Abstract

A second-order semilinear Volterra integrodifferential equation involving fractional time derivatives is considered. We prove existence and uniqueness of mild solutions and classical solutions in appropriate spaces.

1. Introduction

In this work we discuss the following problem:π‘’ξ…žξ…ž(ξ€œπ‘‘)=𝐴𝑒(𝑑)+𝑓(𝑑)+𝑑0𝑔𝑑,𝑠,𝑒(𝑠),𝐷𝛽1𝑒(𝑠),…,𝐷𝛽𝑛𝑒(𝑠)𝑑𝑠,𝑑>0,𝑒(0)=𝑒0βˆˆπ‘‹,π‘’ξ…ž(0)=𝑒1βˆˆπ‘‹,(1.1)

where 0<𝛽𝑖≀1, 𝑖=1,…,𝑛. Here the prime denotes time differentiation and 𝐷𝛽𝑖, 𝑖=1,…,𝑛 denotes fractional time differentiation (in the sense of Riemann-Liouville or Caputo). The operator 𝐴 is the infinitesimal generator of a strongly continuous cosine family 𝐢(𝑑), 𝑑β‰₯0 of bounded linear operators in the Banach space 𝑋, 𝑓 and 𝑔 are nonlinear functions from 𝐑+ to 𝑋 and 𝐑+×𝐑+×𝑋×⋯×𝑋 to 𝑋, respectively, 𝑒0 and 𝑒1 are given initial data in 𝑋. The problem with 𝛽1=β‹―=𝛽𝑛=0 or 1 has been investigated by several authors (see [1–7] and references therein, to cite a few). Well-posedness has been proved using fixed point theorems and the theory of strongly continuous cosine families in Banach spaces developed in [8, 9]. This theory allows us to treat a more general integral or integrodifferential equation, the solutions of which are called β€œmild” solutions. In case of regularity (of the initial data and the nonlinearities), the mild solutions are shown to be classical. In case 𝛽1=𝛽2=β‹―=𝛽𝑛=1, the underlying space is the space of continuously differentiable functions.

In this work, when 0<𝛽𝑖<1, 𝑖=1,…,𝑛, we will see that mild solutions need not be that regular (especially when dealing with Riemann-Liouville fractional derivatives). It is the objective of this paper to find the appropriate space and norm where the problem is solvable. We first consider the problem with a fractional derivative in the sense of Caputo and look for a mild solution in 𝐢1. Under certain conditions on the data it is shown that this mild solution is classical. Then we consider the case of fractional derivatives in the sense of Riemann-Liouville. We prove existence and uniqueness of mild solution under much weaker regularity conditions than the expected ones. Indeed, when the nonlinearity involves a term of the form1ξ€œΞ“(1βˆ’π›½)𝑑0π‘’ξ…ž(𝑠)𝑑𝑠(π‘‘βˆ’π‘ )𝛽,0<𝛽<1,(1.2)

then one is attracted by π‘’ξ…ž(𝑠) in the integral and therefore it is natural to seek mild solutions in the space of continuously differentiable functions. This is somewhat surprising if instead of this expression one is given 𝐢𝐷𝛽𝑒(𝑑) (the latter is exactly the definition of the former). However, this is not the case when we deal with the Riemann-Liouville fractional derivative. Solutions are only 𝛽-differentiable and not necessarily once continuously differentiable. It will be therefore wise to look for solutions in an appropriate β€œfractional” space. We will consider the new spaces 𝐸𝛽 and 𝐹𝑆𝛽 (see (4.1)) instead of the classical ones 𝐸 and 𝐢1 (see [1–7]).

To simplify our task we will treat the following simpler problemπ‘’ξ…žξ…ž(ξ€œπ‘‘)=𝐴𝑒(𝑑)+𝑓(𝑑)+𝑑0𝑔𝑑,𝑠,𝑒(𝑠),𝐷𝛽𝑒(𝑠)𝑑𝑠,𝑑>0,𝑒(0)=𝑒0βˆˆπ‘‹,π‘’ξ…ž(0)=𝑒1βˆˆπ‘‹,(1.3) with 0<𝛽<1. The general case can be derived easily.

The rest of the paper is divided into three sections. In the second section we prepare some material consisting of notation and preliminary results needed in our proofs. The next section treats well-posedness when the fractional derivative is taken in the sense of Caputo. Section 4 is devoted to the Riemann-Liouville fractional derivative case.

2. Preliminaries

In this section we present some assumptions and results needed in our proofs later. This will fix also the notation used in this paper.

Definition 2.1. The integral (𝐼𝛼1β„Ž)(π‘₯)=ξ€œΞ“(𝛼)π‘₯π‘Žβ„Ž(𝑑)𝑑𝑑(π‘₯βˆ’π‘‘)1βˆ’π›Ό,π‘₯>π‘Ž(2.1) is called the Riemann-Liouville fractional integral of β„Ž of order 𝛼>0 when the right side exists.

Here Ξ“ is the usual Gamma functionξ€œΞ“(𝑧)∢=∞0π‘’βˆ’π‘ π‘ π‘§βˆ’1𝑑𝑠,𝑧>0.(2.2)

Definition 2.2. The (left hand) Riemann-Liouville fractional derivative of order 0<𝛼<1 is defined by ξ€·π·π›Όπ‘Žβ„Žξ€Έ1(π‘₯)=𝑑Γ(1βˆ’π›Ό)ξ€œπ‘‘π‘₯π‘₯π‘Žβ„Ž(𝑑)𝑑𝑑(π‘₯βˆ’π‘‘)𝛼,π‘₯>π‘Ž,(2.3) whenever the right side is pointwise defined.

Definition 2.3. The fractional derivative of order 0<𝛼<1 in the sense of Caputo is given by ξ€·πΆπ·π›Όπ‘Žβ„Žξ€Έ1(π‘₯)=Ξ“ξ€œ(1βˆ’π›Ό)π‘₯π‘Žβ„Žξ…ž(𝑑)𝑑𝑑(π‘₯βˆ’π‘‘)𝛼,π‘₯>π‘Ž.(2.4)

Remark 2.4. The fractional integral of order 𝛼 is well defined on 𝐿𝑝, 𝑝β‰₯1 (see [10]). Further, from Definition 2.2, it is clear that the Riemann-Liouville fractional derivative is defined for any function β„ŽβˆˆπΏπ‘, 𝑝β‰₯1 for which π‘˜1βˆ’π›Όβˆ—β„Ž is differentiable (where π‘˜1βˆ’π›Ό(𝑑)∢=π‘‘βˆ’π›Ό/Ξ“(1βˆ’π›Ό) and βˆ— is the incomplete convolution). In fact, as domain of 𝐷𝛼0=𝐷𝛼 we can take 𝐷(𝐷𝛼)=β„ŽβˆˆπΏπ‘(0,𝑇)βˆΆπ‘˜1βˆ’π›Όβˆ—β„Žβˆˆπ‘Š1,𝑝,(0,𝑇)(2.5) where π‘Š1,𝑝(ξ‚»0,𝑇)∢=π‘’βˆΆβˆƒπœ‘βˆˆπΏπ‘(ξ€œ0,𝑇)βˆΆπ‘’(𝑑)=𝐢+𝑑0ξ‚Ό.πœ‘(𝑠)𝑑𝑠(2.6) In particular, we know that the absolutely continuous functions (𝑝=1) are differentiable almost everywhere and therefore the Riemann-Liouville fractional derivative exists a.e. In this case (for an absolutely continuous function) the derivative is summable [10, Lemma 2.2] and the fractional derivative in the sense of Caputo exists. Moreover, we have the following relationship between the two types of fractional derivatives: ξ€·π·π›Όπ‘Žβ„Žξ€Έ1(π‘₯)=ξ‚ΈΞ“(1βˆ’π›Ό)β„Ž(π‘Ž)(π‘‘βˆ’π‘Ž)𝛼+ξ€œπ‘₯π‘Žβ„Žξ…ž(𝑑)𝑑𝑑(π‘₯βˆ’π‘‘)𝛼=1Ξ“(1βˆ’π›Ό)β„Ž(π‘Ž)(π‘‘βˆ’π‘Ž)𝛼+ξ€·πΆπ·π›Όπ‘Žβ„Žξ€Έ(π‘₯),π‘₯>π‘Ž.(2.7) See [10–15] for more on fractional derivatives.

We will assume the following.(H1)𝐴 is the infinitesimal generator of a strongly continuous cosine family 𝐢(𝑑), π‘‘βˆˆπ‘, of bounded linear operators in the Banach space 𝑋.

The associated sine family 𝑆(𝑑), π‘‘βˆˆπ‘ is defined byξ€œπ‘†(𝑑)π‘₯∢=𝑑0𝐢(𝑠)π‘₯𝑑𝑠,π‘‘βˆˆπ‘,π‘₯βˆˆπ‘‹.(2.8)

It is known (see [9, 16]) that there exist constants 𝑀β‰₯1 and πœ”β‰₯0 such that||𝐢||(𝑑)β‰€π‘€π‘’πœ”|𝑑|||𝑆𝑑,π‘‘βˆˆπ‘,(𝑑)βˆ’π‘†0ξ€Έ||||||ξ€œβ‰€π‘€π‘‘π‘‘0π‘’πœ”|𝑠|||||𝑑𝑠,𝑑,𝑑0βˆˆπ‘.(2.9)

If we define 𝐸∢={π‘₯βˆˆπ‘‹βˆΆπΆ(𝑑)π‘₯isoncecontinuouslydifferentiableon𝐑}(2.10) then we have the following.

Lemma 2.5 (see [9, 16]). Assume that (H1) is satisfied. Then (i)𝑆(𝑑)π‘‹βŠ‚πΈ, π‘‘βˆˆπ‘,(ii)𝑆(𝑑)πΈβŠ‚π·(𝐴), π‘‘βˆˆπ‘,(iii)(𝑑/𝑑𝑑)𝐢(𝑑)π‘₯=𝐴𝑆(𝑑)π‘₯, π‘₯∈𝐸,   π‘‘βˆˆπ‘,(iv)(𝑑2/𝑑𝑑2)𝐢(𝑑)π‘₯=𝐴𝐢(𝑑)π‘₯=𝐢(𝑑)𝐴π‘₯, π‘₯∈𝐷(𝐴), π‘‘βˆˆπ‘.

Lemma 2.6 (see [9, 16]). Suppose that (H1) holds, π‘£βˆΆπ‘β†’π‘‹ a continuously differentiable function and βˆ«π‘ž(𝑑)=𝑑0𝑆(π‘‘βˆ’π‘ )𝑣(𝑠)𝑑𝑠. Then, π‘ž(𝑑)∈𝐷(𝐴), π‘žξ…žβˆ«(𝑑)=𝑑0𝐢(π‘‘βˆ’π‘ )𝑣(𝑠)𝑑𝑠 and π‘žξ…žξ…žβˆ«(𝑑)=𝑑0𝐢(π‘‘βˆ’π‘ )π‘£ξ…ž(𝑠)𝑑𝑠+𝐢(𝑑)𝑣(0)=π΄π‘ž(𝑑)+𝑣(𝑑).

Definition 2.7. A function 𝑒(β‹…)∈𝐢2(𝐼,𝑋) is called a classical solution of (1.3) if 𝑒(𝑑)∈𝐷(𝐴), satisfies the equation in (1.3) and the initial conditions are verified.

In case of Riemann-Liouville fractional derivative then we require additionally that 𝐷𝛽𝑒(𝑑) be continuous.

Definition 2.8. A continuously differentiable solution of the integrodifferential equation 𝑒(𝑑)=𝐢(𝑑)𝑒0+𝑆(𝑑)𝑒1+ξ€œπ‘‘0+ξ€œπ‘†(π‘‘βˆ’π‘ )𝑓(𝑠)𝑑𝑠𝑑0ξ€œπ‘†(π‘‘βˆ’π‘ )𝑠0𝑔𝑠,𝜏,𝑒(𝜏),𝐢𝐷𝛽𝑒(𝜏)π‘‘πœπ‘‘π‘ (2.11) is called mild solution of problem (1.3).

In case of Riemann-Liouville fractional derivative the (continuous) solution is merely 𝛽-differentiable (i.e., 𝐷𝛽𝑒(𝑑) exists and is continuous).

It follows from [8] that, in case of continuity of the nonlinearities, solutions of (1.3) are solutions of the more general problem (2.11).

3. Well-Posedness in 𝐢1([0,𝑇])

For the sake of comparison with the results in the next section we prove here existence and uniqueness of solutions in the space 𝐢1([0,𝑇]). This is the space where we usually look for mild solutions in case the first-order derivative of 𝑒 appears in the nonlinearity (see [1–7]). We consider fractional derivatives in the sense of Caputo. In case of Riemann-Liouville fractional derivatives we can pass to Caputo fractional derivatives through the formula (2.7) provided that solutions are in 𝐢1([0,𝑇]) (in theory, absolute continuity is enough).

Let 𝑋𝐴=𝐷(𝐴) endowed with the graph norm β€–π‘₯‖𝐴=β€–π‘₯β€–+‖𝐴π‘₯β€–. We need the following assumptions on 𝑓 and 𝑔:(H2)π‘“βˆΆπ‘+→𝑋 is continuously differentiable,(H3)π‘”βˆΆπ‘+×𝐑+×𝑋𝐴×𝑋→𝑋 is continuous and continuously differentiable with respect to its first variable,(H4)𝑔 and 𝑔1 (the derivative of 𝑔 with respect to its first variable) are Lipschitz continuous with respect to the last two variables, that is‖‖𝑔𝑑,𝑠,π‘₯1,𝑦1ξ€Έξ€·βˆ’π‘”π‘‘,𝑠,π‘₯2,𝑦2‖‖≀𝐴𝑔‖‖π‘₯1βˆ’π‘₯2‖‖𝐴+‖‖𝑦1βˆ’π‘¦2β€–β€–ξ€Έ,‖‖𝑔1𝑑,𝑠,π‘₯1,𝑦1ξ€Έβˆ’π‘”1𝑑,𝑠,π‘₯2,𝑦2‖‖≀𝐴𝑔1ξ€·β€–β€–π‘₯1βˆ’π‘₯2‖‖𝐴+‖‖𝑦1βˆ’π‘¦2β€–β€–ξ€Έ,(3.1) for some positive constants 𝐴𝑔 and 𝐴𝑔1.

Theorem 3.1. Assume that (H1)–(H4) hold. If 𝑒0∈𝐷(𝐴) and 𝑒1∈𝐸 then there exists 𝑇>0 and a unique function π‘’βˆΆ[0,𝑇]→𝑋, π‘’βˆˆπΆ([0,𝑇];𝑋𝐴)∩𝐢2([0,𝑇];𝑋) which satisfies (1.3) with Caputo fractional derivative 𝐢𝐷𝛽𝑒.

Proof. We start by proving existence and uniqueness of mild solutions in the space of continuously differentiable functions 𝐢1([0,𝑇]). To this end we consider for π‘‘βˆˆ[0,𝑇](𝐾𝑒)(𝑑)∢=𝐢(𝑑)𝑒0+𝑆(𝑑)𝑒1+ξ€œπ‘‘0+ξ€œπ‘†(π‘‘βˆ’π‘ )𝑓(𝑠)𝑑𝑠𝑑0ξ€œπ‘†(π‘‘βˆ’π‘ )𝑠0𝑔𝑠,𝜏,𝑒(𝜏),𝐢𝐷𝛽𝑒(𝜏)π‘‘πœπ‘‘π‘ .(3.2) Notice that 𝐢(𝑑)𝑒0∈𝐷(𝐴) because 𝑒0∈𝐷(𝐴) and we have 𝐴𝐢(𝑑)𝑒0=𝐢(𝑑)𝐴𝑒0. Also from the facts that 𝑒1∈𝐸 and 𝑆(𝑑)πΈβŠ‚π·(𝐴) (see (ii) of Lemma 2.5) it is clear that 𝑆(𝑑)𝑒1∈𝐷(𝐴). Moreover, it follows from Lemma 2.6, (H2) and (H3) that both integral terms in (3.2) are in 𝐷(𝐴). Therefore, πΎπ‘’βˆˆπΆ([0,𝑇];𝐷(𝐴)). In addition to that we have from Lemma 2.6, (𝐴𝐾𝑒)(𝑑)=𝐢(𝑑)𝐴𝑒0+𝐴𝑆(𝑑)𝑒1+ξ€œπ‘‘0𝐢(π‘‘βˆ’π‘ )π‘“ξ…ž(+ξ€œπ‘ )𝑑𝑠+𝐢(𝑑)𝑓(0)βˆ’π‘“(𝑑)𝑑0𝑔𝐢(π‘‘βˆ’π‘ )𝑠,𝑠,𝑒(𝑠),𝐢𝐷𝛽+ξ€œπ‘’(𝑠)𝑠0𝑔1𝑠,𝜏,𝑒(𝜏),πΆπ·π›½ξ€Έξ‚Ήβˆ’ξ€œπ‘’(𝜏)π‘‘πœπ‘‘π‘ π‘‘0𝑔𝑑,𝜏,𝑒(𝜏),𝐢𝐷𝛽[].𝑒(𝜏)π‘‘πœ,π‘‘βˆˆ0,𝑇(3.3) Next, a differentiation of (3.2) yields (𝐾𝑒)ξ…ž(𝑑)=𝑆(𝑑)𝐴𝑒0+𝐢(𝑑)𝑒1+ξ€œπ‘‘0+ξ€œπΆ(π‘‘βˆ’π‘ )𝑓(𝑠)𝑑𝑠𝑑0ξ€œπΆ(π‘‘βˆ’π‘ )𝑠0𝑔𝑠,𝜏,𝑒(𝜏),𝐢𝐷𝛽[].𝑒(𝜏)π‘‘πœπ‘‘π‘ ,π‘‘βˆˆ0,𝑇(3.4) Therefore, πΎπ‘’βˆˆπΆ1([0,𝑇];𝑋) (remember that π‘’βˆˆπΆ1([0,𝑇];𝑋)) and 𝐾 maps 𝐢1 into 𝐢1.
Now we want to prove that 𝐾 is a contraction on 𝐢1 endowed with the metric 𝜌(𝑒,𝑣)∢=sup0≀𝑑≀𝑇‖‖𝑒‖𝑒(𝑑)βˆ’π‘£(𝑑)β€–+‖𝐴(𝑒(𝑑)βˆ’π‘£(𝑑))β€–+ξ…ž(𝑑)βˆ’π‘£ξ…žβ€–β€–ξ€Έ.(𝑑)(3.5)
For 𝑒, 𝑣 in 𝐢1, we can write β€–β‰€ξ€œ(𝐾𝑒)(𝑑)βˆ’(𝐾𝑣)(𝑑)‖𝑑0ξ‚΅ξ€œ0π‘‘βˆ’π‘ π‘€π‘’πœ”πœξ‚Άπ΄π‘‘πœπ‘”ξ€œπ‘ 0ξ€·(β€–π‘’πœ)βˆ’π‘£(𝜏)‖𝐴+‖‖𝐢𝐷𝛽𝑒(𝜏)βˆ’πΆπ·π›½β€–β€–ξ€Έπ‘£(𝜏)π‘‘πœπ‘‘π‘ ,(3.6) and since ‖‖𝐢𝐷𝛽𝑒(𝜏)βˆ’πΆπ·π›½β€–β€–β‰€1𝑣(𝜏)ξ€œΞ“(1βˆ’π›½)𝜏0(πœβˆ’πœŽ)βˆ’π›½β€–β€–π‘’ξ…ž(𝜎)βˆ’π‘£ξ…žβ€–β€–β‰€πœ(𝜎)π‘‘πœŽ1βˆ’π›½Ξ“(2βˆ’π›½)sup0β‰€π‘‘β‰€π‘‡β€–β€–π‘’ξ…ž(𝑑)βˆ’π‘£ξ…žβ€–β€–,(𝑑)(3.7) it appears that β€–(𝐾𝑒)(𝑑)βˆ’(𝐾𝑣)(𝑑)‖≀𝑀𝐴𝑔𝑇22𝑇max1,1βˆ’π›½ξ€œΞ“(2βˆ’π›½)𝑇0π‘’πœ”πœξ‚Άπ‘‘πœπœŒ(𝑒,𝑣).(3.8) Moreover, β€–β‰€ξ€œ(𝐴𝐾𝑒)(𝑑)βˆ’(𝐴𝐾𝑣)(𝑑)‖𝑑0π‘€π‘’πœ”(π‘‘βˆ’π‘ )𝐴𝑔(‖𝑒𝑠)βˆ’π‘£(𝑠)‖𝐴+‖‖𝐢𝐷𝛽𝑒(𝑠)βˆ’πΆπ·π›½β€–β€–ξ€Έ+ξ€œπ‘£(𝑠)𝑑𝑠𝑑0π‘€π‘’πœ”(π‘‘βˆ’π‘ )𝐴𝑔1ξ€œπ‘ 0‖𝑒(𝜏)βˆ’π‘£(𝜏)‖𝐴+‖‖𝐢𝐷𝛽𝑒(𝜏)βˆ’πΆπ·π›½β€–β€–ξ€Έ+ξ€œπ‘£(𝜏)π‘‘πœπ‘‘π‘ π‘‘0𝐴𝑔‖𝑒(𝑠)βˆ’π‘£(𝑠)‖𝐴+‖‖𝐢𝐷𝛽𝑒(𝑠)βˆ’πΆπ·π›½β€–β€–ξ€Έπ‘£(𝑠)𝑑𝑠(3.9) implies that ‖𝑇(𝐴𝐾𝑒)(𝑑)βˆ’(𝐴𝐾𝑣)(𝑑)‖≀max1,1βˆ’π›½Ξ“ξ‚Άξ€Ίπ΄(2βˆ’π›½)𝑔𝐴𝑇+𝑀𝑔+𝐴𝑔1π‘‡ξ‚΅ξ€œξ€Έξ€»π‘‡0π‘’πœ”(π‘‡βˆ’π‘ )𝑑s𝜌(𝑒,𝑣).(3.10)
In addition to that, we see thatβ€–β€–(𝐾𝑒)ξ…ž(𝑑)βˆ’(𝐾𝑣)ξ…ž(β€–β€–β‰€ξ€œπ‘‘)𝑑0π‘€π‘’πœ”(π‘‘βˆ’π‘ )π΄π‘”ξ€œπ‘ 0‖𝑒(𝜏)βˆ’π‘£(𝜏)‖𝐴+‖‖𝐢𝐷𝛽𝑒(𝜏)βˆ’πΆπ·π›½β€–β€–ξ€Έπ‘£(𝜏)π‘‘πœπ‘‘π‘ β‰€π‘€π΄π‘”ξ€œπ‘‘0π‘’πœ”(π‘‘βˆ’π‘ )ξ€œπ‘ 0‖‖𝑒(𝜏)βˆ’π‘£(𝜏)𝐴+𝜏1βˆ’π›½Ξ“(2βˆ’π›½)sup0β‰€πœŽβ‰€πœβ€–β€–π‘’ξ…ž(𝜎)βˆ’π‘£ξ…žβ€–β€–ξ‚Άξ‚΅π‘‡(𝜎)π‘‘πœπ‘‘π‘ β‰€max1,1βˆ’π›½ξ‚ΆΞ“(2βˆ’π›½)π‘€π΄π‘”π‘‡ξ‚΅ξ€œπ‘‡0π‘’πœ”(π‘‡βˆ’π‘ )ξ‚Άπ‘‘π‘ πœŒ(𝑒,𝑣).(3.11) These three relations (3.8), (3.10), and (3.11) show that, for 𝑇 small enough, 𝐾 is indeed a contraction on 𝐢1, and hence there exists a unique mild solution π‘’βˆˆπΆ1. Furthermore, it is clear (from (3.4), Lemmas 1, and 2) that π‘’βˆˆπΆ2([0,𝑇];𝑋) and satisfies the problem (1.3).

4. Existence of Mild Solutions in Case of R-L Derivative

In the previous section we proved existence and uniqueness of classical solutions provided that (𝑒0,𝑒1)∈𝐷(𝐴)×𝐸. From the proof of Theorem 3.1 it can be seen that existence and uniqueness of mild solutions hold when (𝑒0,𝑒1)βˆˆπΈΓ—π‘‹. In case of Riemann-Liouville fractional derivative one can still prove well-posedness in 𝐢1 by passing to the Caputo fractional derivative with the help of (2.7) (with a problem of singularity at zero which may be solved through a multiplication by an appropriate term of the form 𝑑𝛾). This also will require (𝑒0,𝑒1)βˆˆπΈΓ—π‘‹. Moreover, from the integrofractional-differential equation (2.11) it is clear that the mild solutions do not have to be continuously differentiable. In this section we will prove existence and uniqueness of mild solutions for the case of Riemann-Liouville fractional derivative for a less regular space than 𝐸×𝑋. Namely, for 0<𝛽<1, we considerπΈπ›½ξ€½βˆΆ=π‘₯βˆˆπ‘‹βˆΆπ·π›½πΆ(𝑑)π‘₯iscontinuouson𝐑+𝐹𝑆𝛽[]∢=π‘£βˆˆπΆ(0,𝑇)βˆΆπ·π›½[])ξ€Ύπ‘£βˆˆπΆ(0,𝑇(4.1) equipped with the norm β€–π‘£β€–π›½βˆΆ=‖𝑣‖𝐢+‖𝐷𝛽𝑣‖𝐢 where ‖⋅‖𝐢 is the uniform norm in 𝐢([0,𝑇]).

We will use the following assumptions:

(H5) π‘“βˆΆπ‘+→𝑋 is continuous,

(H6) π‘”βˆΆπ‘+×𝐑+×𝑋×𝑋→𝑋 is continuous and Lipschitzian, that is‖‖𝑔𝑑,𝑠,π‘₯1,𝑦1ξ€Έξ€·βˆ’π‘”π‘‘,𝑠,π‘₯2,𝑦2‖‖≀𝐴𝑔‖‖π‘₯1βˆ’π‘₯2β€–β€–+‖‖𝑦1βˆ’π‘¦2β€–β€–ξ€Έ,(4.2) for some positive constant 𝐴𝑔.

The result below is mentioned in [15, Lemma 2.10] (see also [15]) for functions. Here we state it and prove it for Bochner integral.

Lemma 4.1. If 𝐼1βˆ’π›Όπ‘…(𝑑)π‘₯∈𝐢1([0,𝑇]),  𝑇>0, then one has π·π›Όξ€œπ‘‘0ξ€œπ‘…(π‘‘βˆ’π‘ )π‘₯𝑑𝑠=𝑑0𝐷𝛼𝑅(π‘‘βˆ’π‘ )π‘₯𝑑𝑠+lim𝑑→0+𝐼1βˆ’π›Ό[]𝑅(𝑑)π‘₯,π‘₯βˆˆπ‘‹,π‘‘βˆˆ0,𝑇.(4.3)

Proof. By Definition 2.2 and Fubini's theorem we have π·π›Όξ€œπ‘‘01𝑅(π‘‘βˆ’π‘ )π‘₯𝑑𝑠=𝑑Γ(1βˆ’π›Ό)ξ€œπ‘‘t𝑑0π‘‘πœ(π‘‘βˆ’πœ)π›Όξ€œπœ0=1𝑅(πœβˆ’π‘ )π‘₯𝑑𝑠𝑑Γ(1βˆ’π›Ό)ξ€œπ‘‘π‘‘π‘‘0ξ€œπ‘‘π‘ π‘‘π‘ π‘…(πœβˆ’π‘ )π‘₯(π‘‘βˆ’πœ)𝛼=1π‘‘πœΞ“ξ€œ(1βˆ’π›Ό)𝑑0πœ•π‘‘π‘ ξ€œπœ•π‘‘π‘‘π‘ π‘…(πœβˆ’π‘ )π‘₯(π‘‘βˆ’πœ)𝛼1π‘‘πœ+Ξ“(1βˆ’π›Ό)limπ‘ β†’π‘‘βˆ’ξ€œπ‘‘π‘ π‘…(πœβˆ’π‘ )π‘₯(π‘‘βˆ’πœ)π›Όπ‘‘πœ.(4.4) These steps are justified by the assumption 𝐼1βˆ’π›Όπ‘…(𝑑)π‘₯∈𝐢1([0,𝑇]). Moreover, a change of variable 𝜎=πœβˆ’π‘  leads to π·π›Όξ€œπ‘‘01𝑅(π‘‘βˆ’π‘ )π‘₯𝑑𝑠=ξ€œΞ“(1βˆ’π›Ό)𝑑0πœ•π‘‘π‘ ξ€œπœ•π‘‘0π‘‘βˆ’π‘ π‘…(𝜎)π‘₯(π‘‘βˆ’π‘ βˆ’πœŽ)𝛼+1π‘‘πœŽΞ“(1βˆ’π›Ό)lim𝑑→0+ξ€œπ‘‘0𝑅(𝜎)π‘₯(π‘‘βˆ’πœŽ)π›Όπ‘‘πœŽ.(4.5) This is exactly the formula stated in the lemma.

Corollary 4.2. For the sine family 𝑆(𝑑) associated with the cosine family 𝐢(𝑑) one has, for π‘₯βˆˆπ‘‹ and π‘‘βˆˆ[0,𝑇]π·π›Όξ€œπ‘‘0ξ€œπ‘†(π‘‘βˆ’π‘ )π‘₯𝑑𝑠=𝑑0π·π›Όξ€œπ‘†(π‘‘βˆ’π‘ )π‘₯𝑑𝑠=𝑑0𝐼1βˆ’π›ΌπΆ(π‘‘βˆ’π‘ )π‘₯𝑑𝑠.(4.6)

Proof. First, from (2.7), we have 𝑑𝐼𝑑𝑑1βˆ’π›Όπ‘†(𝑑)π‘₯=𝐷𝛼1𝑆(𝑑)π‘₯=ξ‚ΈΞ“(1βˆ’π›Ό)𝑆(0)π‘₯𝑑𝛼+ξ€œπ‘‘0(π‘‘βˆ’π‘ )βˆ’π›Όπ‘‘π‘†(𝑠)ξ‚Ή=1𝑑𝑠π‘₯π‘‘π‘ ξ€œΞ“(1βˆ’π›Ό)𝑑0(π‘‘βˆ’π‘ )βˆ’π›ΌπΆ(𝑠)π‘₯𝑑𝑠=𝐼1βˆ’π›ΌπΆ(𝑑)π‘₯.(4.7) Notice that this means that (𝑑/𝑑𝑑)𝐼1βˆ’π›Όπ‘†(𝑑)π‘₯=𝐼1βˆ’π›ΌπΆ(𝑑)π‘₯ which is in accordance with a general permutation property valid when the function is 0 at 0 (see [10, 15]). It also shows that in this case the Riemann-Liouville derivative and the Caputo derivative are equal. Now from the continuity of 𝐢(𝑑) it is clear that 𝐼1βˆ’π›ΌπΆ(𝑑)π‘₯ is continuous on [0,𝑇] (actually, the operator 𝐼𝛼 has several smoothing properties, see [11]) and therefore 𝐼1βˆ’π›Όπ‘†(𝑑)π‘₯∈𝐢1([0,𝑇]). We can therefore apply Lemma 4.1 to obtain π·π›Όξ€œπ‘‘0ξ€œπ‘†(π‘‘βˆ’π‘ )π‘₯𝑑𝑠=𝑑0𝐷𝛼𝑆(π‘‘βˆ’π‘ )π‘₯𝑑𝑠+lim𝑑→0+𝐼1βˆ’π›Ό[].𝑆(𝑑)π‘₯,π‘₯βˆˆπ‘‹,π‘‘βˆˆ0,𝑇(4.8) Next, we claim that lim𝑑→0+𝐼1βˆ’π›Όπ‘†(𝑑)π‘₯=0. This follows easily from the definition of 𝑆(𝑑) and 𝐼1βˆ’π›Ό. Indeed, we have ||𝐼1βˆ’π›Ό||≀1𝑆(𝑑)π‘₯ξ€œΞ“(1βˆ’π›Ό)𝑑0(π‘‘βˆ’π‘ )βˆ’π›Ό||||𝑑𝑆(𝑠)π‘₯𝑑𝑠≀1βˆ’π›ΌΞ“(2βˆ’π›Ό)sup0≀𝑑≀𝑇||||.𝑆(𝑑)π‘₯(4.9)

We are now ready to state and prove our main result of this section.

Theorem 4.3. Assume that (H1), (H5), and (H6) hold. If (𝑒0,𝑒1)βˆˆπΈπ›½Γ—π‘‹, then there exists 𝑇>0 and a unique mild solution π‘’βˆˆπΉπ‘†π›½ of problem (1.3) with Riemann-Liouville fractional derivative.

Proof. For π‘‘βˆˆ[0,𝑇], consider the operator (𝐾𝑒)(𝑑)∢=𝐢(𝑑)𝑒0+𝑆(𝑑)𝑒1+ξ€œπ‘‘0+ξ€œπ‘†(π‘‘βˆ’π‘ )𝑓(𝑠)𝑑𝑠𝑑0ξ€œπ‘†(π‘‘βˆ’π‘ )𝑠0𝑔𝑠,𝜏,𝑒(𝜏),𝐷𝛽𝑒(𝜏)π‘‘πœπ‘‘π‘ .(4.10) It is clear that πΎπ‘’βˆˆπΆ([0,𝑇];𝑋) when π‘’βˆˆπΉπ‘†π›½. From Corollary 4.2, we see that 𝐷𝛽(𝐾𝑒)(𝑑)=𝐷𝛽𝐢(𝑑)𝑒0+𝐷𝛽𝑆(𝑑)𝑒1+ξ€œπ‘‘0𝐼1βˆ’π›½+ξ€œπΆ(π‘‘βˆ’π‘ )𝑓(𝑠)𝑑𝑠𝑑0𝐼1βˆ’π›½ξ€œπΆ(π‘‘βˆ’π‘ )𝑠0𝑔𝑠,𝜏,𝑒(𝜏),𝐷𝛽𝑒(𝜏)π‘‘πœπ‘‘π‘ .(4.11) Therefore πΎπ‘’βˆˆF𝑆𝛽 and maps 𝐹𝑆𝛽 to 𝐹𝑆𝛽 because 𝑒0βˆˆπΈπ›½, 𝐷𝛽𝑆(𝑑)𝑒1=𝑑𝐼𝑑𝑑1βˆ’π›½π‘†(𝑑)𝑒1=𝐢𝐷𝛽𝑆(𝑑)𝑒1=𝐼1βˆ’π›½πΆ(𝑑)𝑒1,(4.12) and the integral terms are obviously continuous. For 𝑒,π‘£βˆˆπΉπ‘†π›½, we find β€–β‰€ξ€œ(𝐾𝑒)(𝑑)βˆ’(𝐾𝑣)(𝑑)‖𝑑0ξ‚΅ξ€œ0π‘‘βˆ’π‘ π‘€π‘’πœ”πœξ‚Άπ΄π‘‘πœπ‘”ξ€œπ‘ 0ξ€·(β€–β€–π·β€–π‘’πœ)βˆ’π‘£(𝜏)β€–+𝛽𝑒(𝜏)βˆ’π·π›½β€–β€–ξ€Έβ‰€π‘£(𝜏)π‘‘πœπ‘‘π‘ π‘€π΄π‘”π‘‡22ξ‚΅ξ€œπ‘‡0π‘’πœ”πœπ‘‘πœξ‚Άξ‚΅sup0≀𝑑≀𝑇‖𝑒(𝑑)βˆ’π‘£(𝑑)β€–+sup0≀𝑑≀𝑇‖‖𝐷𝛽𝑒(𝑑)βˆ’π·π›½β€–β€–ξ‚Άβ‰€π‘£(𝑑)𝑀𝐴𝑔𝑇22ξ‚΅ξ€œπ‘‡0π‘’πœ”πœξ‚Άπ‘‘πœβ€–π‘’(𝑑)βˆ’π‘£(𝑑)‖𝛽.(4.13) Further, ‖‖𝐷𝛽𝐷𝐾𝑒(𝑑)βˆ’π›½ξ€Έβ€–β€–β‰€ξ€œπΎπ‘£(𝑑)𝑑0‖‖‖𝐼1βˆ’π›½ξ€œπΆ(π‘‘βˆ’π‘ )𝑠0𝑔𝑠,𝜏,𝑒(𝜏),𝐷𝛽𝑒(𝜏)βˆ’π‘”π‘ ,𝜏,𝑣(𝜏),𝐷𝛽‖‖‖𝑣(𝜏)ξ€Έξ€»π‘‘πœπ‘‘π‘ β‰€π‘€π΄π‘”ξ€œπ‘‘0(π‘‘βˆ’π‘ )1βˆ’π›½π‘’πœ”(π‘‘βˆ’π‘ )Ξ“(2βˆ’π›½)𝑠𝑑𝑠sup0≀𝑑≀𝑇‖‖𝐷‖𝑒(𝑑)βˆ’π‘£(𝑑)β€–+𝛽𝑒(𝑑)βˆ’π·π›½β€–β€–ξ€Έβ‰€π‘£(𝑑)𝑀𝐴𝑔𝑇2βˆ’π›½ξ‚΅ξ€œΞ“(2βˆ’π›½)𝑇0π‘’πœ”(π‘‡βˆ’π‘ )ξ‚Ά(𝑑𝑠‖𝑒𝑑)βˆ’π‘£(𝑑)‖𝛽.(4.14) Thus, for 𝑇 sufficiently small, 𝐾 is a contraction on the complete metric space 𝐹𝑆𝛽 and hence there exists a unique mild solution to (1.3).

Acknowledgment

The third author is very grateful for the financial support provided by King Fahd University of Petroleum and Minerals through Project no. IN100007.