Abstract

Asymptotic properties of solutions of the singular differential equation ( ๐‘ ( ๐‘ก ) ๐‘ข ๎…ž ( ๐‘ก ) ) ๎…ž = ๐‘ ( ๐‘ก ) ๐‘“ ( ๐‘ข ( ๐‘ก ) ) are described. Here, f is Lipschitz continuous on โ„ and has at least two zeros 0 and ๐ฟ > 0 . The function p is continuous on [0, โˆž ) and has a positive continuous derivative on (0, โˆž ) and ๐‘ ( 0 ) = 0 . Further conditions for f and p under which the equation has oscillatory solutions converging to 0 are given.

1. Introduction

For ๐‘˜ โˆˆ โ„• , ๐‘˜ > 1 , and ๐ฟ โˆˆ ( 0 , โˆž ) , consider the equation ๐‘ข ๎…ž ๎…ž + ๐‘˜ โˆ’ 1 ๐‘ก ๐‘ข ๎…ž = ๐‘“ ( ๐‘ข ) , ๐‘ก โˆˆ ( 0 , โˆž ) , ( 1 . 1 ) where ๐‘“ โˆˆ L i p l o c ( โ„ ) , ๐‘“ ( 0 ) = ๐‘“ ( ๐ฟ ) = 0 , ๐‘“ ( ๐‘ฅ ) < 0 , ๐‘ฅ โˆˆ ( 0 , ๐ฟ ) , ( 1 . 2 ) โˆƒ ๎‚ƒ ๐ต โˆˆ ( โˆ’ โˆž , 0 ) โˆถ ๐‘“ ( ๐‘ฅ ) > 0 , ๐‘ฅ โˆˆ ๎‚ ๐ต , 0 . ( 1 . 3 ) Let us put ๎€œ ๐น ( ๐‘ฅ ) = โˆ’ ๐‘ฅ 0 ๐‘“ ( ๐‘ง ) d ๐‘ง f o r ๐‘ฅ โˆˆ โ„ . ( 1 . 4 ) Moreover, we assume that ๐‘“ fulfils ๐น ๎‚€ ๐ต ๎‚ = ๐น ( ๐ฟ ) , ( 1 . 5 ) and denote ๐ฟ 0 ๎‚† = i n f ๐‘ฅ < ๎‚‡ ๐ต โˆถ ๐‘“ ( ๐‘ฅ ) > 0 โ‰ฅ โˆ’ โˆž . ( 1 . 6 ) Due to (1.2)โ€“(1.4), we see that ๐น โˆˆ ๐ถ 1 ( โ„ ) is decreasing and positive on ( ๐ฟ 0 , 0 ) and increasing and positive on ( 0 , ๐ฟ ] .

Equation (1.1) arises in many areas. For example, in the study of phase transitions of Van der Waals fluids [1โ€“3], in population genetics, where it serves as a model for the spatial distribution of the genetic composition of a population [4, 5], in the homogenous nucleation theory [6], and in relativistic cosmology for description of particles which can be treated as domains in the universe [7], in the nonlinear field theory, in particular, when describing bubbles generated by scalar fields of the Higgs type in the Minkowski spaces [8]. Numerical simulations of solutions of (1.1), where ๐‘“ is a polynomial with three zeros, have been presented in [9โ€“11]. Close problems about the existence of positive solutions can be found in [12โ€“14].

In this paper, we investigate a generalization of (1.1) of the form ๎€ท ๐‘ ( ๐‘ก ) ๐‘ข ๎…ž ๎€ธ ๎…ž = ๐‘ ( ๐‘ก ) ๐‘“ ( ๐‘ข ) , ๐‘ก โˆˆ ( 0 , โˆž ) , ( 1 . 7 ) where ๐‘“ satisfies (1.2)โ€“(1.5) and ๐‘ fulfils [ ๐‘ โˆˆ ๐ถ 0 , โˆž ) โˆฉ ๐ถ 1 ( 0 , โˆž ) , ๐‘ ( 0 ) = 0 , ( 1 . 8 ) ๐‘ ๎…ž ( ๐‘ก ) > 0 , ๐‘ก โˆˆ ( 0 , โˆž ) , l i m ๐‘ก โ†’ โˆž ๐‘ ๎…ž ( ๐‘ก ) ๐‘ ( ๐‘ก ) = 0 . ( 1 . 9 ) Equation (1.7) is singular in the sense that ๐‘ ( 0 ) = 0 . If ๐‘ ( ๐‘ก ) = ๐‘ก ๐‘˜ โˆ’ 1 , with ๐‘˜ > 1 , then ๐‘ satisfies (1.8), (1.9), and (1.7) is equal to (1.1).

Definition 1.1. A function ๐‘ข โˆˆ ๐ถ 1 [ 0 , โˆž ) โˆฉ ๐ถ 2 ( 0 , โˆž ) which satisfies (1.7) for all ๐‘ก โˆˆ ( 0 , โˆž ) is called a solution of (1.7).

Consider a solution ๐‘ข of (1.7). Since ๐‘ข โˆˆ ๐ถ 1 [ 0 , โˆž ) , we have ๐‘ข ( 0 ) , ๐‘ข โ€ฒ ( 0 ) โˆˆ โ„ and the assumption, ๐‘ ( 0 ) = 0 yields ๐‘ ( 0 ) ๐‘ข โ€ฒ ( 0 ) = 0 . We can find ๐‘€ > 0 and ๐›ฟ > 0 such that | ๐‘“ ( ๐‘ข ( ๐‘ก ) ) | โ‰ค ๐‘€ for ๐‘ก โˆˆ ( 0 , ๐›ฟ ) . Integrating (1.7), we get | | ๐‘ข ๎…ž | | = | | | | 1 ( ๐‘ก ) ๎€œ ๐‘ ( ๐‘ก ) ๐‘ก 0 ๐‘ | | | | โ‰ค ๐‘€ ( ๐‘  ) ๐‘“ ( ๐‘ข ( ๐‘  ) ) d ๐‘  ๎€œ ๐‘ ( ๐‘ก ) ๐‘ก 0 ๐‘ ( ๐‘  ) d ๐‘  โ‰ค ๐‘€ ๐‘ก , ๐‘ก โˆˆ ( 0 , ๐›ฟ ) . ( 1 . 1 0 ) Consequently, the condition ๐‘ข ๎…ž ( 0 ) = 0 ( 1 . 1 1 ) is necessary for each solution of (1.7). Denote ๐‘ข s u p [ = s u p { ๐‘ข ( ๐‘ก ) โˆถ ๐‘ก โˆˆ 0 , โˆž ) } . ( 1 . 1 2 )

Definition 1.2. Let ๐‘ข be a solution of (1.7). If ๐‘ข s u p < ๐ฟ , then ๐‘ข is called a damped solution.

If a solution ๐‘ข of (1.7) satisfies ๐‘ข s u p = ๐ฟ or ๐‘ข s u p > ๐ฟ , then we call ๐‘ข a bounding homoclinic solution or an escape solution. These three types of solutions have been investigated in [15โ€“18]. Here, we continue the investigation of the existence and asymptotic properties of damped solutions. Due to (1.11) and Definition 1.2, it is reasonable to study solutions of (1.7) satisfying the initial conditions ๐‘ข ( 0 ) = ๐‘ข 0 โˆˆ ๎€ท ๐ฟ 0 ๎€ป , ๐ฟ , ๐‘ข ๎…ž ( 0 ) = 0 . ( 1 . 1 3 ) Note that if ๐‘ข 0 > ๐ฟ , then a solution ๐‘ข of the problem (1.7), (1.13) satisfies ๐‘ข s u p > ๐ฟ , and consequently ๐‘ข is not a damped solution. Assume that ๐ฟ 0 > โˆ’ โˆž , then ๐‘“ ( ๐ฟ 0 ) = 0 , and if we put ๐‘ข 0 = ๐ฟ 0 , a solution ๐‘ข of (1.7), (1.13) is a constant function equal to ๐ฟ 0 on [ 0 , โˆž ) . Since we impose no sign assumption on ๐‘“ ( ๐‘ฅ ) for ๐‘ฅ < ๐ฟ 0 , we do not consider the case ๐‘ข 0 < ๐ฟ 0 . In fact, the choice of ๐‘ข 0 between two zeros ๐ฟ 0 and 0 of ๐‘“ has been motivated by some hydrodynamical model in [11].

A lot of papers are devoted to oscillatory solutions of nonlinear differential equations. Wong [19] published an account on a nonlinear oscillation problem originated from earlier works of Atkinson and Nehari. Wong's paper is concerned with the study of oscillatory behaviour of second-order Emden-Fowler equations ๐‘ฆ ๎…ž ๎…ž | | | | ( ๐‘ฅ ) + ๐‘Ž ( ๐‘ฅ ) ๐‘ฆ ( ๐‘ฅ ) ๐›พ โˆ’ 1 ๐‘ฆ ( ๐‘ฅ ) = 0 , ๐›พ > 0 , ( 1 . 1 4 ) where ๐‘Ž is nonnegative and absolutely continuous on ( 0 , โˆž ) . Both superlinear case ( ๐›พ > 1 ) and sublinear case ( ๐›พ โˆˆ ( 0 , 1 ) ) are discussed, and conditions for the function ๐‘Ž giving oscillatory or nonoscillatory solutions of (1.14) are presented; see also [20]. Further extensions of these results have been proved for more general differential equations. For example, Wong and Agarwal [21] or Li [22] worked with the equation ๎€ท ๎€ท ๐‘ฆ ๐‘Ž ( ๐‘ก ) ๎…ž ๎€ธ ( ๐‘ก ) ๐œŽ ๎€ธ ๎…ž + ๐‘ž ( ๐‘ก ) ๐‘“ ( ๐‘ฆ ( ๐‘ก ) ) = 0 , ( 1 . 1 5 ) where ๐œŽ > 0 is a positive quotient of odd integers, ๐‘Ž โˆˆ ๐ถ 1 ( โ„ ) is positive, ๐‘ž โˆˆ ๐ถ ( โ„ ) , ๐‘“ โˆˆ ๐ถ 1 ( โ„ ) , ๐‘ฅ ๐‘“ ( ๐‘ฅ ) > 0 , ๐‘“ ๎…ž ( ๐‘ฅ ) โ‰ฅ 0 for all ๐‘ฅ โ‰  0 . Kulenoviฤ‡ and Ljuboviฤ‡ [23] investigated an equation ๎€ท ๐‘Ÿ ๎€ท ๐‘ฆ ( ๐‘ก ) ๐‘” ๎…ž ( ๐‘ก ) ๎€ธ ๎€ธ โ€ฒ + ๐‘ ( ๐‘ก ) ๐‘“ ( ๐‘ฆ ( ๐‘ก ) ) = 0 , ( 1 . 1 6 ) where ๐‘” ( ๐‘ข ) / ๐‘ข โ‰ค ๐‘š , ๐‘“ ( ๐‘ข ) / ๐‘ข โ‰ฅ ๐‘˜ > 0 , or ๐‘“ โ€ฒ ( ๐‘ข ) โ‰ฅ ๐‘˜ for all ๐‘ข โ‰  0 . The investigation of oscillatory and nonoscillatory solutions has been also realized in the class of quasilinear equations. We refer to the paper [24] by Ho, dealing with the equation ๎€ท ๐‘ก ๐‘› โˆ’ 1 ฮฆ ๐‘ ๎€ท ๐‘ข ๎…ž ๎€ธ ๎€ธ โ€ฒ + ๐‘ก ๐‘ ๐‘› โˆ’ 1 ๎“ ๐‘– = 1 ๐›ผ ๐‘– ๐‘ก ๐›ฝ ๐‘– ฮฆ ๐‘ž ๐‘– ( ๐‘ข ) = 0 , ( 1 . 1 7 ) where 1 < ๐‘ < ๐‘› , ๐›ผ ๐‘– > 0 , ๐›ฝ ๐‘– โ‰ฅ โˆ’ ๐‘ , ๐‘ž ๐‘– > ๐‘ โˆ’ 1 , ๐‘– = 1 , โ€ฆ , ๐‘ , ฮฆ ๐‘ ( ๐‘ฆ ) = | ๐‘ฆ | ๐‘ โˆ’ 2 ๐‘ฆ .

Oscillation results for the equation ๎€ท ๐‘Ž ( ๐‘ก ) ฮฆ ๐‘ ๎€ท ๐‘ฅ ๎…ž ๎€ธ ๎€ธ โ€ฒ + ๐‘ ( ๐‘ก ) ฮฆ ๐‘ž ( ๐‘ฅ ) = 0 , ( 1 . 1 8 ) where ๐‘Ž , ๐‘ โˆˆ ๐ถ ( [ 0 , โˆž ) ) are positive, can be found in [25]. We can see that the nonlinearity ๐‘“ ( ๐‘ฆ ) = | ๐‘ฆ | ๐›พ โˆ’ 1 ๐‘ฆ in (1.14) is an increasing function on โ„ having a unique zero at ๐‘ฆ = 0 .

Nonlinearities in all the other (1.15)โ€“(1.18) have similar globally monotonous behaviour. We want to emphasize that, in contrast to the above papers, the nonlinearity ๐‘“ in our (1.7) needs not be globally monotonous. Moreover, we deal with solutions of (1.7) starting at a singular point ๐‘ก = 0 , and we provide an interval for starting values ๐‘ข 0 giving oscillatory solutions (see Theorems 2.3, 2.10, and 2.16). We specify a behaviour of oscillatory solutions in more details (decreasing amplitudesโ€”see Theorems 2.10 and 2.16), and we show conditions which guarantee that oscillatory solutions converge to 0 (Theorem 3.1).

The paper is organized in this manner: Section 2 contains results about existence, uniqueness, and other basic properties of solutions of the problem (1.7), (1.13). These results which mainly concern damped solutions are taken from [18] and extended or modified a little. We also provide here new conditions for the existence of oscillatory solutions in Theorem 2.16. Section 3 is devoted to asymptotic properties of oscillatory solutions, and the main result is contained in Theorem 3.1.

2. Solutions of the Initial Problem (1.7), (1.13)

Let us give an account of this section in more details. The main objective of this paper is to characterize asymptotic properties of oscillatory solutions of the problem (1.7), (1.13). In order to present more complete results about the solutions, we start this section with the unique solvability of the problem (1.7), (1.13) on [ 0 , โˆž ) (Theorem 2.1). Having such global solutions, we have proved (see papers [15โ€“18]) that oscillatory solutions of the problem (1.7), (1.13) can be found just in the class of damped solutions of this problem. Therefore, we give here one result about the existence of damped solutions (Theorem 2.3). Example 2.5 shows that there are damped solutions which are not oscillatory. Consequently, we bring results about the existence of oscillatory solutions in the class of damped solutions. This can be found in Theorem 2.10, which is an extension of Theorem 3.4 of [18] and in Theorem 2.16, which are new. Theorems 2.10 and 2.16 cover different classes of equations which is illustrated by examples.

Theorem 2.1 (existence and uniqueness). Assume that (1.2)โ€“(1.5), (1.8), (1.9) hold and that there exists ๐ถ ๐ฟ โˆˆ ( 0 , โˆž ) such that 0 โ‰ค ๐‘“ ( ๐‘ฅ ) โ‰ค ๐ถ ๐ฟ f o r ๐‘ฅ โ‰ฅ ๐ฟ ( 2 . 1 ) then the initial problem (1.7), (1.13) has a unique solution ๐‘ข . The solution ๐‘ข satisfies ๐‘ข ( ๐‘ก ) โ‰ฅ ๐‘ข 0 i f ๐‘ข 0 < 0 , ๐‘ข ( ๐‘ก ) > ๐ต i f ๐‘ข 0 [ โ‰ฅ 0 , f o r ๐‘ก โˆˆ 0 , โˆž ) . ( 2 . 2 )

Proof. Let ๐‘ข 0 < 0 , then the assertion is contained in Theoremโ€‰โ€‰2.1 of [18]. Now, assume that ๐‘ข 0 โˆˆ [ 0 , ๐ฟ ] , then the proof of Theoremโ€‰โ€‰2.1 in [18] can be slightly modified.

For close existence results, see also Chapters 13 and 14 of [26], where this kind of equations is studied.

Remark 2.2. Clearly, for ๐‘ข 0 = 0 and ๐‘ข 0 = ๐ฟ , the problem (1.7), (1.13) has a unique solution ๐‘ข โ‰ก 0 and ๐‘ข โ‰ก ๐ฟ , respectively. Since ๐‘“ โˆˆ L i p l o c ( โ„ ) , no solution of the problem (1.7), (1.13) with ๐‘ข 0 < 0 or ๐‘ข 0 โˆˆ ( 0 , ๐ฟ ) can touch the constant solutions ๐‘ข โ‰ก 0 and ๐‘ข โ‰ก ๐ฟ .
In particular, assume that ๐ถ โˆˆ { 0 , ๐ฟ } , ๐‘Ž > 0 , ๐‘ข is a solution of the problem (1.7), (1.13) with ๐‘ข 0 < ๐ฟ , ๐‘ข 0 โ‰  0 , and (1.2), (1.8), and (1.9) hold. If ๐‘ข ( ๐‘Ž ) = ๐ถ , then ๐‘ข ๎…ž ( ๐‘Ž ) โ‰  0 , and if ๐‘ข ๎…ž ( ๐‘Ž ) = 0 , then ๐‘ข ( ๐‘Ž ) โ‰  ๐ถ .

The next theorem provides an extension of Theorem 2.4 in [18].

Theorem 2.3 (existence of damped solutions). Assume that (1.2)โ€“(1.5), (1.8), and (1.9) hold, then for each ๐‘ข 0 โˆˆ [ ๐ต , ๐ฟ ) , the problem (1.7), (1.13) has a unique solution. This solution is damped.

Proof. First, assume that there exists ๐ถ ๐ฟ > 0 such that ๐‘“ satisfies (2.1), then, by Theorem 2.1, the problem (1.7), (1.13) has a unique solution ๐‘ข satisfying (2.2). Assume that ๐‘ข is not damped, that is, [ s u p { ๐‘ข ( ๐‘ก ) โˆถ ๐‘ก โˆˆ 0 , โˆž ) } โ‰ฅ ๐ฟ . ( 2 . 3 ) By (1.3)โ€“(1.5), the inequality ๐น ( ๐‘ข 0 ) โ‰ค ๐น ( ๐ฟ ) holds. Since ๐‘ข fulfils (1.7), we have ๐‘ข ๎…ž ๎…ž ๐‘ ( ๐‘ก ) + ๎…ž ( ๐‘ก ) ๐‘ข ๐‘ ( ๐‘ก ) ๎…ž ( ๐‘ก ) = ๐‘“ ( ๐‘ข ( ๐‘ก ) ) f o r ๐‘ก โˆˆ ( 0 , โˆž ) . ( 2 . 4 ) Multiplying (2.4) by ๐‘ข โ€ฒ and integrating between 0 and ๐‘ก > 0 , we get ๐‘ข 0 < ๎…ž 2 ( ๐‘ก ) 2 + ๎€œ ๐‘ก 0 ๐‘ ๎…ž ( ๐‘  ) ๐‘ข ๐‘ ( ๐‘  ) ๎…ž 2 ๎€ท ๐‘ข ( ๐‘  ) d ๐‘  = ๐น 0 ๎€ธ โˆ’ ๐น ( ๐‘ข ( ๐‘ก ) ) , ๐‘ก โˆˆ ( 0 , โˆž ) , ( 2 . 5 ) and consequently ๎€œ 0 < ๐‘ก 0 ๐‘ ๎…ž ( ๐‘  ) ๐‘ข ๐‘ ( ๐‘  ) ๎…ž 2 ( ๎€ท ๐‘ข ๐‘  ) d ๐‘  โ‰ค ๐น 0 ๎€ธ โˆ’ ๐น ( ๐‘ข ( ๐‘ก ) ) , ๐‘ก โˆˆ ( 0 , โˆž ) . ( 2 . 6 ) By (2.3), we can find that ๐‘ โˆˆ ( 0 , โˆž ] such that ๐‘ข ( ๐‘ ) โ‰ฅ ๐ฟ , ( ๐‘ข ( โˆž ) = l i m s u p ๐‘ก โ†’ โˆž ๐‘ข ( ๐‘ก ) ), and hence, according to (1.5), ๎€œ 0 < ๐‘ 0 ๐‘ ๎…ž ( ๐‘  ) ๐‘ข ๐‘ ( ๐‘  ) ๎…ž 2 ๎€ท ๐‘ข ( ๐‘  ) d ๐‘  โ‰ค ๐น 0 ๎€ธ โˆ’ ๐น ( ๐‘ข ( ๐‘ ) ) โ‰ค ๐น ( ๐ต ) โˆ’ ๐น ( ๐ฟ ) โ‰ค 0 , ( 2 . 7 ) which is a contradiction. We have proved that s u p { ๐‘ข ( ๐‘ก ) โˆถ ๐‘ก โˆˆ [ 0 , โˆž ) } < ๐ฟ , that is, ๐‘ข is damped. Consequently, assumption (2.1) can be omitted.

Example 2.4. Consider the equation ๐‘ข ๎…ž ๎…ž + 2 ๐‘ก ๐‘ข ๎…ž = ๐‘ข ( ๐‘ข โˆ’ 1 ) ( ๐‘ข + 2 ) , ( 2 . 8 ) which is relevant to applications in [9โ€“11]. Here, ๐‘ ( ๐‘ก ) = ๐‘ก 2 , ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ ( ๐‘ฅ โˆ’ 1 ) ( ๐‘ฅ + 2 ) , ๐ฟ 0 = โˆ’ 2 , and ๐ฟ = 1 . Hence ๐‘“ ( x ) < 0 for ๐‘ฅ โˆˆ ( 0 , 1 ) , ๐‘“ ( ๐‘ฅ ) > 0 for ๐‘ฅ โˆˆ ( โˆ’ 2 , 0 ) , and ๎€œ ๐น ( ๐‘ฅ ) = โˆ’ ๐‘ฅ 0 ๐‘ฅ ๐‘“ ( ๐‘ง ) d ๐‘ง = โˆ’ 4 4 โˆ’ ๐‘ฅ 3 3 + ๐‘ฅ 2 . ( 2 . 9 ) Consequently, ๐น is decreasing and positive on [ โˆ’ 2 , 0 ) and increasing and positive on ( 0 , 1 ] . Since ๐น ( 1 ) = 5 / 1 2 and ๐น ( โˆ’ 1 ) = 1 3 / 1 2 , there exists a unique ๐ต โˆˆ ( โˆ’ 1 , 0 ) such that ๐น ( ๐ต ) = 5 / 1 2 = ๐น ( 1 ) . We can see that all assumptions of Theorem 2.3 are fulfilled and so, for each ๐‘ข 0 โˆˆ [ ๐ต , 1 ) , the problem (2.8), (1.13) has a unique solution which is damped. We will show later (see Example 2.11), that each damped solution of the problem (2.8), (1.13) is oscillatory.

In the next example, we will show that damped solutions can be nonzero and monotonous on [ 0 , โˆž ) with a limit equal to zero at โˆž . Clearly, such solutions are not oscillatory.

Example 2.5. Consider the equation ๐‘ข ๎…ž ๎…ž + 3 ๐‘ก ๐‘ข ๎…ž = ๐‘“ ( ๐‘ข ) , ( 2 . 1 0 ) where โŽง โŽช โŽจ โŽช โŽฉ ๐‘“ ( ๐‘ฅ ) = โˆ’ ๐‘ฅ 3 f o r ๐‘ฅ โ‰ค 1 , ๐‘ฅ โˆ’ 2 f o r ๐‘ฅ โˆˆ ( 1 , 3 ) , 1 f o r ๐‘ฅ โ‰ฅ 3 . ( 2 . 1 1 ) We see that ๐‘ ( ๐‘ก ) = ๐‘ก 3 in (2.10) and the functions ๐‘“ and ๐‘ satisfy conditions (1.2)โ€“(1.5), (1.8), and (1.9) with ๐ฟ = 2 . Clearly, ๐ฟ 0 = โˆ’ โˆž . Further, ๐น ๎€œ ( ๐‘ฅ ) = โˆ’ ๐‘ฅ 0 ๐‘“ โŽง โŽช โŽช โŽจ โŽช โŽช โŽฉ ๐‘ฅ ( ๐‘ง ) d ๐‘ง = 4 4 โˆ’ ๐‘ฅ f o r ๐‘ฅ โ‰ค 1 , 2 2 5 + 2 ๐‘ฅ โˆ’ 4 f o r ๐‘ฅ โˆˆ ( 1 , 3 ) , โˆ’ ๐‘ฅ + 1 3 4 f o r ๐‘ฅ โ‰ฅ 3 . ( 2 . 1 2 ) Since ๐น ( ๐ฟ ) = ๐น ( 2 ) = 3 / 4 , assumption (1.5) yields ๐น ( ๐ต ) = ๐ต 4 / 4 = 3 / 4 and ๐ต = โˆ’ 3 1 / 4 . By Theorem 2.3, for each ๐‘ข 0 โˆˆ [ โˆ’ 3 1 / 4 , 2 ) , the problem (2.10), (1.13) has a unique solution ๐‘ข which is damped. On the other hand, we can check by a direct computation that for each ๐‘ข 0 โ‰ค 1 the function ๐‘ข ( ๐‘ก ) = 8 ๐‘ข 0 8 + ๐‘ข 2 0 ๐‘ก 2 [ , ๐‘ก โˆˆ 0 , โˆž ) ( 2 . 1 3 ) is a solution of equation (2.10) and satifies conditions (1.13). If ๐‘ข 0 < 0 , then ๐‘ข < 0 , ๐‘ข ๎…ž > 0 on ( 0 , โˆž ) , and if ๐‘ข 0 โˆˆ ( 0 , 1 ] , then ๐‘ข > 0 , ๐‘ข ๎…ž < 0 on ( 0 , โˆž ) . In both cases, l i m ๐‘ก โ†’ โˆž ๐‘ข ( ๐‘ก ) = 0 .

In Example 2.5, we also demonstrate that there are equations fulfilling Theorem 2.3 for which all solutions with ๐‘ข 0 < ๐ฟ , not only those with ๐‘ข 0 โˆˆ [ ๐ต , ๐ฟ ) , are damped. Some additional conditions giving, moreover, bounding homoclinic solutions and escape solutions are presented in [15โ€“17].

In our further investigation of asymptotic properties of damped solutions the following lemmas are useful.

Lemma 2.6. Assume (1.2), (1.8), and (1.9). Let ๐‘ข be a damped solution of the problem (1.7), (1.13) with ๐‘ข 0 โˆˆ ( ๐ฟ 0 , ๐ฟ ) which is eventually positive or eventually negative, then l i m ๐‘ก โ†’ โˆž ๐‘ข ( ๐‘ก ) = 0 , l i m ๐‘ก โ†’ โˆž ๐‘ข ๎…ž ( ๐‘ก ) = 0 . ( 2 . 1 4 )

Proof. Let ๐‘ข be eventually positive, that is, there exists ๐‘ก 0 โ‰ฅ 0 such that ๐‘ข ๎€บ ๐‘ก ( ๐‘ก ) > 0 f o r ๐‘ก โˆˆ 0 ๎€ธ , โˆž . ( 2 . 1 5 ) Denote ๐œƒ = i n f { ๐‘ก 0 โ‰ฅ 0 โˆถ ๐‘ข ( ๐‘ก ) > 0 , ๐‘ก โˆˆ [ ๐‘ก 0 , โˆž ) } .
Let ๐œƒ > 0 , then ๐‘ข ( ๐œƒ ) = 0 and, by Remark 2.2, ๐‘ข โ€ฒ ( ๐œƒ ) > 0 . Assume that ๐‘ข โ€ฒ > 0 on ( ๐œƒ , โˆž ) , then ๐‘ข is increasing on ( ๐œƒ , โˆž ) , and there exists l i m ๐‘ก โ†’ โˆž ๐‘ข ( ๐‘ก ) = โ„“ โˆˆ ( 0 , ๐ฟ ) . Multiplying (2.4) by ๐‘ข โ€ฒ , integrating between ๐œƒ and ๐‘ก , and using notation (1.4), we obtain ๐‘ข ๎…ž 2 ( ๐‘ก ) 2 + ๎€œ ๐‘ก ๐œƒ ๐‘ ๎…ž ( ๐‘  ) ๐‘ข ๐‘ ( ๐‘  ) ๎…ž 2 ๎€ท ๐‘ข ( ๐‘  ) d ๐‘  = ๐น 0 ๎€ธ โˆ’ ๐น ( ๐‘ข ( ๐‘ก ) ) , ๐‘ก โˆˆ ( ๐œƒ , โˆž ) . ( 2 . 1 6 ) Letting ๐‘ก โ†’ โˆž , we get l i m ๐‘ก โ†’ โˆž ๐‘ข ๎…ž 2 ( ๐‘ก ) 2 = โˆ’ l i m ๐‘ก โ†’ โˆž ๎€œ ๐‘ก ๐œƒ ๐‘ ๎…ž ( ๐‘  ) ๐‘ข ๐‘ ( ๐‘  ) ๎…ž 2 ๎€ท ๐‘ข ( ๐‘  ) d ๐‘  + ๐น 0 ๎€ธ โˆ’ ๐น ( โ„“ ) . ( 2 . 1 7 ) Since the function โˆซ ๐‘ก ๐œƒ ( ๐‘ โ€ฒ ( ๐‘  ) / ๐‘ ( ๐‘  ) ) ๐‘ข ๎…ž 2 ( ๐‘  ) d ๐‘  is positive and increasing, it follows that it has a limit at โˆž , and hence there exists also l i m ๐‘ก โ†’ โˆž ๐‘ข ๎…ž ( ๐‘ก ) โ‰ฅ 0 . If l i m ๐‘ก โ†’ โˆž ๐‘ข โ€ฒ ( ๐‘ก ) > 0 , then ๐ฟ > ๐‘™ = l i m ๐‘ก โ†’ โˆž ๐‘ข ( ๐‘ก ) = โˆž , which is a contradiction. Consequently l i m ๐‘ก โ†’ โˆž ๐‘ข ๎…ž ( ๐‘ก ) = 0 . ( 2 . 1 8 ) Letting ๐‘ก โ†’ โˆž in (2.4) and using (1.2), (1.9) and โ„“ โˆˆ ( 0 , ๐ฟ ) , we get l i m ๐‘ก โ†’ โˆž ๐‘ข ๎…ž ๎…ž ( ๐‘ก ) = ๐‘“ ( โ„“ ) < 0 , and so l i m ๐‘ก โ†’ โˆž ๐‘ข โ€ฒ ( ๐‘ก ) = โˆ’ โˆž , which is contrary to (2.18). This contradiction implies that the inequality ๐‘ข ๎…ž > 0 on ( ๐œƒ , โˆž ) cannot be satisfied and that there exists ๐‘Ž > ๐œƒ such that ๐‘ข ๎…ž ( ๐‘Ž ) = 0 . Since ๐‘ข > 0 on ( ๐‘Ž , โˆž ) , we get by (1.2), (1.7), and (1.13) that ( ๐‘ ๐‘ข ๎…ž ) ๎…ž < 0 on ( ๐‘Ž , โˆž ) . Due to ๐‘ ( ๐‘Ž ) ๐‘ข ๎…ž ( ๐‘Ž ) = 0 , we see that ๐‘ข ๎…ž < 0 on ( ๐‘Ž , โˆž ) . Therefore, ๐‘ข is decreasing on ( ๐‘Ž , โˆž ) and l i m ๐‘ก โ†’ โˆž ๐‘ข ( ๐‘ก ) = โ„“ 0 โˆˆ [ 0 , ๐ฟ ) . Using (2.16) with ๐‘Ž in place of ๐œƒ , we deduce as above that (2.18) holds and that l i m ๐‘ก โ†’ โˆž ๐‘ข ๎…ž ๎…ž ( ๐‘ก ) = ๐‘“ ( โ„“ 0 ) = 0 . Consequently, โ„“ 0 = 0 . We have proved that (2.14) holds provided ๐œƒ > 0 .
If ๐œƒ = 0 , then we take ๐‘Ž = 0 and use the above arguments. If ๐‘ข is eventually negative, we argue similarly.

Lemma 2.7. Assume (1.2)โ€“(1.5), (1.8), (1.9), and ๐‘ โˆˆ ๐ถ 2 ( 0 , โˆž ) , l i m s u p ๐‘ก โ†’ โˆž | | | | ๐‘ ๎…ž ๎…ž ( ๐‘ก ) ๐‘ ๎…ž | | | | ( ๐‘ก ) < โˆž , ( 2 . 1 9 ) l i m ๐‘ฅ โ†’ 0 + ๐‘“ ( ๐‘ฅ ) ๐‘ฅ < 0 . ( 2 . 2 0 ) Let ๐‘ข be a solution of the problem (1.7), (1.13) with ๐‘ข 0 โˆˆ ( 0 , ๐ฟ ) , then there exists ๐›ฟ 1 > 0 such that ๐‘ข ๎€ท ๐›ฟ 1 ๎€ธ = 0 , ๐‘ข ๎…ž ๎€ท ( ๐‘ก ) < 0 f o r ๐‘ก โˆˆ 0 , ๐›ฟ 1 ๎€ป . ( 2 . 2 1 )

Proof. Assume that such ๐›ฟ 1 does not exist, then ๐‘ข is positive on [ 0 , โˆž ) and, by Lemma 2.6, ๐‘ข satisfies (2.14). We define a function โˆš ๐‘ฃ ( ๐‘ก ) = [ ๐‘ ( ๐‘ก ) ๐‘ข ( ๐‘ก ) , ๐‘ก โˆˆ 0 , โˆž ) . ( 2 . 2 2 ) By (2.19), we have ๐‘ฃ โˆˆ ๐ถ 2 ( 0 , โˆž ) and ๐‘ฃ ๎…ž ๐‘ ( ๐‘ก ) = ๎…ž ( ๐‘ก ) ๐‘ข ( ๐‘ก ) 2 โˆš + โˆš ๐‘ ( ๐‘ก ) ๐‘ ( ๐‘ก ) ๐‘ข ๎…ž ๐‘ฃ ( ๐‘ก ) , ( 2 . 2 3 ) ๎…ž ๎…ž ๎ƒฌ 1 ( ๐‘ก ) = ๐‘ฃ ( ๐‘ก ) 2 ๐‘ ๎…ž ๎…ž ( ๐‘ก ) โˆ’ 1 ๐‘ ( ๐‘ก ) 4 ๎‚ต ๐‘ ๎…ž ( ๐‘ก ) ๎‚ถ ๐‘ ( ๐‘ก ) 2 + ๐‘“ ( ๐‘ข ( ๐‘ก ) ) ๎ƒญ ๐‘ข ( ๐‘ก ) , ๐‘ก โˆˆ ( 0 , โˆž ) . ( 2 . 2 4 ) By (1.9) and (2.19), we get l i m ๐‘ก โ†’ โˆž ๎ƒฌ 1 2 ๐‘ ๎…ž ๎…ž ( ๐‘ก ) โˆ’ 1 ๐‘ ( ๐‘ก ) 4 ๎‚ต ๐‘ โ€ฒ ( ๐‘ก ) ๎‚ถ ๐‘ ( ๐‘ก ) 2 ๎ƒญ = 1 2 l i m ๐‘ก โ†’ โˆž ๐‘ ๎…ž ๎…ž ( ๐‘ก ) ๐‘ ๎…ž โ‹… ๐‘ ( ๐‘ก ) ๎…ž ( ๐‘ก ) ๐‘ ( ๐‘ก ) = 0 . ( 2 . 2 5 ) Since ๐‘ข is positive on ( 0 , โˆž ) , conditions (2.14) and (2.20) yield l i m ๐‘ก โ†’ โˆž ๐‘“ ( ๐‘ข ( ๐‘ก ) ) ๐‘ข ( ๐‘ก ) = l i m ๐‘ฅ โ†’ 0 + ๐‘“ ( ๐‘ฅ ) ๐‘ฅ < 0 . ( 2 . 2 6 ) Consequently, there exist ๐œ” > 0 and ๐‘… > 0 such that 1 2 ๐‘ ๎…ž ๎…ž ( ๐‘ก ) โˆ’ 1 ๐‘ ( ๐‘ก ) 4 ๎‚ต ๐‘ ๎…ž ( ๐‘ก ) ๎‚ถ ๐‘ ( ๐‘ก ) 2 + ๐‘“ ( ๐‘ข ( ๐‘ก ) ) ๐‘ข ( ๐‘ก ) < โˆ’ ๐œ” f o r ๐‘ก โ‰ฅ ๐‘… . ( 2 . 2 7 ) By (2.22), ๐‘ฃ is positive on ( 0 , โˆž ) and, due to (2.24) and (2.27), we get ๐‘ฃ ๎…ž ๎…ž ( ๐‘ก ) < โˆ’ ๐œ” ๐‘ฃ ( ๐‘ก ) < 0 f o r ๐‘ก โ‰ฅ ๐‘… . ( 2 . 2 8 ) Thus, ๐‘ฃ ๎…ž is decreasing on [ ๐‘… , โˆž ) and l i m ๐‘ก โ†’ โˆž ๐‘ฃ ๎…ž ( ๐‘ก ) = ๐‘‰ . If ๐‘‰ < 0 , then l i m ๐‘ก โ†’ โˆž ๐‘ฃ ( ๐‘ก ) = โˆ’ โˆž , contrary to the positivity of ๐‘ฃ . If ๐‘‰ โ‰ฅ 0 , then ๐‘ฃ โ€ฒ > 0 on [ ๐‘… , โˆž ) and ๐‘ฃ ( ๐‘ก ) โ‰ฅ ๐‘ฃ ( ๐‘… ) > 0 for ๐‘ก โˆˆ [ ๐‘… , โˆž ) . Then (2.28) yields 0 > โˆ’ ๐œ” ๐‘ฃ ( ๐‘… ) โ‰ฅ โˆ’ ๐œ” ๐‘ฃ ( ๐‘ก ) > ๐‘ฃ ๎…ž ๎…ž ( ๐‘ก ) for ๐‘ก โˆˆ [ ๐‘… , โˆž ) . We get l i m ๐‘ก โ†’ โˆž ๐‘ฃ โ€ฒ ( ๐‘ก ) = โˆ’ โˆž which contradicts ๐‘‰ โ‰ฅ 0 . The obtained contradictions imply that ๐‘ข has at least one zero in ( 0 , โˆž ) . Let ๐›ฟ 1 > 0 be the first zero of ๐‘ข . Then ๐‘ข > 0 on [ 0 , ๐›ฟ 1 ) and, by (1.2) and (1.7), ๐‘ข ๎…ž < 0 on ( 0 , ๐›ฟ 1 ) . Due to Remark 2.2, we have also ๐‘ข ๎…ž ( ๐›ฟ 1 ) < 0 .

For negative starting value, we can prove a dual lemma by similar arguments.

Lemma 2.8. Assume (1.2)โ€“(1.5), (1.8), (1.9), (2.19) and l i m ๐‘ฅ โ†’ 0 โˆ’ ๐‘“ ( ๐‘ฅ ) ๐‘ฅ < 0 . ( 2 . 2 9 ) Let ๐‘ข be a solution of the problem (1.7), (1.13) with ๐‘ข 0 โˆˆ ( ๐ฟ 0 , 0 ) , then there exists ๐œƒ 1 > 0 such that ๐‘ข ๎€ท ๐œƒ 1 ๎€ธ = 0 , ๐‘ข ๎…ž ๎€ท ( ๐‘ก ) > 0 f o r ๐‘ก โˆˆ 0 , ๐œƒ 1 ๎€ป . ( 2 . 3 0 )

The arguments of the proof of Lemma 2.8 can be also found in the proof of Lemma 3.1 in [18], where both (2.20) and (2.29) were assumed. If one argues as in the proofs of Lemmas 2.7 and 2.8 working with ๐‘Ž 1 , ๐ด 1 and ๐‘ 1 , ๐ต 1 in place of 0, and ๐‘ข 0 , one gets the next corollary.

Corollary 2.9. Assume (1.2)โ€“(1.5), (1.8), (1.9), (2.19), (2.20), and (2.29). Let ๐‘ข be a solution of the problem (1.7), (1.13) with ๐‘ข 0 โˆˆ ( ๐ฟ 0 , 0 ) โˆช ( 0 , ๐ฟ ) .
(I) Assume that there exist ๐‘ 1 > 0 and ๐ต 1 โˆˆ ( ๐ฟ 0 , 0 ) such that ๐‘ข ๎€ท ๐‘ 1 ๎€ธ = ๐ต 1 ๎€ท ๐‘ , ๐‘ข โ€ฒ 1 ๎€ธ = 0 , ( 2 . 3 1 ) then there exists ๐œƒ > ๐‘ 1 such that ๐‘ข ( ๐œƒ ) = 0 , ๐‘ข ๎…ž ๎€ท ๐‘ ( ๐‘ก ) > 0 f o r ๐‘ก โˆˆ 1 ๎€ป , ๐œƒ . ( 2 . 3 2 )
(II) Assume that there exist ๐‘Ž 1 > 0 and ๐ด 1 โˆˆ ( 0 , ๐ฟ ) such that ๐‘ข ๎€ท ๐‘Ž 1 ๎€ธ = ๐ด 1 , ๐‘ข ๎…ž ๎€ท ๐‘Ž 1 ๎€ธ = 0 , ( 2 . 3 3 ) then there exists ๐›ฟ > ๐‘Ž 1 such that ๐‘ข ( ๐›ฟ ) = 0 , ๐‘ข ๎…ž ๎€ท ๐‘Ž ( ๐‘ก ) < 0 f o r ๐‘ก โˆˆ 1 ๎€ป , ๐›ฟ . ( 2 . 3 4 )

Note that if all conditions of Lemmas 2.7 and 2.8 are satisfied, then each solution of the problem (1.7), (1.13) with ๐‘ข 0 โˆˆ ( ๐ฟ 0 , 0 ) โˆช ( 0 , ๐ฟ ) has at least one simple zero in ( 0 , โˆž ) . Corollary 2.9 makes possible to construct an unbounded sequence of all zeros of any damped solution ๐‘ข . In addition, these zeros are simple (see the proof of Theorem 2.10). In such a case, ๐‘ข has either a positive maximum or a negative minimum between each two neighbouring zeros. If we denote sequences of these maxima and minima by { ๐ด ๐‘› } โˆž ๐‘› = 1 and { ๐ต ๐‘› } โˆž ๐‘› = 1 , respectively, then we call the numbers | ๐ด ๐‘› โˆ’ ๐ต ๐‘› | , ๐‘› โˆˆ โ„• amplitudes of ๐‘ข .

In [18], we give conditions implying that each damped solution of the problem (1.7), (1.13) with ๐‘ข 0 < 0 has an unbounded set of zeros and decreasing sequence of amplitudes. Here, there is an extension of this result for ๐‘ข 0 โˆˆ ( 0 , ๐ฟ ) .

Theorem 2.10 (existence of oscillatory solutions I). Assume that (1.2)โ€“(1.5), (1.8), (1.9), (2.19), (2.20), and (2.29) hold, Then each damped solution of the problem (1.7), (1.13) with ๐‘ข 0 โˆˆ ( ๐ฟ 0 , 0 ) โˆช ( 0 , ๐ฟ ) is oscillatory and its amplitudes are decreasing.

Proof. For ๐‘ข 0 < 0 , the assertion is contained in Theoremโ€‰โ€‰3.4 of [18]. Let ๐‘ข be a damped solution of the problem (1.7), (1.13) with ๐‘ข 0 โˆˆ ( 0 , ๐ฟ ) . By (2.2) and Definition 1.2, we can find ๐ฟ 1 โˆˆ ( 0 , ๐ฟ ) such that ๐ต < ๐‘ข ( ๐‘ก ) โ‰ค ๐ฟ 1 [ f o r ๐‘ก โˆˆ 0 , โˆž ) . ( 2 . 3 5 ) Step 1. Lemma 2.7 yields ๐›ฟ 1 > 0 satisfying (2.21). Hence, there exists a maximal interval ( ๐›ฟ 1 , ๐‘ 1 ) such that ๐‘ข ๎…ž < 0 on ( ๐›ฟ 1 , ๐‘ 1 ) . If ๐‘ 1 = โˆž , then ๐‘ข is eventually negative and decreasing. On the other hand, by Lemma 2.6, ๐‘ข satisfies (2.14). But this is not possible. Therefore, ๐‘ 1 < โˆž and there exists ๐ต 1 โˆˆ ( ๐ต , 0 ) such that (2.31) holds. Corollary 2.9 yields ๐œƒ 1 > ๐‘ 1 satisfying (2.32) with ๐œƒ = ๐œƒ 1 . Therefore, ๐‘ข has just one negative local minimum ๐ต 1 = ๐‘ข ( ๐‘ 1 ) between its first zero ๐›ฟ 1 and second zero ๐œƒ 1 .Step 2. By (2.32) there exists a maximal interval ( ๐œƒ 1 , ๐‘Ž 1 ) , where ๐‘ข ๎…ž > 0 . If ๐‘Ž 1 = โˆž , then ๐‘ข is eventually positive and increasing. On the other hand, by Lemma 2.6, ๐‘ข satisfies (2.14). We get a contradiction. Therefore ๐‘Ž 1 < โˆž and there exists ๐ด 1 โˆˆ ( 0 , ๐ฟ ) such that (2.33) holds. Corollary 2.9 yields ๐›ฟ 2 > ๐‘Ž 1 satisfying (2.34) with ๐›ฟ = ๐›ฟ 2 . Therefore ๐‘ข has just one positive maximum ๐ด 1 = ๐‘ข ( ๐‘Ž 1 ) between its second zero ๐œƒ 1 and third zero ๐›ฟ 2 .Step 3. We can continue as in Steps 1 and 2 and get the sequences { ๐ด ๐‘› } โˆž ๐‘› = 1 โŠ‚ ( 0 , ๐ฟ ) and { ๐ต ๐‘› } โˆž ๐‘› = 1 โŠ‚ [ ๐‘ข 0 , 0 ) of positive local maxima and negative local minima of ๐‘ข , respectively. Therefore ๐‘ข is oscillatory. Using arguments of the proof of Theoremโ€‰โ€‰3.4 of [18], we get that the sequence { ๐ด ๐‘› } โˆž ๐‘› = 1 is decreasing and the sequence { ๐ต ๐‘› } โˆž ๐‘› = 1 is increasing. In particular, we use (2.5) and define a Lyapunov function ๐‘‰ ๐‘ข by ๐‘‰ ๐‘ข ๐‘ข ( ๐‘ก ) = ๎…ž 2 ( ๐‘ก ) 2 ๎€ท ๐‘ข + ๐น ( ๐‘ข ( ๐‘ก ) ) = ๐น 0 ๎€ธ โˆ’ ๎€œ ๐‘ก 0 ๐‘ ๎…ž ( ๐‘  ) ๐‘ข ๐‘ ( ๐‘  ) ๎…ž 2 ( ๐‘  ) d ๐‘  , ๐‘ก โˆˆ ( 0 , โˆž ) , ( 2 . 3 6 ) then ๐‘‰ ๐‘ข ( ๐‘ก ) > 0 , ๐‘‰ ๎…ž ๐‘ข ๐‘ ( ๐‘ก ) = โˆ’ ๎…ž ( ๐‘ก ) ๐‘ข ๐‘ ( ๐‘ก ) ๎…ž 2 ๐‘‰ ( ๐‘ก ) โ‰ค 0 f o r ๐‘ก โˆˆ ( 0 , โˆž ) , ( 2 . 3 7 ) ๎…ž ๐‘ข ( ๐‘ก ) < 0 f o r ๐‘ก โˆˆ ( 0 , โˆž ) , ๐‘ก โ‰  ๐‘Ž ๐‘› , ๐‘ ๐‘› , ๐‘› โˆˆ โ„• . ( 2 . 3 8 ) Consequently, ๐‘ ๐‘ข โˆถ = l i m ๐‘ก โ†’ โˆž ๐‘‰ ๐‘ข ( ๐‘ก ) โ‰ฅ 0 . ( 2 . 3 9 ) So, sequences { ๐‘‰ ๐‘ข ( ๐‘Ž ๐‘› ) } โˆž ๐‘› = 1 = { ๐น ( ๐ด ๐‘› ) } โˆž ๐‘› = 1 and { ๐‘‰ ๐‘ข ( ๐‘ ๐‘› ) } โˆž ๐‘› = 1 = { ๐น ( ๐ต ๐‘› ) } โˆž ๐‘› = 1 are decreasing and l i m ๐‘› โ†’ โˆž ๐น ๎€ท ๐ด ๐‘› ๎€ธ = l i m ๐‘› โ†’ โˆž ๐น ๎€ท ๐ต ๐‘› ๎€ธ = ๐‘ ๐‘ข . ( 2 . 4 0 ) Finally, due to (1.4), the sequence { ๐ด ๐‘› } โˆž ๐‘› = 1 is decreasing and the sequence { ๐ต ๐‘› } โˆž ๐‘› = 1 is increasing. Hence, the sequence of amplitudes { ๐ด ๐‘› โˆ’ ๐ต ๐‘› } โˆž ๐‘› = 1 is decreasing, as well.

Example 2.11. Consider the problem (1.7), (1.13), where ๐‘ ( ๐‘ก ) = ๐‘ก 2 and ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ ( ๐‘ฅ โˆ’ 1 ) ( ๐‘ฅ + 2 ) . In Example 2.4, we have shown that (1.2)โ€“(1.5), (1.8), and (1.9) with ๐ฟ 0 = โˆ’ 2 , ๐ฟ = 1 are valid. Since l i m ๐‘ก โ†’ โˆž ๐‘ ๎…ž ๎…ž ( ๐‘ก ) ๐‘ ๎…ž ( ๐‘ก ) = l i m ๐‘ก โ†’ โˆž 1 ๐‘ก = 0 , l i m ๐‘ฅ โ†’ 0 ๐‘“ ( ๐‘ฅ ) ๐‘ฅ = l i m ๐‘ฅ โ†’ 0 ( ๐‘ฅ โˆ’ 1 ) ( ๐‘ฅ + 2 ) = โˆ’ 2 < 0 , ( 2 . 4 1 ) we see that (2.19), (2.20), and (2.29) are satisfied. Therefore, by Theorem 2.10, each damped solution of (2.8), (1.13) with ๐‘ข 0 โˆˆ ( โˆ’ 2 , 0 ) โˆช ( 0 , 1 ) is oscillatory and its amplitudes are decreasing.

Example 2.12. Consider the problem (1.7), (1.13), where ๐‘ก ๐‘ ( ๐‘ก ) = ๐‘˜ 1 + ๐‘ก โ„“ ๎ƒฏ , ๐‘˜ > โ„“ โ‰ฅ 0 , ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ ( ๐‘ฅ โˆ’ 1 ) ( ๐‘ฅ + 3 ) , f o r ๐‘ฅ โ‰ค 0 , ๐‘ฅ ( ๐‘ฅ โˆ’ 1 ) ( ๐‘ฅ + 4 ) , f o r ๐‘ฅ > 0 , ( 2 . 4 2 ) then ๐ฟ 0 = โˆ’ 3 , ๐ฟ = 1 , l i m ๐‘ก โ†’ โˆž ๐‘ ๎…ž ๎…ž ( ๐‘ก ) ๐‘ ๎…ž ( ๐‘ก ) = 0 , l i m ๐‘ฅ โ†’ 0 โˆ’ ๐‘“ ( ๐‘ฅ ) ๐‘ฅ = โˆ’ 3 , l i m ๐‘ฅ โ†’ 0 + ๐‘“ ( ๐‘ฅ ) ๐‘ฅ = โˆ’ 4 . ( 2 . 4 3 ) We can check that also all remaining assumptions of Theorem 2.10 are satisfied, and this theorem is applicable here.

Assume that ๐‘“ does not fulfil (2.20) and (2.29). It occurs, for example, if ๐‘“ ( ๐‘ฅ ) = โˆ’ | ๐‘ฅ | ๐›ผ s i g n ๐‘ฅ with ๐›ผ > 1 for ๐‘ฅ in some neighbourhood of 0, then Theorem 2.10 cannot be applied. Now, we will give another sufficient conditions for the existence of oscillatory solutions. For this purpose, we introduce the following lemmas.

Lemma 2.13. Assume (1.2)โ€“(1.5), (1.8), (1.9), and ๎€œ โˆž 1 1 ๐‘ ( ๐‘  ) d ๐‘  = โˆž , ( 2 . 4 4 ) โˆƒ ๐œ– > 0 โˆถ ๐‘“ โˆˆ ๐ถ 1 ( 0 , ๐œ– ) , ๐‘“ ๎…ž โ‰ค 0 o n ( 0 , ๐œ– ) . ( 2 . 4 5 ) Let ๐‘ข be a solution of the problem (1.7), (1.13) with ๐‘ข 0 โˆˆ ( 0 , ๐ฟ ) , then there exists ๐›ฟ 1 > 0 such that ๐‘ข ๎€ท ๐›ฟ 1 ๎€ธ = 0 , ๐‘ข ๎…ž ๎€ท ( ๐‘ก ) < 0 f o r ๐‘ก โˆˆ 0 , ๐›ฟ 1 ๎€ป . ( 2 . 4 6 )

Proof. Assume that such ๐›ฟ 1 does not exist, then ๐‘ข is positive on [ 0 , โˆž ) and, by Lemma 2.6, ๐‘ข satisfies (2.14). In view of (1.7) and (1.2), we have ๐‘ข ๎…ž < 0 on ( 0 , โˆž ) . From (2.45), it follows that there exists ๐‘ก 0 > 0 such that ๎€บ ๐‘ก 0 < ๐‘ข ( ๐‘ก ) < ๐œ– , f o r ๐‘ก โˆˆ 0 ๎€ธ , โˆž . ( 2 . 4 7 ) Motivated by arguments of [27], we divide (1.7) by ๐‘“ ( ๐‘ข ) and integrate it over interval [ ๐‘ก 0 , ๐‘ก ] . We get ๎€œ ๐‘ก ๐‘ก 0 ๎€ท ๐‘ ( ๐‘  ) ๐‘ข ๎…ž ๎€ธ โ€ฒ ( ๐‘  ) ๎€œ ๐‘“ ( ๐‘ข ( ๐‘  ) ) d ๐‘  = ๐‘ก ๐‘ก 0 ๎€บ ๐‘ก ๐‘ ( ๐‘  ) d ๐‘  f o r ๐‘ก โˆˆ 0 ๎€ธ . , โˆž ( 2 . 4 8 ) Using the per partes integration, we obtain ๐‘ ( ๐‘ก ) ๐‘ข ๎…ž ( ๐‘ก ) + ๎€œ ๐‘“ ( ๐‘ข ( ๐‘ก ) ) ๐‘ก ๐‘ก 0 ๐‘ ( ๐‘  ) ๐‘“ ๎…ž ( ๐‘ข ( ๐‘  ) ) ๐‘ข ๎…ž 2 ( ๐‘  ) ๐‘“ 2 ๐‘ ๎€ท ๐‘ก ( ๐‘ข ( ๐‘  ) ) d ๐‘  = 0 ๎€ธ ๐‘ข ๎…ž ๎€ท ๐‘ก 0 ๎€ธ ๐‘“ ๎€ท ๐‘ข ๎€ท ๐‘ก 0 + ๎€œ ๎€ธ ๎€ธ ๐‘ก ๐‘ก 0 ๎€บ ๐‘ก ๐‘ ( ๐‘  ) d ๐‘  , ๐‘ก โˆˆ 0 ๎€ธ , โˆž . ( 2 . 4 9 ) From (1.8) and (1.9), it follows that there exists ๐‘ก 1 โˆˆ ( ๐‘ก 0 , โˆž ) such that ๐‘ ๎€ท ๐‘ก 0 ๎€ธ ๐‘ข ๎…ž ๎€ท ๐‘ก 0 ๎€ธ ๐‘“ ๎€ท ๐‘ข ๎€ท ๐‘ก 0 + ๎€œ ๎€ธ ๎€ธ ๐‘ก ๐‘ก 0 ๎€บ ๐‘ก ๐‘ ( ๐‘  ) d ๐‘  โ‰ฅ 1 , ๐‘ก โˆˆ 1 ๎€ธ , โˆž , ( 2 . 5 0 ) and therefore ๐‘ ( ๐‘ก ) ๐‘ข ๎…ž ( ๐‘ก ) + ๎€œ ๐‘“ ( ๐‘ข ( ๐‘ก ) ) ๐‘ก ๐‘ก 0 ๐‘ ( ๐‘  ) ๐‘“ ๎…ž ( ๐‘ข ( ๐‘  ) ) ๐‘ข ๎…ž 2 ( ๐‘  ) ๐‘“ 2 ๎€บ ๐‘ก ( ๐‘ข ( ๐‘  ) ) d ๐‘  โ‰ฅ 1 , ๐‘ก โˆˆ 1 ๎€ธ . , โˆž ( 2 . 5 1 ) From the fact that ๐‘“ ๎…ž ( ๐‘ข ( ๐‘  ) ) โ‰ค 0 for ๐‘  > ๐‘ก 0 (see (2.45)), we have ๐‘ ( ๐‘ก ) ๐‘ข ๎…ž ( ๐‘ก ) + ๎€œ ๐‘“ ( ๐‘ข ( ๐‘ก ) ) ๐‘ก ๐‘ก 1 ๐‘ ( ๐‘  ) ๐‘“ ๎…ž ( ๐‘ข ( ๐‘  ) ) ๐‘ข ๎…ž 2 ( ๐‘  ) ๐‘“ 2 ๎€บ ๐‘ก ( ๐‘ข ( ๐‘  ) ) d ๐‘  โ‰ฅ 1 , ๐‘ก โˆˆ 1 ๎€ธ , , โˆž ( 2 . 5 2 ) then ๐‘ ( ๐‘ก ) ๐‘ข โ€ฒ ( ๐‘ก ) ๎€œ ๐‘“ ( ๐‘ข ( ๐‘ก ) ) โ‰ฅ 1 โˆ’ ๐‘ก ๐‘ก 1 ๐‘ ( ๐‘  ) ๐‘“ ๎…ž ( ๐‘ข ( ๐‘  ) ) ๐‘ข ๎…ž 2 ( ๐‘  ) ๐‘“ 2 ๎€บ ๐‘ก ( ๐‘ข ( ๐‘  ) ) d ๐‘  > 0 , ๐‘ก โˆˆ 1 ๎€ธ , , โˆž ( 2 . 5 3 ) ๐‘ ( ๐‘ก ) ๐‘ข โ€ฒ ( ๐‘ก ) ๎‚€ โˆซ ๐‘“ ( ๐‘ข ( ๐‘ก ) ) 1 โˆ’ ๐‘ก ๐‘ก 1 ๐‘ ( ๐‘  ) ๐‘“ ๎…ž ( ๐‘ข ( ๐‘  ) ) ๐‘ข ๎…ž 2 ( ๐‘  ) ๐‘“ โˆ’ 2 ๎‚ ๎€บ ๐‘ก ( ๐‘ข ( ๐‘  ) ) d ๐‘  โ‰ฅ 1 , ๐‘ก โˆˆ 1 ๎€ธ . , โˆž ( 2 . 5 4 ) Multiplying this inequality by โˆ’ ๐‘“ ๎…ž ( ๐‘ข ( ๐‘ก ) ) ๐‘ข ๎…ž ( ๐‘ก ) / ๐‘“ ( ๐‘ข ( ๐‘ก ) ) โ‰ฅ 0 , we get ๎‚ต ๎‚ต ๎€œ l n 1 โˆ’ ๐‘ก ๐‘ก 1 ๐‘ ( ๐‘  ) ๐‘“ ๎…ž ( ๐‘ข ( ๐‘  ) ) ๐‘ข ๎…ž 2 ( ๐‘  ) ๐‘“ 2 ( ๐‘ข ( ๐‘  ) ) d ๐‘  ๎‚ถ ๎‚ถ ๎…ž ๎€ท | | | | ๎€ธ โ‰ฅ โˆ’ l n ๐‘“ ( ๐‘ข ( ๐‘ก ) ) ๎…ž ๎€บ ๐‘ก , ๐‘ก โˆˆ 1 ๎€ธ , , โˆž ( 2 . 5 5 ) and integrating it over [ ๐‘ก 1 , ๐‘ก ] , we obtain ๎‚ต ๎€œ l n 1 โˆ’ ๐‘ก ๐‘ก 1 ๐‘ ( ๐‘  ) ๐‘“ ๎…ž ( ๐‘ข ( ๐‘  ) ) ๐‘ข ๎…ž 2 ( ๐‘  ) ๐‘“ 2 ๎‚ถ ๎ƒฉ ๐‘“ ๎€ท ๐‘ข ๎€ท ๐‘ก ( ๐‘ข ( ๐‘  ) ) d ๐‘  โ‰ฅ l n 1 ๎€ธ ๎€ธ ๎ƒช ๐‘“ ( ๐‘ข ( ๐‘ก ) ) , ( 2 . 5 6 ) and therefore, ๎€œ 1 โˆ’ ๐‘ก ๐‘ก 1 ๐‘ ( ๐‘  ) ๐‘“ ๎…ž ( ๐‘ข ( ๐‘  ) ) ๐‘ข ๎…ž 2 ( ๐‘  ) ๐‘“ 2 ๐‘“ ๎€ท ๐‘ข ๎€ท ๐‘ก ( ๐‘ข ( ๐‘  ) ) d ๐‘  โ‰ฅ 1 ๎€ธ ๎€ธ ๎€บ ๐‘ก ๐‘“ ( ๐‘ข ( ๐‘ก ) ) , ๐‘ก โˆˆ 1 ๎€ธ . , โˆž ( 2 . 5 7 ) According to (2.53), we have ๐‘ ( ๐‘ก ) ๐‘ข ๎…ž ( ๐‘ก ) โ‰ฅ ๐‘“ ๎€ท ๐‘ข ๎€ท ๐‘ก ๐‘“ ( ๐‘ข ( ๐‘ก ) ) 1 ๎€ธ ๎€ธ ๎€บ ๐‘ก ๐‘“ ( ๐‘ข ( ๐‘ก ) ) , ๐‘ก โˆˆ 1 ๎€ธ , , โˆž ( 2 . 5 8 ) and consequently, ๐‘ข ๎…ž ๎€ท ๐‘ข ๎€ท ๐‘ก ( ๐‘ก ) โ‰ค ๐‘“ 1 1 ๎€ธ ๎€ธ ๐‘ ๎€บ ๐‘ก ( ๐‘ก ) , ๐‘ก โˆˆ 1 ๎€ธ . , โˆž ( 2 . 5 9 ) Integrating it over [ ๐‘ก 1 , ๐‘ก ] , we get ๎€ท ๐‘ก ๐‘ข ( ๐‘ก ) โ‰ค ๐‘ข 1 ๎€ธ ๎€ท ๐‘ข ๎€ท ๐‘ก + ๐‘“ 1 ๎€œ ๎€ธ ๎€ธ ๐‘ก ๐‘ก 1 1 ๎€บ ๐‘ก ๐‘ ( ๐‘  ) d ๐‘  , ๐‘ก โˆˆ 1 ๎€ธ . , โˆž ( 2 . 6 0 ) From (2.44), it follows that l i m ๐‘ก โ†’ โˆž ๐‘ข ( ๐‘ก ) = โˆ’ โˆž , ( 2 . 6 1 ) which is a contradiction.

By similar arguments, we can prove a dual lemma.

Lemma 2.14. Assume (1.2)โ€“(1.5), (1.8), (1.9), (2.44), and โˆƒ ๐œ– > 0 โˆถ ๐‘“ โˆˆ ๐ถ 1 ( โˆ’ ๐œ– , 0 ) , ๐‘“ ๎…ž โ‰ค 0 o n ( โˆ’ ๐œ– , 0 ) . ( 2 . 6 2 ) Let ๐‘ข be a solution of the problem (1.7), (1.13) with ๐‘ข 0 โˆˆ ( ๐ฟ 0 , 0 ) , then, there exists ๐œƒ 1 > 0 such that ๐‘ข ๎€ท ๐œƒ 1 ๎€ธ = 0 , ๐‘ข ๎…ž ๎€ท ( ๐‘ก ) > 0 f o r ๐‘ก โˆˆ 0 , ๐œƒ 1 ๎€ป . ( 2 . 6 3 )

Following ideas before Corollary 2.9, we get the next corollary.

Corollary 2.15. Assume (1.2)โ€“(1.5), (1.8), (1.9), (2.44), (2.45), and (2.62). Let ๐‘ข be a solution of the problem (1.7), (1.13) with ๐‘ข 0 โˆˆ ( ๐ฟ 0 , 0 ) โˆช ( 0 , ๐ฟ ) , then the assertions I and II of Corollary 2.9 are valid.

Now, we are able to formulate another existence result for oscillatory solutions. Its proof is almost the same as the proof of Theorem 2.10 for ๐‘ข 0 โˆˆ ( ๐ฟ 0 , 0 ) and the proof of Theorem 3.4 in [18] for ๐‘ข 0 โˆˆ ( 0 , ๐ฟ ) . The only difference is that we use Lemmas 2.13, 2.14, and Corollary 2.15, in place of Lemmas 2.7, 2.8, and Corollary 2.9, respectively.

Theorem 2.16 (existence of oscillatory solutions II). Assume that (1.2)โ€“(1.5), (1.8), (1.9), (2.44), (2.45), and (2.62) hold, then each damped solution of the problem (1.7), (1.13) with ๐‘ข 0 โˆˆ ( ๐ฟ 0 , 0 ) โˆช ( 0 , ๐ฟ ) is oscillatory and its amplitudes are decreasing.

Example 2.17. Let us consider (1.7) with ๐‘ ( ๐‘ก ) = ๐‘ก ๐›ผ [ โŽง โŽช โŽจ โŽช โŽฉ , ๐‘ก โˆˆ 0 , โˆž ) , ๐‘“ ( ๐‘ฅ ) = โˆ’ | ๐‘ฅ | ๐œ† s g n ๐‘ฅ , ๐‘ฅ โ‰ค 1 , ๐‘ฅ โˆ’ 2 , ๐‘ฅ โˆˆ ( 1 , 3 ) , 1 , ๐‘ฅ โ‰ฅ 3 , ( 2 . 6 4 ) where ๐œ† and ๐›ผ are real parameters.Case 1. Let ๐œ† โˆˆ ( 1 , โˆž ) and ๐›ผ โˆˆ ( 0 , 1 ] , then all assumptions of Theorem 2.16 are satisfied. Note that ๐‘“ satisfies neither (2.20) nor (2.29) and hence Theorem 2.10 cannot be applied. Case 2. Let ๐œ† = 1 and ๐›ผ โˆˆ ( 0 , โˆž ) , then all assumptions of Theorem 2.10 are satisfied. If ๐›ผ โˆˆ ( 0 , 1 ] , then also all assumptions of Theorem 2.16 are fulfilled, but for ๐›ผ โˆˆ ( 1 , โˆž ) , the function ๐‘ does not satisfy (2.44), and hence Theorem 2.16 cannot be applied.

3. Asymptotic Properties of Oscillatory Solutions

In Lemma 2.6 we show that if ๐‘ข is a damped solution of the problem (1.7), (1.13) which is not oscillatory then ๐‘ข converges to 0 for ๐‘ก โ†’ โˆž . In this section, we give conditions under which also oscillatory solutions converge to 0.

Theorem 3.1. Assume that (1.2)โ€“(1.5), (1.8), and (1.9) hold and that there exists ๐‘˜ 0 > 0 such that l i m i n f ๐‘ก โ†’ โˆž ๐‘ ( ๐‘ก ) ๐‘ก ๐‘˜ 0 > 0 , ( 3 . 1 ) then each damped oscillatory solution ๐‘ข of the problem (1.7), (1.13) with ๐‘ข 0 โˆˆ ( ๐ฟ 0 , 0 ) โˆช ( 0 , ๐ฟ ) satisfies l i m ๐‘ก โ†’ โˆž ๐‘ข ( ๐‘ก ) = 0 , l i m ๐‘ก โ†’ โˆž ๐‘ข ๎…ž ( ๐‘ก ) = 0 . ( 3 . 2 )

Proof. Consider an oscillatory solution ๐‘ข of the problem (1.7), (1.13) with ๐‘ข 0 โˆˆ ( 0 , ๐ฟ ) .Step 1. Using the notation and some arguments of the proof of Theorem 2.10, we have the unbounded sequences { ๐‘Ž ๐‘› } โˆž ๐‘› = 1 , { ๐‘ ๐‘› } โˆž ๐‘› = 1 , { ๐œƒ ๐‘› } โˆž ๐‘› = 1 , and { ๐›ฟ ๐‘› } โˆž ๐‘› = 1 , such that 0 < ๐›ฟ 1 < ๐‘ 1 < ๐œƒ 1 < ๐‘Ž 1 < ๐›ฟ 2 < โ‹ฏ < ๐›ฟ ๐‘› < ๐‘ ๐‘› < ๐œƒ ๐‘› < ๐‘Ž ๐‘› < ๐›ฟ ๐‘› + 1 < โ‹ฏ , ( 3 . 3 ) where ๐‘ข ( ๐œƒ ๐‘› ) = ๐‘ข ( ๐›ฟ ๐‘› ) = 0 , ๐‘ข ( ๐‘Ž ๐‘› ) = ๐ด ๐‘› > 0 is a unique local maximum of ๐‘ข in ( ๐œƒ ๐‘› , ๐›ฟ ๐‘› + 1 ) , ๐‘ข ( ๐‘ ๐‘› ) = ๐ต ๐‘› < 0 is a unique local minimum of ๐‘ข in ( ๐›ฟ ๐‘› , ๐œƒ ๐‘› ) , ๐‘› โˆˆ โ„• . Let ๐‘‰ ๐‘ข be given by (2.36) and then (2.39) and (2.40) hold and, by (1.2)โ€“(1.4), we see that l i m ๐‘ก โ†’ โˆž ๐‘ข ( ๐‘ก ) = 0 โŸบ ๐‘ ๐‘ข = 0 . ( 3 . 4 ) Assume that (3.2) does not hold. Then ๐‘ ๐‘ข > 0 . Motivated by arguments of [28], we derive a contradiction in the following steps.Step 2 (estimates of ๐‘ข ). By (2.36) and (2.39), we have l i m ๐‘› โ†’ โˆž ๐‘ข ๎…ž 2 ๎€ท ๐›ฟ ๐‘› ๎€ธ 2 = l i m ๐‘› โ†’ โˆž ๐‘ข ๎…ž 2 ๎€ท ๐œƒ ๐‘› ๎€ธ 2 = ๐‘ ๐‘ข > 0 , ( 3 . 5 ) and the sequences { ๐‘ข ๎…ž 2 ( ๐›ฟ ๐‘› ) } โˆž ๐‘› = 1 and { ๐‘ข ๎…ž 2 ( ๐œƒ ๐‘› ) } โˆž ๐‘› = 1 are decreasing. Consider ๐‘› โˆˆ โ„• . Then ๐‘ข ๎…ž 2 ( ๐›ฟ ๐‘› ) / 2 > ๐‘ ๐‘ข and there are ๐›ผ ๐‘› , ๐›ฝ ๐‘› satisfying ๐‘Ž ๐‘› < ๐›ผ ๐‘› < ๐›ฟ ๐‘› < ๐›ฝ ๐‘› < ๐‘ ๐‘› and such that ๐‘ข ๎…ž 2 ๎€ท ๐›ผ ๐‘› ๎€ธ = ๐‘ข ๎…ž 2 ๎€ท ๐›ฝ ๐‘› ๎€ธ = ๐‘ ๐‘ข , ๐‘ข ๎…ž 2 ( ๐‘ก ) > ๐‘ ๐‘ข ๎€ท ๐›ผ , ๐‘ก โˆˆ ๐‘› , ๐›ฝ ๐‘› ๎€ธ . ( 3 . 6 ) Since ๐‘‰ ๐‘ข ( ๐‘ก ) > ๐‘ ๐‘ข for ๐‘ก > 0 (see (2.39)), we get by (2.36) and (3.6) the inequalities ๐‘ ๐‘ข / 2 + ๐น ( ๐‘ข ( ๐›ผ ๐‘› ) ) > ๐‘ ๐‘ข and ๐‘ ๐‘ข / 2 + ๐น ( ๐‘ข ( ๐›ฝ ๐‘› ) ) > ๐‘ ๐‘ข , and consequently ๐น ( ๐‘ข ( ๐›ผ ๐‘› ) ) > ๐‘ ๐‘ข / 2 and ๐น ( ๐‘ข ( ๐›ฝ ๐‘› ) ) > ๐‘ ๐‘ข / 2 . Therefore, due to (1.4), there exists ฬƒ ๐‘ > 0 such that ๐‘ข ๎€ท ๐›ผ ๐‘› ๎€ธ ๎€ท ๐›ฝ > ฬƒ ๐‘ , ๐‘ข ๐‘› ๎€ธ < โˆ’ ฬƒ ๐‘ , ๐‘› โˆˆ โ„• . ( 3 . 7 ) Similarly, we deduce that there are ๎‚ ๐›ผ ๐‘› , ฬƒ ๐›ฝ ๐‘› satisfying ๐‘ ๐‘› < ๎‚ ๐›ผ ๐‘› < ๐œƒ ๐‘› < ฬƒ ๐›ฝ ๐‘› < ๐‘Ž ๐‘› + 1 and such that ๐‘ข ๎€ท ๎‚ ๐›ผ ๐‘› ๎€ธ ๎€ท ฬƒ ๐›ฝ < โˆ’ ฬƒ ๐‘ , ๐‘ข ๐‘› ๎€ธ > ฬƒ ๐‘ , ๐‘› โˆˆ โ„• . ( 3 . 8 ) The behaviour of ๐‘ข and inequalities (3.7) and (3.8) yield | | ๐‘ข | | ๎€บ ๐›ฝ ( ๐‘ก ) > ฬƒ ๐‘ , ๐‘ก โˆˆ ๐‘› , ๎‚ ๐›ผ ๐‘› ๎€ป โˆช ๎€บ ฬƒ ๐›ฝ ๐‘› , ๐›ผ ๐‘› + 1 ๎€ป , ๐‘› โˆˆ โ„• . ( 3 . 9 ) Step 3 (estimates of ๐›ฝ ๐‘› โˆ’ ๐›ผ ๐‘› ). We prove that there exist ๐‘ 0 , ๐‘ 1 โˆˆ ( 0 , โˆž ) such that ๐‘ 0 < ๐›ฝ ๐‘› โˆ’ ๐›ผ ๐‘› < ๐‘ 1 , ๐‘› โˆˆ โ„• . ( 3 . 1 0 ) Assume on the contrary that there exists a subsequence satisfying l i m โ„“ โ†’ โˆž ( ๐›ฝ โ„“ โˆ’ ๐›ผ โ„“ ) = 0 . By the mean value theorem and (3.7), there is ๐œ‰ โ„“ โˆˆ ( ๐›ผ โ„“ , ๐›ฝ โ„“ ) such that 0 < 2 ฬƒ ๐‘ < ๐‘ข ( ๐›ผ โ„“ ) โˆ’ ๐‘ข ( ๐›ฝ โ„“ ) = | ๐‘ข โ€ฒ ( ๐œ‰ โ„“ ) | ( ๐›ฝ โ„“ โˆ’ ๐›ผ โ„“ ) . Since ๐น ( ๐‘ข ( ๐‘ก ) ) โ‰ฅ 0 for ๐‘ก โˆˆ [ 0 , โˆž ) , we get by (2.16) the inequality | | ๐‘ข ๎…ž | | < ๎” ( ๐‘ก ) ๎€ท ๐‘ข 2 ๐น 0 ๎€ธ [ , ๐‘ก โˆˆ 0 , โˆž ) , ( 3 . 1 1 ) and consequently ๎” 0 < 2 ฬƒ ๐‘ โ‰ค ๎€ท ๐‘ข 2 ๐น 0 ๎€ธ l i m โ„“ โ†’ โˆž ๎€ท ๐›ฝ โ„“ โˆ’ ๐›ผ โ„“ ๎€ธ = 0 , ( 3 . 1 2 ) which is a contradiction. So, ๐‘ 0 satisfying (3.10) exists. Using the mean value theorem again, we can find ๐œ ๐‘› โˆˆ ( ๐›ผ ๐‘› , ๐›ฟ ๐‘› ) such that ๐‘ข ( ๐›ฟ ๐‘› ) โˆ’ ๐‘ข ( ๐›ผ ๐‘› ) = ๐‘ข ๎…ž ( ๐œ ๐‘› ) ( ๐›ฟ ๐‘› โˆ’ ๐›ผ ๐‘› ) and, by (3.6), ๐›ฟ ๐‘› โˆ’ ๐›ผ ๐‘› = ๎€ท ๐›ผ โˆ’ ๐‘ข ๐‘› ๎€ธ ๐‘ข ๎…ž ๎€ท ๐œ ๐‘› ๎€ธ = ๐‘ข ๎€ท ๐›ผ ๐‘› ๎€ธ | | ๐‘ข ๎…ž ๎€ท ๐œ ๐‘› ๎€ธ | | < ๐ด 1 โˆš ๐‘ ๐‘ข . ( 3 . 1 3 ) Similarly, we can find ๐œ‚ ๐‘› โˆˆ ( ๐›ฟ ๐‘› , ๐›ฝ ๐‘› ) such that ๐›ฝ ๐‘› โˆ’ ๐›ฟ ๐‘› = ๐‘ข ๎€ท ๐›ฝ ๐‘› ๎€ธ ๐‘ข ๎…ž ๎€ท ๐œ‚ ๐‘› ๎€ธ = | | ๐‘ข ๎€ท ๐›ฝ ๐‘› ๎€ธ | | | | ๐‘ข ๎…ž ๎€ท ๐œ‚ ๐‘› ๎€ธ | | < | | ๐ต 1 | | โˆš ๐‘ ๐‘ข . ( 3 . 1 4 ) If we put ๐‘ 1 = ( ๐ด 1 + | ๐ต 1 โˆš | ) / ๐‘ ๐‘ข , then (3.10) is fulfilled. Similarly, we can prove ๐‘ 0 < ฬƒ ๐›ฝ ๐‘› โˆ’ ๎‚ ๐›ผ ๐‘› < ๐‘ 1 , ๐‘› โˆˆ โ„• . ( 3 . 1 5 ) Step 4 (estimates of ๐›ผ ๐‘› + 1 โˆ’ ๐›ผ ๐‘› ). We prove that there exist ๐‘ 2 โˆˆ ( 0 , โˆž ) such that ๐›ผ ๐‘› + 1 โˆ’ ๐›ผ ๐‘› < ๐‘ 2 , ๐‘› โˆˆ โ„• . ( 3 . 1 6 ) Put ๐‘š 1 = m i n { ๐‘“ ( ๐‘ฅ ) โˆถ ๐ต 1 โ‰ค ๐‘ฅ โ‰ค โˆ’ ฬƒ ๐‘ } > 0 . By (3.9), ๐ต 1 โ‰ค ๐‘ข ( ๐‘ก ) < โˆ’ ฬƒ ๐‘ for ๐‘ก โˆˆ [ ๐›ฝ ๐‘› , ๎‚ ๐›ผ ๐‘› ] , ๐‘› โˆˆ โ„• . Therefore, ๐‘“ ( ๐‘ข ( ๐‘ก ) ) โ‰ฅ ๐‘š 1 ๎€บ ๐›ฝ , ๐‘ก โˆˆ ๐‘› , ๎‚ ๐›ผ ๐‘› ๎€ป , ๐‘› โˆˆ โ„• . ( 3 . 1 7 ) Due to (1.9), we can find ๐‘ก 1 > 0 such that ๐‘ ๎…ž ( ๐‘ก ) ๎” ๐‘ ( ๐‘ก ) ๎€ท ๐‘ข 2 ๐น 0 ๎€ธ < ๐‘š 1 2 ๎€บ ๐‘ก , ๐‘ก โˆˆ 1 ๎€ธ . , โˆž ( 3 . 1 8 ) Let ๐‘› 1 โˆˆ โ„• fulfil ๐›ผ ๐‘› 1 โ‰ฅ ๐‘ก 1 , then, according to (2.4), (3.11), (3.17), and (3.18), we have ๐‘ข ๎…ž ๎…ž ๐‘š ( ๐‘ก ) > โˆ’ 1 2 + ๐‘š 1 = ๐‘š 1 2 ๎€บ ๐›ฝ , ๐‘ก โˆˆ ๐‘› , ๎‚ ๐›ผ ๐‘› ๎€ป , ๐‘› โ‰ฅ ๐‘› 1 . ( 3 . 1 9 ) Integrating (3.19) from ๐‘ ๐‘› to ๐›ฝ ๐‘› and using (3.6), we get 2 โˆš ๐‘ ๐‘ข > ๐‘š 1 ( ๐‘ ๐‘› โˆ’ ๐›ฝ ๐‘› ) for ๐‘› โ‰ฅ ๐‘› 1 . Similarly we get 2 โˆš ๐‘ ๐‘ข > ๐‘š 1 ( ๎‚ ๐›ผ ๐‘› โˆ’ ๐‘ ๐‘› ) for ๐‘› โ‰ฅ ๐‘› 1 . Therefore 4 ๐‘š 1 โˆš ๐‘ ๐‘ข > ๎‚ ๐›ผ ๐‘› โˆ’ ๐›ฝ ๐‘› , ๐‘› โ‰ฅ ๐‘› 1 . ( 3 . 2 0 ) By analogy, we put ๐‘š 2 = m i n { โˆ’ ๐‘“ ( ๐‘ฅ ) โˆถ ฬƒ ๐‘ โ‰ค ๐‘ฅ โ‰ค ๐ด 1 } > 0 and prove that there exists ๐‘› 2 โˆˆ โ„• such that 4 ๐‘š 2 โˆš ๐‘ ๐‘ข > ๐›ผ ๐‘› + 1 โˆ’ ฬƒ ๐›ฝ ๐‘› , ๐‘› โ‰ฅ ๐‘› 2 . ( 3 . 2 1 ) Inequalities (3.10), (3.15), (3.20), and (3.21) imply the existence of ๐‘ 2 fulfilling (3.16).Step 5 (construction of a contradiction). Choose ๐‘ก 0 > ๐‘ 1 and integrate the equality in (2.37) from ๐‘ก 0 to ๐‘ก > ๐‘ก 0 . We have ๐‘‰ ๐‘ข ( ๐‘ก ) = ๐‘‰ ๐‘ข ๎€ท ๐‘ก 0 ๎€ธ โˆ’ ๎€œ ๐‘ก ๐‘ก 0 ๐‘ ๎…ž ( ๐œ ) ๐‘ข ๐‘ ( ๐œ ) ๎…ž 2 ( ๐œ ) d ๐œ , ๐‘ก โ‰ฅ ๐‘ก 0 . ( 3 . 2 2 ) Choose ๐‘› 0 โˆˆ โ„• such that ๐›ผ ๐‘› 0 > ๐‘ก 0 . Further, choose ๐‘› โˆˆ โ„• , ๐‘› > ๐‘› 0 and assume that ๐‘ก > ๐›ฝ ๐‘› , then, by (3.6), ๎€œ ๐‘ก ๐‘ก 0 ๐‘ โ€ฒ ( ๐œ ) ๐‘ข ๐‘ ( ๐œ ) ๎…ž 2 ( ๐œ ) d ๐œ > ๐‘› ๎“ ๐‘— = ๐‘› 0 ๎€œ ๐›ฝ ๐‘— ๐›ผ ๐‘— ๐‘ ๎…ž ( ๐œ ) ๐‘ข ๐‘ ( ๐œ ) ๎…ž 2 ( ๐œ ) d ๐œ > ๐‘ ๐‘ข ๐‘› ๎“ ๐‘— = ๐‘› 0 ๎€œ ๐›ฝ ๐‘— ๐›ผ ๐‘— ๐‘ ๎…ž ( ๐œ ) ๐‘ ( ๐œ ) d ๐œ = ๐‘ ๐‘ข ๐‘› ๎“ ๐‘— = ๐‘› 0 [ ] l n ๐‘ ( ๐œ ) ๐›ฝ ๐‘— ๐›ผ ๐‘— . ( 3 . 2 3 ) By virtue of (3.1) there exists ๐‘ 3 > 0 such that ๐‘ ( ๐‘ก ) / ๐‘ก ๐‘˜ 0 > ๐‘ 3 for ๐‘ก โˆˆ [ ๐‘ก 0 , โˆž ) . Thus, l n ๐‘ ( ๐‘ก ) > l n ๐‘ 3 + ๐‘˜ 0 l n ๐‘ก and ๎€œ ๐‘ก ๐‘ก 0 ๐‘ ๎…ž ( ๐œ ) ๐‘ข ๐‘ ( ๐œ ) ๎…ž 2 ( ๐œ ) d ๐œ > ๐‘ ๐‘ข ๐‘› ๎“ ๐‘— = ๐‘› 0 [ l n ๐‘ 3 + ๐‘˜ 0 l n ๐‘ก ) ] ๐›ฝ ๐‘— ๐›ผ ๐‘— = ๐‘ ๐‘ข ๐‘˜ 0 ๐‘› ๎“ ๐‘— = ๐‘› 0 ๐›ฝ l n ๐‘— ๐›ผ ๐‘— . ( 3 . 2 4 ) Due to (3.10) and ๐‘ 1 < ๐›ผ ๐‘› 0 , we have ๐›ฝ 1 < ๐‘— ๐›ผ ๐‘— ๐‘ < 1 + 1 ๐›ผ ๐‘— < 2 , ๐‘— = ๐‘› 0 , โ€ฆ , ๐‘› , ( 3 . 2 5 ) and the mean value theorem yields ๐œ‰ ๐‘— โˆˆ ( 1 , 2 ) such that ๐›ฝ l n ๐‘— ๐›ผ ๐‘— = ๎‚ต ๐›ฝ ๐‘— ๐›ผ ๐‘— ๎‚ถ 1 โˆ’ 1 ๐œ‰ ๐‘— > ๐›ฝ ๐‘— โˆ’ ๐›ผ ๐‘— 2 ๐›ผ ๐‘— , ๐‘— = ๐‘› 0 , โ€ฆ , ๐‘› . ( 3 . 2 6 ) By (3.10) and (3.16), we deduce ๐›ฝ ๐‘— โˆ’ ๐›ผ ๐‘— ๐›ผ ๐‘— > ๐‘ 0 ๐›ผ ๐‘— , ๐›ผ ๐‘— < ๐‘— ๐‘ 2 + ๐›ผ 1 , ๐‘— = ๐‘› 0 , โ€ฆ , ๐‘› . ( 3 . 2 7 ) Thus, ๐›ฝ ๐‘— โˆ’ ๐›ผ ๐‘— ๐›ผ ๐‘— > ๐‘ 0 ๐‘— ๐‘ 2 + ๐›ผ 1 , ๐‘— = ๐‘› 0 , โ€ฆ , ๐‘› . ( 3 . 2 8 ) Using (3.24)โ€“(3.28) and letting ๐‘ก to โˆž, we obtain ๎€œ โˆž ๐‘ก 0 ๐‘ โ€ฒ ( ๐œ ) ๐‘ ( ๐œ ) ๐‘ข โ€ฒ 2 ( ๐œ ) d ๐œ โ‰ฅ ๐‘ ๐‘ข ๐‘˜ 0 โˆž ๎“ ๐‘› = ๐‘› 0 ๐›ฝ l n ๐‘› ๐›ผ ๐‘› โ‰ฅ 1 2 ๐‘ ๐‘ข ๐‘˜ 0 โˆž ๎“ ๐‘› = ๐‘› 0 ๐›ฝ ๐‘› โˆ’ ๐›ผ ๐‘› ๐›ผ ๐‘› โ‰ฅ 1 2 ๐‘ ๐‘ข ๐‘˜ 0 โˆž ๎“ ๐‘› = ๐‘› 0 ๐‘ 0 ๐‘› ๐‘ 2 + ๐›ผ 1 = โˆž . ( 3 . 2 9 ) Using it in (3.22), we get l i m ๐‘ก โ†’ โˆž ๐‘‰ ๐‘ข ( ๐‘ก ) = โˆ’ โˆž , which is a contradiction. So, we have proved that ๐‘ ๐‘ข = 0 .
Using (2.4) and (3.4), we have l i m ๐‘ก โ†’ โˆž ๎‚ต ๐‘ข ๎…ž 2 ( ๐‘ก ) 2 + ๎€œ ๐‘ก 0 ๐‘ ๎…ž ( ๐‘  ) ๐‘ข ๐‘ ( ๐‘  ) ๎…ž 2 ๎‚ถ ๎€ท ๐‘ข ( ๐‘  ) d ๐‘  = ๐น 0 ๎€ธ ๎€ท ๐‘ข โˆ’ ๐น ( 0 ) = ๐น 0 ๎€ธ . ( 3 . 3 0 ) Since the function โˆซ ๐‘ก 0 ( ๐‘ ๎…ž ( ๐‘  ) / ๐‘ ( ๐‘  ) ) ๐‘ข ๎…ž 2 ( ๐‘  ) d ๐‘  is increasing, there exists l i m ๐‘ก โ†’ โˆž ๎€œ ๐‘ก 0 ๐‘ ๎…ž ( ๐‘  ) ๐‘ข ๐‘ ( ๐‘  ) ๎…ž 2 ( ๎€ท ๐‘ข ๐‘  ) d ๐‘  โ‰ค ๐น 0 ๎€ธ . ( 3 . 3 1 ) Therefore, there exists l i m ๐‘ก โ†’ โˆž ๐‘ข ๎…ž 2 ( ๐‘ก ) = โ„“ 2 . ( 3 . 3 2 ) If โ„“ > 0 , then l i m ๐‘ก โ†’ โˆž | ๐‘ข ๎…ž ( ๐‘ก ) | = โ„“ , which contradicts (3.4). Therefore, โ„“ = 0 and (3.2) is proved.
If ๐‘ข 0 โˆˆ ( ๐ฟ 0 , 0 ) , we argue analogously.

Acknowledgments

The authors thank the referees for valuable comments and suggestions. This work was supported by the Council of Czech Government MSM 6198959214.