œ€๐‘ค(๐‘ )๎…ž๎€ป(๐‘ )2+๐น๐œ€๐œ†๐‘ข[]๐œ€๐‘ค(๐‘ )๎…ž(๐‘ )๐œ†๎…ž(๐‘ )+๐น๐œ€๐‘ข๐‘ข๎€บ๐‘ข๎…ž๎€ป๐œ€(๐‘ ),๐‘ค(๐‘ )๎…ž(๐‘ )+๐น๐œ€๐‘ข๎€บ๐‘ค๎…ž๎€ป๐œ€(๐‘ )๎…ž(๐‘ )+๐น๐œ€๐‘ข[]๐œ€๐‘ค(๐‘ )๎…ž๎…ž(๐‘ )+๐น๐œ€๐œ†๐‘ข[]๐œ€๐‘ค(๐‘ )๎…ž(๐‘ )๐œ†๎…ž(๐‘ )+๐น๐œ†๐œ†๐‘ข[]๎€บ๐œ†๐‘ค(๐‘ )๎…ž๎€ป(๐‘ )2+๐น๐œ†๐‘ข๐‘ข๎€บ๐‘ข๎…ž๎€ป๐œ†(๐‘ ),๐‘ค(๐‘ )๎…ž(๐‘ )+๐น๐œ†๐‘ข๎€บ๐‘ค๎…ž๎€ป๐œ†(๐‘ )๎…ž(๐‘ )+๐น๐œ†๐‘ข[]๐œ†๐‘ค(๐‘ )๎…ž๎…ž(๐‘ )+๐น๐œ€๐‘ข๐‘ข๎€บ๐‘ข๎…ž๎€ป(๐‘ ),๐‘ค(๐‘ )๐œ€โ€ฒ(๐‘ )+๐น๐œ†๐‘ข๐‘ข๎€บ๐‘ข๎…ž๎€ป๐œ†(๐‘ ),๐‘ค(๐‘ )๎…ž(๐‘ )+๐น๐‘ข๐‘ข๐‘ข๎€บ๐‘ข๎…ž(๐‘ ),๐‘ข๎…ž๎€ป(๐‘ ),๐‘ค(๐‘ )+๐น๐‘ข๐‘ข๎€บ๐‘ค๎…ž(๐‘ ),๐‘ข๎…ž๎€ป(๐‘ )+๐น๐‘ข๐‘ข๎€บ๐‘ค(๐‘ ),๐‘ข๎…ž๎…ž๎€ป(๐‘ )+๐น๐œ€๐‘ข๎€บ๐‘ค๎…ž๎€ป๐œ€(๐‘ )๎…ž(๐‘ )+๐น๐œ†๐‘ข๎€บ๐‘ค๎…ž๎€ป๐œ†(๐‘ )๎…ž(๐‘ )+๐น๐‘ข๐‘ข๎€บ๐‘ค๎…ž(๐‘ ),๐‘ข๎…ž๎€ป(๐‘ )+๐น๐‘ข๎€บ๐‘ค๎…ž๎…ž๎€ป๐น(๐‘ )=0,(4.3)๐œ€๐œ€๐‘ข[]๎€บ๐œ€๐‘ค(๐‘ )๎…ž๎€ป(๐‘ )2+๐น๐œ€๐‘ข[]๐œ€๐‘ค(๐‘ )๎…ž๎…ž(๐‘ )+๐น๐œ†๐‘ข[]๐œ†๐‘ค(๐‘ )๎…ž๎…ž(๐‘ )+๐น๐œ†๐œ†๐‘ข[]๎€บ๐œ†๐‘ค(๐‘ )๎…ž๎€ป(๐‘ )2+๐น๐‘ข๐‘ข๐‘ข๎€บ๐‘ข๎…ž(๐‘ ),๐‘ข๎…ž๎€ป(๐‘ ),๐‘ค(๐‘ )+๐น๐‘ข๐‘ข๎€บ๐‘ค(๐‘ ),๐‘ข๎…ž๎…ž๎€ป(๐‘ )+๐น๐‘ข๎€บ๐‘ค๎…ž๎…ž๎€ป(๐‘ )+2๐น๐œ€๐œ†๐‘ข[]๐œ€๐‘ค(๐‘ )๎…ž(๐‘ )๐œ†๎…ž(๐‘ )+2๐น๐œ€๐‘ข๐‘ข๎€บ๐‘ข๎…ž๎€ป๐œ€(๐‘ ),๐‘ค(๐‘ )๎…ž(๐‘ )+2๐น๐œ†๐‘ข๐‘ข๎€บ๐‘ข๎…ž๎€ป๐œ†(๐‘ ),๐‘ค(๐‘ )๎…ž(๐‘ )+2๐น๐œ€๐‘ข๎€บ๐‘ค๎…ž๎€ป๐œ€(๐‘ )๎…ž(๐‘ )+2๐น๐œ†๐‘ข๎€บ๐‘ค๎…ž๎€ป๐œ†(๐‘ )๎…ž(๐‘ )+2๐น๐‘ข๐‘ข๎€บ๐‘ค๎…ž(๐‘ ),๐‘ข๎…ž๎€ป(๐‘ )=0.(4.4)

Setting ๐‘ =0 in (4.2), we obtain ๐น๐œ€๐œ€1๎…ž๎…ž(0)+๐น๐œ†๐œ†1๎…ž๎…ž(0)+๐น๐‘ข๐‘ข๎€บ๐‘ค0,๐‘ค0๎€ป+๐น๐‘ข๎€บ๐‘ข1๎…ž๎…ž๎€ป(0)=0,(4.5)๐น๐œ€๐œ€2๎…ž๎…ž(0)+๐น๐œ†๐œ†+๐น๐œ†๐œ†2๎…ž๎…ž(0)+๐น๐‘ข๐‘ข๎€บ๐‘ฃ1,๐‘ฃ1๎€ป+๐น๐‘ข๎€บ๐‘ข2๎…ž๎…ž๎€ป(0)+2๐น๐œ†๐‘ข๎€บ๐‘ฃ1๎€ป=0.(4.6) And applying ๐‘™ to it, we have ๐œ€1๎…ž๎…ž(0)=0,(4.7)๐œ€2๎…ž๎…ž๎ซ(0)=โˆ’๐‘™,๐น๐œ†๐œ†+๐น๐‘ข๐‘ข๎€บ๐‘ฃ1,๐‘ฃ1๎€ป+2๐น๐œ†๐‘ข๎€บ๐‘ฃ1๎€ป๎ฌโŸจ๐‘™,๐น๐œ€โŸฉ,(4.8) Using (๐น2๎…ž), (๐น4๎…ž), (๐น5). From (4.7), (4.5) implies ๐‘ข1๎…ž๎…ž(0)=๐œ†1๎…ž๎…ž(0)๐‘ฃ1+๐œ“0+๐‘˜๐‘ค0. Setting ๐‘ =0 in (4.4), ๐น๐œ†๐‘ข๎€บ๐‘ค0๎€ป๐œ†1๎…ž๎…ž(0)+๐น๐‘ข๐‘ข๐‘ข๎€บ๐‘ค0,๐‘ค0,๐‘ค0๎€ป+๐น๐‘ข๐‘ข๎€บ๐‘ค0,๐‘ข1๎…ž๎…ž๎€ป(0)+๐น๐‘ข๎€บ๐‘ค1๎…ž๎…ž๎€ป(0)+2๐น๐‘ข๐‘ข๎€บ๐œ“0,๐‘ค0๎€ป๐น=0,(4.9)๐œ€๐‘ข๎€บ๐‘ค0๎€ป๐œ€2๎…ž๎…ž(0)+๐น๐œ†๐‘ข๎€บ๐‘ค0๎€ป๐œ†2๎…ž๎…ž(0)+๐น๐œ†๐œ†๐‘ข๎€บ๐‘ค0๎€ป+๐น๐‘ข๐‘ข๐‘ข๎€บ๐‘ฃ1,๐‘ฃ1,๐‘ค0๎€ป+๐น๐‘ข๐‘ข๎€บ๐‘ค0,๐‘ข2๎…ž๎…ž(๎€ป0)+๐น๐‘ข๎€บ๐‘ค2๎…ž๎…ž๎€ป(0)+2๐น๐œ†๐‘ข๐‘ข๎€บ๐‘ฃ1,๐‘ค0๎€ป+2๐น๐œ†๐‘ข๎€บ๐œ“1๎€ป+2๐น๐‘ข๐‘ข๎€บ๐œ“1,๐‘ฃ1๎€ป=0.(4.10) Substituting the expression of ๐‘ข1๎…ž๎…ž(0) into (4.9), we have ๐œ†1๎…ž๎…ž๎€ท๐น(0)๐œ†๐‘ข๎€บ๐‘ค0๎€ป+๐น๐‘ข๐‘ข๎€บ๐‘ฃ1,๐‘ค0๎€ป๎€ธ+3๐น๐‘ข๐‘ข๎€บ๐œ“0,๐‘ค0๎€ป+๐น๐‘ข๐‘ข๐‘ข๎€บ๐‘ค0,๐‘ค0,๐‘ค0๎€ป+๐‘˜๐น๐‘ข๐‘ข๎€บ๐‘ค0,๐‘ค0๎€ป+๐น๐‘ข๎€บ๐‘ค1๎…ž๎…ž(๎€ป0)=0.(4.11) And applying ๐‘™ to it, we obtain โŸจ๐‘™,๐น๐‘ข๐‘ข๐‘ข[๐‘ค0,๐‘ค0,๐‘ค0]+3๐น๐‘ข๐‘ข[๐œ“0,๐‘ค0]โŸฉ=0, that is, ๐น๐‘ข๐‘ข๐‘ข๎€บ๐‘ค0,๐‘ค0,๐‘ค0๎€ป+3๐น๐‘ข๐‘ข๎€บ๐œ“0,๐‘ค0๎€ป๎€ท๐นโˆˆ๐‘…๐‘ข๎€ท๐œ€0,๐œ†0,๐‘ข0๎€ธ๎€ธ.(4.12) Assume ๐น๐œ€๐‘ข[๐‘ค0]โˆˆ๐‘…(๐น๐‘ข(๐œ€0,๐œ†0,๐‘ข0)) and applying ๐‘™ to (4.10), ๐œ†2๎…ž๎…ž๎ซ(0)=โˆ’๐‘™,๐น๐œ†๐œ†๐‘ข๎€บ๐‘ค0๎€ป+๐น๐‘ข๐‘ข๐‘ข๎€บ๐‘ฃ1,๐‘ฃ1,๐‘ค0๎€ป+๐น๐‘ข๐‘ข๎€บ๐‘ค0,๐‘ข2๎…ž๎…ž๎€ป(0)+2๐น๐œ†๐‘ข๐‘ข๎€บ๐‘ฃ1,๐‘ค0๎€ป+2๐น๐œ†๐‘ข๎€บ๐œ“1๎€ป+2๐น๐‘ข๐‘ข๎€บ๐œ“1,๐‘ฃ1๎€ป๎ฌ๎ซ๐‘™,๐น๐œ†๐‘ข๎€บ๐‘ค0.๎€ป๎ฌ(4.13) We differentiate (4.2) again: ๐น๐œ€๐œ€๐œ€๎€บ๐œ€๎…ž๎€ป(๐‘ )3+๐น๐œ€๐œ€๎…ž๎…ž๎…ž(๐‘ )+๐น๐œ†๐œ†๐œ†๎€บ๐œ†๎…ž๎€ป(๐‘ )3+๐น๐œ†๐œ†๎…ž๎…ž๎…ž(๐‘ )+๐น๐‘ข๐‘ข๐‘ข๎€บ๐‘ข๎…ž(๐‘ ),๐‘ข๎…ž(๐‘ ),๐‘ข๎…ž๎€ป(๐‘ )+๐น๐‘ข๎€บ๐‘ข๎…ž๎…ž๎…ž๎€ป(๐‘ )+3๐น๐œ€๐œ€๐œ€๎…ž(๐‘ )๐œ€๎…ž๎…ž(๐‘ )+3๐น๐œ†๐œ†๐œ†๎…ž(๐‘ )๐œ†๎…ž๎…ž(๐‘ )+3๐น๐‘ข๐‘ข๎€บ๐‘ข๎…ž๎…ž(๐‘ ),๐‘ข๎…ž๎€ป(๐‘ )+3๐น๐œ€๐œ†๐œ€๎…ž๎…ž(๐‘ )๐œ†๎…ž(๐‘ )+3๐น๐œ€๐œ†๐œ€๎…ž(๐‘ )๐œ†๎…ž๎…ž(๐‘ )+3๐น๐œ€๐‘ข๎€บ๐‘ข๎…ž๎€ป๐œ€(๐‘ )๎…ž๎…ž(๐‘ )+3๐น๐œ€๐‘ข๎€บ๐‘ข๎…ž๎…ž๎€ป๐œ€(๐‘ )๎…ž(๐‘ )+3๐น๐œ†๐‘ข๎€บ๐‘ข๎…ž๎…ž๎€ป๐œ†(๐‘ )๎…ž(๐‘ )+3๐น๐œ†๐‘ข๎€บ๐‘ข๎…ž๎€ป๐œ†(๐‘ )๎…ž๎…ž(๐‘ )+3๐น๐œ€๐œ†๐œ†๐œ€๎…ž๎€ท๐œ†(๐‘ )๎…ž๎€ธ(๐‘ )2+3๐น๐œ€๐œ€๐œ†๎€ท๐œ€๎…ž๎€ธ(๐‘ )2๐œ†๎…ž(๐‘ )+3๐น๐œ€๐œ€๐‘ข๎€บ๐‘ข๎…ž๐œ€(๐‘ )๎€ป๎€ท๎…ž๎€ธ(๐‘ )2+3๐น๐œ€๐‘ข๐‘ข๎€บ๐‘ข๎…ž(๐‘ ),๐‘ข๎…ž๎€ป๐œ€(๐‘ )๎…ž(๐‘ )+3๐น๐œ†๐œ†๐‘ข๎€บ๐‘ข๎…ž๐œ†(๐‘ )๎€ป๎€ท๎…ž๎€ธ(๐‘ )2+3๐น๐œ†๐‘ข๐‘ข๎€บ๐‘ข๎…ž(๐‘ ),๐‘ข๎…ž๎€ป๐œ†(๐‘ )๎…ž(๐‘ )+6๐น๐œ€๐œ†๐‘ข๎€บ๐‘ข๎…ž๎€ป๐œ€(๐‘ )๎…ž(๐‘ )๐œ†๎…ž(๐‘ )=0.(4.14) Setting ๐‘ =0 in (4.14), we obtain ๐น๐œ€๐œ€1๎…ž๎…ž๎…ž(0)+๐น๐œ†๐œ†1๎…ž๎…ž๎…ž(0)+๐น๐‘ข๐‘ข๐‘ข๎€บ๐‘ค0,๐‘ค0,๐‘ค0๎€ป๎€บ๐‘ข+๐น๐‘ข1๎…ž๎…ž๎…ž๎€ป(0)+3๐น๐‘ข๐‘ข๎€บ๐‘ข1๎…ž๎…ž(0),๐‘ค0๎€ป+3๐น๐œ†๐‘ข๎€บ๐‘ค0๎€ป๐œ†1๎…ž๎…ž(๐น0)=0,(4.15)๐œ†๐œ†2๎…ž๎…ž๎…ž(0)+๐น๐œ€๐œ€2๎…ž๎…ž๎…ž(0)+3๐œ†2๎…ž๎…ž๎€ท๐น(0)๐œ†๐œ†+๐น๐œ†๐‘ข๎€บ๐‘ฃ1๎€ป๎€ธ+3๐œ€2๎…ž๎…ž๎€ท๐น(0)๐œ€๐œ†+๐น๐œ€๐‘ข๎€บ๐‘ฃ1๎€ป๎€ธ+๐น๐œ†๐œ†๐œ†+๐น๐‘ข๐‘ข๐‘ข๎€บ๐‘ฃ1,๐‘ฃ1,๐‘ฃ1๎€ป+๐น๐‘ข๎€บ๐‘ข2๎…ž๎…ž๎…ž(๎€ป0)+3๐น๐‘ข๐‘ข๎€บ๐‘ข2๎…ž๎…ž(0),๐‘ฃ1๎€ป+3๐น๐œ†๐‘ข๎€บ๐‘ข2๎…ž๎…ž(๎€ป0)+3๐น๐œ†๐œ†๐‘ข๎€บ๐‘ฃ1๎€ป+3๐น๐œ†๐‘ข๐‘ข๎€บ๐‘ฃ1,๐‘ฃ1๎€ป=0.(4.16) Substituting the expression of ๐‘ข1๎…ž๎…ž(0) into (4.15) and applying ๐‘™ to it, we have ๐œ€1๎…ž๎…ž๎…ž(0)=0 using (3.4), (4.12), and (๐น5).

Acknowledgments

The authors the referee for very careful reading and helpful suggestions on the paper. The paper was partially supported by NSFC (Grant no. 11071051), Youth Science Foundation of Heilongjiang Province (Grant no. QC2009C73), Harbin Normal University academic backbone of youth project, and NCET of Heilongjiang Province of China (1251โ€“NCETโ€“002).