Abstract and Applied Analysis

Abstract and Applied Analysis / 2011 / Article

Research Article | Open Access

Volume 2011 |Article ID 520648 | 9 pages | https://doi.org/10.1155/2011/520648

Optimal Lower Power Mean Bound for the Convex Combination of Harmonic and Logarithmic Means

Academic Editor: Irena Lasiecka
Received01 Feb 2011
Accepted15 May 2011
Published07 Jul 2011

Abstract

We find the least value 𝜆 ∈ ( 0 , 1 ) and the greatest value 𝑝 = 𝑝 ( 𝛼 ) such that 𝛼 𝐻 ( ğ‘Ž , 𝑏 ) + ( 1 − 𝛼 ) 𝐿 ( ğ‘Ž , 𝑏 ) > 𝑀 𝑝 ( ğ‘Ž , 𝑏 ) for 𝛼 ∈ [ 𝜆 , 1 ) and all ğ‘Ž , 𝑏 > 0 with ğ‘Ž ≠ 𝑏 , where 𝐻 ( ğ‘Ž , 𝑏 ) , 𝐿 ( ğ‘Ž , 𝑏 ) , and 𝑀 𝑝 ( ğ‘Ž , 𝑏 ) are the harmonic, logarithmic, and 𝑝 -th power means of two positive numbers ğ‘Ž and 𝑏 , respectively.

1. Introduction

For 𝑝 ∈ ℝ , the 𝑝 -th power mean 𝑀 𝑝 ( ğ‘Ž , 𝑏 ) and logarithmic mean 𝐿 ( ğ‘Ž , 𝑏 ) of two positive numbers ğ‘Ž and 𝑏 are defined by 𝑀 𝑝 ⎧ ⎪ ⎨ ⎪ ⎩  ğ‘Ž ( ğ‘Ž , 𝑏 ) = 𝑝 + 𝑏 𝑝 2  1 / 𝑝 √ , 𝑝 ≠ 0 , ⎧ ⎪ ⎨ ⎪ ⎩ ğ‘Ž 𝑏 , 𝑝 = 0 , ( 1 . 1 ) 𝐿 ( ğ‘Ž , 𝑏 ) = 𝑏 − ğ‘Ž l o g 𝑏 − l o g ğ‘Ž , ğ‘Ž ≠ 𝑏 , ğ‘Ž , ğ‘Ž = 𝑏 , ( 1 . 2 ) respectively.

It is well known that 𝑀 𝑝 ( ğ‘Ž , 𝑏 ) is continuous and strictly increasing with respect to 𝑝 ∈ ℝ for fixed ğ‘Ž , 𝑏 > 0 with ğ‘Ž ≠ 𝑏 . In the recent past, both mean values have been the subject of intensive research. In particular, many remarkable inequalities for 𝑀 𝑝 ( ğ‘Ž , 𝑏 ) and 𝐿 ( ğ‘Ž , 𝑏 ) can be found in the literature [1–17]. It might be surprising that the logarithmic mean has applications in physics, economics, and even in meteorology [18–20]. In [18], the authors study a variant of Jensen's functional equation involving 𝐿 , which appears in a heat conduction problem. A representation of 𝐿 as an infinite product and an iterative algorithm for computing the logarithmic mean as the common limit of two sequences of special geometric and arithmetic means are given in [8]. In [21, 22], it is shown that 𝐿 can be expressed in terms of Gauss's hypergeometric function 2 𝐹 1 . And, in [21], the authors prove that the reciprocal of the logarithmic mean is strictly totally positive, that is, every 𝑛 × 𝑛 determinant with elements 1 / 𝐿 ( ğ‘Ž 𝑖 , 𝑏 𝑖 ) , where 0 < ğ‘Ž 1 < ğ‘Ž 2 < ⋯ < ğ‘Ž 𝑛 and 0 < 𝑏 1 < 𝑏 2 < ⋯ < 𝑏 𝑛 , is positive for all 𝑛 ≥ 1 .

Let 𝐴 ( ğ‘Ž , 𝑏 ) = 1 / 2 ( ğ‘Ž + 𝑏 ) , 𝐼 ( ğ‘Ž , 𝑏 ) = 1 / 𝑒 ( 𝑏 𝑏 / ğ‘Ž ğ‘Ž ) 1 / ( 𝑏 − ğ‘Ž ) ( 𝑏 ≠ ğ‘Ž ) , 𝐼 ( ğ‘Ž , 𝑏 ) = ğ‘Ž ( 𝑏 = ğ‘Ž ), √ 𝐺 ( ğ‘Ž , 𝑏 ) = ğ‘Ž 𝑏 , and 𝐻 ( ğ‘Ž , 𝑏 ) = 2 ğ‘Ž 𝑏 / ( ğ‘Ž + 𝑏 ) be the arithmetic, identric, geometric, and harmonic means of two positive numbers ğ‘Ž and 𝑏 , respectively, then it is well known that m i n { ğ‘Ž , 𝑏 } < 𝐻 ( ğ‘Ž , 𝑏 ) = 𝑀 − 1 ( ğ‘Ž , 𝑏 ) < 𝐺 ( ğ‘Ž , 𝑏 ) = 𝑀 0 ( ğ‘Ž , 𝑏 ) < 𝐿 ( ğ‘Ž , 𝑏 ) < 𝐼 ( ğ‘Ž , 𝑏 ) < 𝐴 ( ğ‘Ž , 𝑏 ) = 𝑀 1 ( ğ‘Ž , 𝑏 ) < m a x { ğ‘Ž , 𝑏 } ( 1 . 3 ) for all ğ‘Ž , 𝑏 > 0 with ğ‘Ž ≠ 𝑏 .

In [23], Alzer and Janous established the following best possible inequality: 𝑀 l o g 2 / l o g 3 2 ( ğ‘Ž , 𝑏 ) < 3 1 𝐴 ( ğ‘Ž , 𝑏 ) + 3 𝐺 ( ğ‘Ž , 𝑏 ) < 𝑀 2 / 3 ( ğ‘Ž , 𝑏 ) ( 1 . 4 ) for all ğ‘Ž , 𝑏 > 0 with ğ‘Ž ≠ 𝑏 .

In [8, 11, 24], the authors presented bounds for 𝐿 in terms of 𝐺 and 𝐴 𝐺 2 / 3 ( ğ‘Ž , 𝑏 ) 𝐴 1 / 3 2 ( ğ‘Ž , 𝑏 ) < 𝐿 ( ğ‘Ž , 𝑏 ) < 3 1 𝐺 ( ğ‘Ž , 𝑏 ) + 3 𝐴 ( ğ‘Ž , 𝑏 ) ( 1 . 5 ) for all ğ‘Ž , 𝑏 > 0 with ğ‘Ž ≠ 𝑏 .

The following companion of (1.3) provides inequalities for the geometric and arithmetic means of 𝐿 and 𝐼 . A proof can be found in [25] 𝐺 1 / 2 ( ğ‘Ž , 𝑏 ) 𝐴 1 / 2 ( ğ‘Ž , 𝑏 ) < 𝐿 1 / 2 ( ğ‘Ž , 𝑏 ) 𝐼 1 / 2 1 ( ğ‘Ž , 𝑏 ) < 2 1 𝐿 ( ğ‘Ž , 𝑏 ) + 2 1 𝐼 ( ğ‘Ž , 𝑏 ) < 2 1 𝐺 ( ğ‘Ž , 𝑏 ) + 2 𝐴 ( ğ‘Ž , 𝑏 ) ( 1 . 6 ) for all ğ‘Ž , 𝑏 > 0 with ğ‘Ž ≠ 𝑏 .

The following sharp bounds for 𝐿 , 𝐼 , ( 𝐿 𝐼 ) 1 / 2 , and ( 𝐿 + 𝐼 ) / 2 in terms of the power means are proved in [4, 5, 7, 9, 16, 25, 26]: 𝑀 0 ( ğ‘Ž , 𝑏 ) < 𝐿 ( ğ‘Ž , 𝑏 ) < 𝑀 1 / 3 𝑀 ( ğ‘Ž , 𝑏 ) , 2 / 3 ( ğ‘Ž , 𝑏 ) < 𝐼 ( ğ‘Ž , 𝑏 ) < 𝑀 l o g 2 𝑀 ( ğ‘Ž , 𝑏 ) , 0 ( ğ‘Ž , 𝑏 ) < 𝐿 1 / 2 ( ğ‘Ž , 𝑏 ) 𝐼 1 / 2 ( ğ‘Ž , 𝑏 ) < 𝑀 1 / 2 1 ( ğ‘Ž , 𝑏 ) , 2 1 𝐿 ( ğ‘Ž , 𝑏 ) + 2 𝐼 ( ğ‘Ž , 𝑏 ) < 𝑀 1 / 2 ( ğ‘Ž , 𝑏 ) ( 1 . 7 ) for all ğ‘Ž , 𝑏 > 0 with ğ‘Ž ≠ 𝑏 .

Alzer and Qiu [27] found the sharp bound of 1 / 2 ( 𝐿 ( ğ‘Ž , 𝑏 ) + 𝐼 ( ğ‘Ž , 𝑏 ) ) in terms of the power mean as follows: 𝑀 𝑐 1 ( ğ‘Ž , 𝑏 ) < 2 ( 𝐿 ( ğ‘Ž , 𝑏 ) + 𝐼 ( ğ‘Ž , 𝑏 ) ) ( 1 . 8 ) for all ğ‘Ž , 𝑏 > 0 with ğ‘Ž ≠ 𝑏 , with the best possible parameter 𝑐 = l o g 2 / ( 1 + l o g 2 ) .

The main purpose of this paper is to find the least value 𝜆 ∈ ( 0 , 1 ) and the greatest value 𝑝 = 𝑝 ( 𝛼 ) such that 𝛼 𝐻 ( ğ‘Ž , 𝑏 ) + ( 1 − 𝛼 ) 𝐿 ( ğ‘Ž , 𝑏 ) > 𝑀 𝑝 ( ğ‘Ž , 𝑏 ) for 𝛼 ∈ [ 𝜆 , 1 ) and all ğ‘Ž , 𝑏 > 0 with ğ‘Ž ≠ 𝑏 .

2. Lemmas

In order to establish our main result we need three lemmas, which we present in this section.

Lemma 2.1. Let 𝛼 ∈ ( 1 / 4 , 1 ) , 𝑝 = ( 1 − 4 𝛼 ) / 3 ∈ ( − 1 , 0 ) , and 𝑓 ( 𝑡 ) = − 4 𝛼 𝑝 ( 𝑝 + 1 ) 2 ( 𝑝 + 2 ) 𝑡 𝑝 − 1 + 2 ( 1 − 𝛼 ) 𝑝 2 ( 1 − 𝑝 2 ) 𝑡 𝑝 − 2 + 2 ( 1 − 𝛼 ) 𝑝 ( 1 − 𝑝 ) 2 ( 2 − 𝑝 ) 𝑡 𝑝 − 3 + 1 2 ( 1 − 𝛼 ) ( 1 − 𝑝 ) . Then 𝑓 ( 𝑡 ) > 0 for 𝑡 ∈ [ 1 , + ∞ ) .

Proof. Simple computations lead to 𝑓 ( 1 ) = 6 4 8 1 ( 1 − 𝛼 ) 2  5 6 𝛼 2  + 2 3 𝛼 + 1 1 > 0 , ( 2 . 1 ) l i m 𝑡 → + ∞ 𝑓 𝑓 ( 𝑡 ) = 1 2 ( 1 − 𝛼 ) ( 1 − 𝑝 ) = 8 ( 1 − 𝛼 ) ( 1 + 2 𝛼 ) > 0 , ( 2 . 2 )  ( 𝑡 ) = − 2 𝑝 ( 1 − 𝑝 ) 𝑡 𝑝 − 4 𝑓 1 ( 𝑡 ) , ( 2 . 3 ) where 𝑓 1 ( 𝑡 ) = − 2 𝛼 ( 𝑝 + 1 ) 2 ( 𝑝 + 2 ) 𝑡 2 𝑓 + ( 1 − 𝛼 ) 𝑝 ( 𝑝 + 1 ) ( 2 − 𝑝 ) 𝑡 + ( 1 − 𝛼 ) ( 1 − 𝑝 ) ( 2 − 𝑝 ) ( 3 − 𝑝 ) , 1 4 ( 1 ) =  2 7 ( 1 − 𝛼 ) 1 4 8 𝛼 2  − 1 1 𝛼 + 2 5 > 0 , ( 2 . 4 ) l i m 𝑡 → + ∞ 𝑓 1 ( 𝑡 ) = − ∞ , ( 2 . 5 ) 𝑓 ′ 1 ( 𝑡 ) = − 4 𝛼 ( 𝑝 + 1 ) 2 ( 4 𝑝 + 2 ) 𝑡 + ( 1 − 𝛼 ) 𝑝 ( 𝑝 + 1 ) ( 2 − 𝑝 ) = − 2 7 ( 1 − 𝛼 ) 2 [ ] 1 6 𝛼 ( 7 − 4 𝛼 ) 𝑡 + ( 4 𝛼 − 1 ) ( 4 𝛼 + 5 ) < 0 ( 2 . 6 ) for 𝑡 ∈ [ 1 , + ∞ ) .
Inequality (2.6) implies that 𝑓 1 ( 𝑡 ) is strictly decreasing in [ 1 , + ∞ ) , then from (2.4) and (2.5) we know that 𝜆 1 > 1 exists such that 𝑓 1 ( 𝑡 ) > 0 for 𝑡 ∈ [ 1 , 𝜆 1 ) and 𝑓 1 ( 𝑡 ) < 0 for 𝑡 ∈ ( 𝜆 1 , + ∞ ) . Hence, equation (2.3) leads to the conclusion that 𝑓 ( 𝑡 ) is strictly increasing in [ 1 , 𝜆 1 ] and strictly decreasing in [ 𝜆 1 , + ∞ ) .

Therefore, Lemma 2.1 follows from (2.1) and (2.2) together with the piecewise monotonicity of 𝑓 ( 𝑡 ) .

Lemma 2.2. Let 𝛼 ∈ ( 1 / 4 , 1 ) , 𝑝 = ( 1 − 4 𝛼 ) / 3 ∈ ( − 1 , 0 ) , and 𝑔 ( 𝑡 ) = − ( 1 − 𝛼 ) ( 𝑝 + 1 ) ( 𝑝 + 2 ) 2 ( 𝑝 + 3 ) 𝑡 𝑝 + ( 𝑝 + 1 ) ( 𝑝 3 − 𝛼 𝑝 3 − 1 9 𝛼 𝑝 2 + 3 𝑝 2 − 3 4 𝛼 𝑝 + 2 𝑝 − 8 𝛼 ) 𝑡 𝑝 − 1 + ( 1 − 𝛼 ) 𝑝 ( 𝑝 3 − 8 𝑝 2 − 𝑝 + 4 ) 𝑡 𝑝 − 2 + ( 1 − 𝛼 ) ( 1 − 𝑝 ) ( 𝑝 3 + 5 𝑝 2 − 1 4 𝑝 + 4 ) 𝑡 𝑝 − 3 + 4 ( 1 − 𝛼 ) ( 7 − 4 𝑝 ) − 4 𝑝 ( 1 − 𝛼 ) 𝑡 − 1 + 4 𝛼 ( 1 + 𝑝 ) 𝑡 − 2 , then 𝑔 ( 𝑡 ) > 0 for 𝑡 ∈ [ 1 , + ∞ ) .

Proof. Let 𝑔 1 ( 𝑡 ) = − ( 1 − 𝛼 ) ( 𝑝 + 1 ) ( 𝑝 + 2 ) 2 ( 𝑝 + 3 ) 𝑡 3 + ( 𝑝 + 1 ) ( 𝑝 3 − 𝛼 𝑝 3 − 1 9 𝛼 𝑝 2 + 3 𝑝 2 − 3 4 𝛼 𝑝 + 2 𝑝 − 8 𝛼 ) 𝑡 2 + ( 1 − 𝛼 ) 𝑝 ( 𝑝 3 − 8 𝑝 2 − 𝑝 + 4 ) 𝑡 + ( 1 − 𝛼 ) ( 1 − 𝑝 ) ( 𝑝 3 + 5 𝑝 2 − 1 4 𝑝 + 4 ) + 4 ( 1 − 𝛼 ) ( 7 − 4 𝑝 ) 𝑡 3 − 𝑝 − 4 𝑝 ( 1 − 𝛼 ) 𝑡 2 − 𝑝 + 4 𝛼 ( 1 + 𝑝 ) 𝑡 1 − 𝑝 . Then simple computations lead to 𝑔 ( 𝑡 ) = 𝑡 𝑝 − 3 𝑔 1 𝑔 ( 𝑡 ) , ( 2 . 7 ) 1 ( 1 ) = 1 6  2 7 ( 1 − 𝛼 ) 8 0 𝛼 2  + 1 1 0 𝛼 − 1 > 0 , ( 2 . 8 ) 𝑔  1 ( 𝑡 ) = − 3 ( 1 − 𝛼 ) ( 𝑝 + 1 ) ( 𝑝 + 2 ) 2 ( 𝑝 + 3 ) 𝑡 2 + 2 ( 𝑝 + 1 ) ( 𝑝 3 − 𝛼 𝑝 3 − 1 9 𝛼 𝑝 2 + 3 𝑝 2 − 3 4 𝛼 𝑝 + 2 𝑝 − 8 𝛼 ) 𝑡 + ( 1 − 𝛼 ) 𝑝 ( 𝑝 3 − 8 𝑝 2 − 𝑝 + 4 ) + 4 ( 1 − 𝛼 ) ( 7 − 4 𝑝 ) ( 3 − 𝑝 ) 𝑡 2 − 𝑝 − 4 𝑝 ( 1 − 𝛼 ) ( 2 − 𝑝 ) 𝑡 1 − 𝑝 + 4 𝛼 ( 1 − 𝑝 2 ) 𝑡 − 𝑝 , g  1 ( 1 ) = 3 2  2 7 ( 1 − 𝛼 ) − 1 6 𝛼 3 + 3 8 𝛼 2  + 1 7 6 𝛼 − 9 > 0 , ( 2 . 9 ) 𝑔 1   ( 𝑡 ) = − 6 ( 1 − 𝛼 ) ( 𝑝 + 1 ) ( 𝑝 + 2 ) 2 ( 𝑝 + 3 ) 𝑡 + 2 ( 𝑝 + 1 ) ( 𝑝 3 − 𝛼 𝑝 3 − 1 9 𝛼 𝑝 2 + 3 𝑝 2 − 3 4 𝛼 𝑝 + 2 𝑝 − 8 𝛼 ) + 4 ( 1 − 𝛼 ) ( 7 − 4 𝑝 ) ( 3 − 𝑝 ) ( 2 − 𝑝 ) 𝑡 1 − 𝑝 − 4 𝑝 ( 1 − 𝛼 ) ( 2 − 𝑝 ) ( 1 − 𝑝 ) 𝑡 − 𝑝 − 4 𝛼 𝑝 ( 1 − 𝑝 2 ) 𝑡 − 𝑝 − 1 , g 1   8 ( 1 ) =  8 1 ( 1 − 𝛼 ) − 1 2 8 𝛼 4 + 8 9 6 𝛼 3 + 2 8 8 𝛼 2  + 5 2 9 4 𝛼 − 4 3 7 > 0 , ( 2 . 1 0 ) 𝑔 1    ( 𝑡 ) = − 6 ( 1 − 𝛼 ) ( 𝑝 + 1 ) ( 𝑝 + 2 ) 2 ( 𝑝 + 3 ) + 4 ( 1 − 𝛼 ) ( 7 − 4 𝑝 ) ( 3 − 𝑝 ) ( 2 − 𝑝 ) ( 1 − 𝑝 ) 𝑡 − 𝑝 + 4 𝑝 2 ( 1 − 𝛼 ) ( 2 − 𝑝 ) ( 1 − 𝑝 ) 𝑡 − 𝑝 − 1 + 4 𝛼 𝑝 ( 1 + 𝑝 ) 2 ( 1 − 𝑝 ) 𝑡 − 𝑝 − 2 g 1    8 ( 1 ) =  8 1 ( 1 − 𝛼 ) 5 7 6 𝛼 4 + 3 8 7 2 𝛼 3 + 6 6 0 𝛼 2  𝑔 + 6 6 1 2 𝛼 − 7 8 5 > 0 , ( 2 . 1 1 ) 1 ( 4 ) ( 𝑡 ) = − 4 𝑝 ( 1 − 𝑝 ) 𝑡 − 𝑝 − 3 𝑔 2 ( 𝑡 ) , ( 2 . 1 2 ) where 𝑔 2 ( 𝑡 ) = ( 1 − 𝛼 ) ( 7 − 4 𝑝 ) ( 3 − 𝑝 ) ( 2 − 𝑝 ) 𝑡 2 + ( 1 − 𝛼 ) 𝑝 ( 2 − 𝑝 ) ( 𝑝 + 1 ) 𝑡 + 𝛼 ( 𝑝 + 1 ) 2 , 𝑔 ( 𝑝 + 2 ) 2 4 ( 1 ) =  2 7 ( 1 − 𝛼 ) 9 6 𝛼 3 + 2 3 2 𝛼 2  𝑔 + 3 8 8 𝛼 + 1 7 5 > 0 , ( 2 . 1 3 )  2 ( 𝑡 ) = 2 ( 1 − 𝛼 ) ( 7 − 4 𝑝 ) ( 3 − 𝑝 ) ( 2 − 𝑝 ) 𝑡 + ( 1 − 𝛼 ) 𝑝 ( 2 − 𝑝 ) ( 𝑝 + 1 ) ≥ 𝑔  2 4 ( 1 ) = 9  ( 1 − 𝛼 ) ( 5 + 4 𝛼 ) 1 2 𝛼 2  + 3 1 𝛼 + 2 3 > 0 ( 2 . 1 4 ) for 𝑡 ∈ [ 1 , + ∞ ) .

From (2.13) and (2.14), we clearly see that 𝑔 2 ( 𝑡 ) > 0 for 𝑡 ∈ [ 1 , + ∞ ) , then (2.12) leads to the conclusion that 𝑔 1    ( 𝑡 ) is strictly in [ 1 , + ∞ ) .

Therefore, Lemma 2.2 follows from (2.7)–(2.11) and the monotonicity of 𝑔 1    ( 𝑡 ) .

Lemma 2.3. Let 𝛼 ∈ ( 1 / 4 , 1 ) , 𝑝 = ( 1 − 4 𝛼 ) / 3 ∈ ( − 1 , 0 ) , and ℎ ( 𝑡 ) = 2 𝛼 ( 1 − 𝑡 𝑝 + 1 ) 𝑡 l o g 2 𝑡 + ( 1 − 𝛼 ) ( 1 + 𝑡 𝑝 − 1 ) ( 1 + 𝑡 ) 2 𝑡 l o g 𝑡 + ( 1 − 𝛼 ) ( 1 + 𝑡 ) 2 ( 1 − 𝑡 ) ( 𝑡 𝑝 + 1 ) , then ℎ ( 𝑡 ) > 0 for 𝑡 ∈ ( 1 , + ∞ ) .

Proof. Let ℎ 1 ( 𝑡 ) = 𝑡 − 𝑝 ℎ   ( 𝑡 ) and ℎ 2 ( 𝑡 ) = 𝑡 𝑝 + 2 ℎ  1 ( 𝑡 ) , then simple computations lead to ℎ ( 1 ) = 0 , ( 2 . 1 5 ) ℎ  ( 𝑡 ) = 2 𝛼 [ 1 − ( 𝑝 + 2 ) 𝑡 𝑝 + 1 ] l o g 2 𝑡 + [ ( 𝑝 + 2 − 𝛼 𝑝 − 6 𝛼 ) 𝑡 𝑝 + 1 + 2 ( 1 − 𝛼 ) ( 𝑝 + 1 ) 𝑡 𝑝 + ( 1 − 𝛼 ) 𝑝 𝑡 𝑝 − 1 + 3 ( 1 − 𝛼 ) 𝑡 2 + 4 ( 1 − 𝛼 ) 𝑡 + 3 𝛼 + 1 ] l o g 𝑡 − ( 1 − 𝛼 ) [ ( 𝑝 + 3 ) 𝑡 𝑝 + 2 + ( 𝑝 + 1 ) 𝑡 𝑝 + 1 − ( 𝑝 + 3 ) 𝑡 𝑝 − ( 𝑝 + 1 ) 𝑡 𝑝 − 1 + 2 𝑡 2 − 2 ] , ℎ  ( 1 ) = 0 , ( 2 . 1 6 ) ℎ 1 ( 𝑡 ) = − 2 𝛼 ( 𝑝 + 1 ) ( 𝑝 + 2 ) l o g 2 𝑡 + [ ( 𝑝 2 − 𝛼 𝑝 2 + 3 𝑝 − 1 1 𝛼 𝑝 − 1 4 𝛼 + 2 ) + 2 ( 1 − 𝛼 ) 𝑝 ( 𝑝 + 1 ) 𝑡 − 1 − ( 1 − 𝛼 ) 𝑝 ( 1 − 𝑝 ) 𝑡 − 2 + 6 ( 1 − 𝛼 ) 𝑡 1 − 𝑝 + 4 ( 1 − 𝛼 ) 𝑡 − 𝑝 + 4 𝛼 𝑡 − 1 − 𝑝 ] l o g 𝑡 − ( 1 − 𝛼 ) ( 𝑝 + 2 ) ( 𝑝 + 3 ) 𝑡 + ( 1 − 𝛼 ) ( 𝑝 2 + 5 𝑝 + 2 ) 𝑡 − 1 + ( 1 − 𝛼 ) ( 𝑝 2 + 𝑝 − 1 ) 𝑡 − 2 − ( 1 − 𝛼 ) 𝑡 1 − 𝑝 + 4 ( 1 − 𝛼 ) 𝑡 − 𝑝 + ( 1 + 3 𝛼 ) 𝑡 − 1 − 𝑝 − ( 1 − 𝛼 ) 𝑝 2 − ( 1 − 𝛼 ) 𝑝 − 5 𝛼 + 1 , ℎ 1 ( 1 ) = 0 , ( 2 . 1 7 ) ℎ 2 ( 𝑡 ) = − [ 4 𝛼 ( 𝑝 + 1 ) ( 𝑝 + 2 ) 𝑡 𝑝 + 1 + 2 ( 1 − 𝛼 ) 𝑝 ( 𝑝 + 1 ) 𝑡 𝑝 − 2 ( 1 − 𝛼 ) 𝑝 ( 1 − 𝑝 ) 𝑡 𝑝 − 1 − 6 ( 1 − 𝛼 ) ( 1 − 𝑝 ) 𝑡 2 + 4 ( 1 − 𝛼 ) 𝑝 𝑡 + 4 𝛼 ( 1 + 𝑝 ) ] l o g 𝑡 − ( 1 − 𝛼 ) ( 𝑝 + 2 ) ( 𝑝 + 3 ) 𝑡 𝑝 + 2 + ( 𝑝 2 − 𝛼 𝑝 2 + 3 𝑝 − 1 1 𝛼 𝑝 − 1 4 𝛼 + 2 ) 𝑡 𝑝 + 1 + ( 1 − 𝛼 ) ( 𝑝 2 − 3 𝑝 − 2 ) 𝑡 𝑝 − ( 1 − 𝛼 ) ( 𝑝 2 + 3 𝑝 − 2 ) 𝑡 𝑝 − 1 + ( 1 − 𝛼 ) ( 𝑝 + 5 ) 𝑡 2 + 4 ( 1 − 𝛼 ) ( 1 − 𝑝 ) 𝑡 + 𝛼 − 3 𝛼 𝑝 − 𝑝 − 1 , ℎ 2 ( 1 ) = 0 , ( 2 . 1 8 ) ℎ  2 ( 𝑡 ) = − [ 4 𝛼 ( 𝑝 + 1 ) 2 ( 𝑝 + 2 ) 𝑡 𝑝 + 2 ( 1 − 𝛼 ) 𝑝 2 ( 𝑝 + 1 ) 𝑡 𝑝 − 1 + 2 ( 1 − 𝛼 ) 𝑝 ( 1 − 𝑝 ) 2 𝑡 𝑝 − 2 − 1 2 ( 1 − 𝛼 ) ( 1 − 𝑝 ) 𝑡 + 4 ( 1 − 𝛼 ) 𝑝 ] l o g 𝑡 − ( 1 − 𝛼 ) ( 𝑝 + 2 ) 2 ( 𝑝 + 3 ) 𝑡 𝑝 + 1 + ( 𝑝 + 1 ) ( 𝑝 2 − 𝛼 𝑝 2 − 1 5 𝛼 𝑝 + 3 𝑝 − 2 2 𝛼 + 2 ) 𝑡 𝑝 + ( 1 − 𝛼 ) 𝑝 ( 𝑝 2 − 5 𝑝 − 4 ) 𝑡 𝑝 − 1 + ( 1 − 𝛼 ) ( 1 − 𝑝 ) ( 𝑝 2 + 5 𝑝 − 2 ) 𝑡 𝑝 − 2 + 4 ( 1 − 𝛼 ) ( 4 − 𝑝 ) 𝑡 − 4 𝛼 ( 𝑝 + 1 ) 𝑡 − 1 + 4 ( 1 − 𝛼 ) ( 1 − 2 𝑝 ) , ℎ  2 ℎ ( 1 ) = 0 , 2   ( 𝑡 ) = 𝑓 ( 𝑡 ) l o g 𝑡 + 𝑔 ( 𝑡 ) , ( 2 . 1 9 ) where 𝑓 ( 𝑡 ) and 𝑔 ( 𝑡 ) are defined as in Lemmas 2.1 and 2.2, respectively.
From (2.19) and (2.10) together with Lemmas 2.1 and 2.2, we clearly see that ℎ 2 ( 𝑡 ) is strictly increasing in [ 1 , + ∞ ) .

Therefore, Lemma 2.3 follows from (2.15)–(2.18) and the monotonicity of ℎ 2 ( 𝑡 ) .

3. Main Result

Theorem 3.1. Inequality 𝛼 𝐻 ( ğ‘Ž , 𝑏 ) + ( 1 − 𝛼 ) 𝐿 ( ğ‘Ž , 𝑏 ) > 𝑀 ( 1 − 4 𝛼 ) / 3 ( ğ‘Ž , 𝑏 ) ( 3 . 1 ) holds for 𝛼 ∈ [ 1 / 4 , 1 ) and all ğ‘Ž , 𝑏 > 0 with ğ‘Ž ≠ 𝑏 , and 𝑀 ( 1 − 4 𝛼 ) / 3 ( ğ‘Ž , 𝑏 ) is the best possible lower power mean bound for the sum 𝛼 𝐻 ( ğ‘Ž , 𝑏 ) + ( 1 − 𝛼 ) 𝐿 ( ğ‘Ž , 𝑏 ) .

Proof. We divide the proof of inequality (3.1) into two cases.
Case 1 ( 𝛼 = 1 / 4 ). Without loss of generality, we assume that ğ‘Ž > 𝑏 and put √ 𝑡 = ğ‘Ž / 𝑏 > 1 , then from (1.1) and (1.2), we have 𝛼 𝐻 ( ğ‘Ž , 𝑏 ) + ( 1 − 𝛼 ) 𝐿 ( ğ‘Ž , 𝑏 ) − 𝑀 ( 1 − 4 𝛼 ) / 3 = 1 ( ğ‘Ž , 𝑏 ) 4 [ ] − √ 𝐻 ( ğ‘Ž , 𝑏 ) + 3 𝐿 ( ğ‘Ž , 𝑏 ) = ğ‘Ž 𝑏 3 𝑡 4  − 4 2 𝑡 3 − 𝑡 2  + 2 𝑡 l o g 𝑡 − 3 8  𝑡 2  + 1 l o g 𝑡 𝑏 . ( 3 . 2 ) Let 𝐹 ( 𝑡 ) = 3 𝑡 4  − 4 2 𝑡 3 − 𝑡 2  + 2 𝑡 l o g 𝑡 − 3 , ( 3 . 3 ) then simple computations lead to 𝐹 𝐹 ( 1 ) = 0 ,   ( 𝑡 ) = 4 3 𝑡 3 − 2 𝑡 2   + 𝑡 − 2 − 8 3 𝑡 2  𝐹 − 𝑡 + 1 l o g 𝑡 ,  𝐹 ( 1 ) = 0 ,   4 ( 𝑡 ) = 𝑡 𝐹 1 ( 𝑡 ) , ( 3 . 4 ) where 𝐹 1 ( 𝑡 ) = 9 𝑡 3 − 1 0 𝑡 2 + 3 𝑡 − 2 − 2 ( 6 𝑡 − 1 ) 𝑡 l o g 𝑡 , 𝐹   ( 1 ) = 𝐹 1 𝐹 ( 1 ) = 0 ,  1 ( 𝑡 ) = 2 7 𝑡 2 𝐹 − 3 2 𝑡 + 5 − 2 ( 1 2 𝑡 − 1 ) l o g 𝑡 ,  1 𝐹 ( 1 ) = 0 , 1   2 ( 𝑡 ) = 𝑡 𝐹 2 ( 𝑡 ) , ( 3 . 5 ) where 𝐹 2 ( 𝑡 ) = 2 7 𝑡 2 − 1 2 𝑡 l o g 𝑡 − 2 8 𝑡 + 1 , 𝐹 1   ( 1 ) = 𝐹 2 F ( 1 ) = 0 ,  2 ( 𝑡 ) = 5 4 𝑡 − 1 2 l o g 𝑡 − 4 0 > 0 ( 3 . 6 ) for 𝑡 > 1 .
Therefore, inequality (3.1) follows easily from (3.2)–(3.6).

Case 2 ( 𝛼 ∈ ( 1 / 4 , 1 ) ). Without loss of generality, we assume that ğ‘Ž > 𝑏 . Let 𝑝 = ( 1 − 4 𝛼 ) / 3 ∈ ( − 1 , 0 ) and 𝑡 = ğ‘Ž / 𝑏 > 1 , then from (1.1) and (1.2), one has 𝛼 𝐻 ( ğ‘Ž , 𝑏 ) + ( 1 − 𝛼 ) 𝐿 ( ğ‘Ž , 𝑏 ) − 𝑀 ( 1 − 4 𝛼 ) / 3 ( ğ‘Ž , 𝑏 ) = 𝛼 𝐻 ( ğ‘Ž , 𝑏 ) + ( 1 − 𝛼 ) 𝐿 ( ğ‘Ž , 𝑏 ) − 𝑀 𝑝  ( ğ‘Ž , 𝑏 ) = 𝑏 2 𝛼 𝑡 + 𝑡 + 1 ( 1 − 𝛼 ) ( 𝑡 − 1 ) −  𝑡 l o g 𝑡 𝑝 + 1 2  1 / 𝑝  . ( 3 . 7 ) Let  𝐺 ( 𝑡 ) = l o g 2 𝛼 𝑡 + 𝑡 + 1 ( 1 − 𝛼 ) ( 𝑡 − 1 )  − 1 l o g 𝑡 𝑝 𝑡 l o g 𝑝 + 1 2 . ( 3 . 8 ) Then simple computations lead to l i m 𝑡 → 1 𝐺 𝐺 ( 𝑡 ) = 0 , ( 3 . 9 )  ( 𝑡 ) = ℎ ( 𝑡 ) 𝑡 ( 𝑡 + 1 ) ( 𝑡 𝑝   𝑡 + 1 ) l o g 𝑡 2 𝛼 𝑡 l o g 𝑡 + ( 1 − 𝛼 ) 2 − 1   , ( 3 . 1 0 ) where ℎ ( 𝑡 ) is defined as in Lemma 2.3.
From Lemma 2.3 and (3.10), we clearly see that 𝐺 ( 𝑡 ) is strictly increasing in ( 1 , + ∞ ) .

Therefore, inequality (3.1) follows from (3.7)–(3.9) and the monotonicity of 𝐺 ( 𝑡 ) .

Next, we prove that 𝑀 ( 1 − 4 𝛼 ) / 3 ( ğ‘Ž , 𝑏 ) is the best possible lower power mean bound for the sum 𝛼 𝐻 ( ğ‘Ž , 𝑏 ) + ( 1 − 𝛼 ) 𝐿 ( ğ‘Ž , 𝑏 ) if 𝛼 ∈ [ 1 / 4 , 1 ) .

For any 𝛼 ∈ [ 1 / 4 , 1 ) , 𝑝 > ( 1 − 4 𝛼 ) / 3 , and 𝑥 > 0 , one has 𝑀 𝑝 ( 1 + 𝑥 , 1 ) − 𝛼 𝐻 ( 1 + 𝑥 , 1 ) − ( 1 − 𝛼 ) 𝐿 ( 1 + 𝑥 , 1 ) = 𝐽 ( 𝑥 ) 2 1 / 𝑝  𝑥 1 + 2  , l o g ( 1 + 𝑥 ) ( 3 . 1 1 ) where 𝐽 ( 𝑥 ) = ( 1 + 𝑥 / 2 ) [ 1 + ( 1 + 𝑥 ) 𝑝 ] 1 / 𝑝 l o g ( 1 + 𝑥 ) − 2 1 / 𝑝 [ 𝛼 ( 1 + 𝑥 ) l o g ( 1 + 𝑥 ) + ( 1 − 𝛼 ) 𝑥 ( 1 + 𝑥 / 2 ) ] . Letting 𝑥 → 0 and making use of Taylor expansion, we have 2 𝐽 ( 𝑥 ) = 1 / 𝑝 8  𝑝 − 1 − 4 𝛼 3  𝑥 3  𝑥 + 𝑜 3  . ( 3 . 1 2 )

Equations (3.11) and (3.12) imply that for any 𝛼 ∈ [ 1 / 4 , 1 ) and 𝑝 > ( 1 − 4 𝛼 ) / 3 there exists 𝛿 > 0 , such that 𝛼 𝐻 ( 1 + 𝑥 , 1 ) + ( 1 − 𝛼 ) 𝐿 ( 1 + 𝑥 , 1 ) < 𝑀 𝑝 ( 1 + 𝑥 , 1 ) for 𝑥 ∈ ( 0 , 𝛿 ) .

Remark 3.2. If 0 < 𝛼 < 1 / 4 , then from (1.1) and (1.2), we have l i m 𝑥 → + ∞ 𝑀 ( 1 − 4 𝛼 ) / 3 ( 1 , 𝑥 ) 𝛼 𝐻 ( 1 , 𝑥 ) + ( 1 − 𝛼 ) 𝐿 ( 1 , 𝑥 ) = 2 3 / ( 4 𝛼 − 1 ) × l i m 𝑥 → + ∞  1 + 𝑥 ( 4 𝛼 − 1 ) / 3  3 / ( 1 − 4 𝛼 ) 2 𝛼 / ( 𝑥 + 1 ) + ( ( 1 − 1 / 𝑥 ) ( 1 − 𝛼 ) / l o g 𝑥 ) = + ∞ . ( 3 . 1 3 )
Equation (3.13) implies that for any 0 < 𝛼 < 1 / 4 , there exists 𝑋 > 1 , such that 𝑀 ( 1 − 4 𝛼 ) / 3 ( 1 , 𝑥 ) > 𝛼 𝐻 ( 1 , 𝑥 ) + ( 1 − 𝛼 ) 𝐿 ( 1 , 𝑥 ) for 𝑥 ∈ ( 𝑋 , + ∞ ) . Therefore, 𝜆 = 1 / 4 is the least value of 𝜆 in ( 0 , 1 ) such that inequality (3.1) holds for all ğ‘Ž , 𝑏 > 0 with ğ‘Ž ≠ 𝑏 .

Acknowledgments

This research is supported by the N. S. Foundation of China under Grant 11071069, N. S. Foundation of Zhejiang province under Grants nos. Y7080106 and Y6100170, and the Innovation Team Foundation of the Department of Education of Zhejiang Province under Grant no. T200924.

References

  1. Y.-M. Chu and W.-F. Xia, “Two sharp inequalities for power mean, geometric mean, and harmonic mean,” Journal of Inequalities and Applications, vol. 2009, Article ID 741923, 6 pages, 2009. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  2. M.-Y. Shi, Y.-M. Chu, and Y.-P. Jiang, “Optimal inequalities among various means of two arguments,” Abstract and Applied Analysis, vol. 2009, Article ID 694394, 10 pages, 2009. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  3. J. E. Pečarić, “Generalization of the power means and their inequalities,” Journal of Mathematical Analysis and Applications, vol. 161, no. 2, pp. 395–404, 1991. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  4. A. O. Pittenger, “Inequalities between arithmetic and logarithmic means,” Univerzitet u Beogradu. Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika, no. 678–715, pp. 15–18, 1980. View at: Google Scholar | Zentralblatt MATH
  5. A. O. Pittenger, “The symmetric, logarithmic and power means,” Univerzitet u Beogradu. Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika, no. 678–715, pp. 19–23, 1980. View at: Google Scholar | Zentralblatt MATH
  6. P. S. Bullen, D. S. Mitrinović, and P. M. Vasić, Means and Their Inequalities, vol. 31 of Mathematics and Its Applications (East European Series), D. Reidel Publishing, Dordrecht, The Netherlands, 1988.
  7. F. Burk, “The geometric, logarithmic, and arithmetic mean inequality,” The American Mathematical Monthly, vol. 94, no. 6, pp. 527–528, 1987. View at: Publisher Site | Google Scholar
  8. B. C. Carlson, “The logarithmic mean,” The American Mathematical Monthly, vol. 79, pp. 615–618, 1972. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  9. T. P. Lin, “The power mean and the logarithmic mean,” The American Mathematical Monthly, vol. 81, pp. 879–883, 1974. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  10. J. Sándor, “On the identric and logarithmic means,” Aequationes Mathematicae, vol. 40, no. 2-3, pp. 261–270, 1990. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  11. J. Sándor, “A note on some inequalities for means,” Archiv der Mathematik, vol. 56, no. 5, pp. 471–473, 1991. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  12. J. Sándor, “On certain inequalities for means,” Journal of Mathematical Analysis and Applications, vol. 189, no. 2, pp. 602–606, 1995. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  13. J. Sándor, “On certain inequalities for means. II,” Journal of Mathematical Analysis and Applications, vol. 199, no. 2, pp. 629–635, 1996. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  14. J. Sándor, “On certain inequalities for means. III,” Archiv der Mathematik, vol. 76, no. 1, pp. 34–40, 2001. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  15. K. B. Stolarsky, “Generalizations of the logarithmic mean,” Delta. University of Wisconsin, vol. 48, pp. 87–92, 1975. View at: Google Scholar | Zentralblatt MATH
  16. K. B. Stolarsky, “The power and generalized logarithmic means,” The American Mathematical Monthly, vol. 87, no. 7, pp. 545–548, 1980. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  17. M. K. Vamanamurthy and M. Vuorinen, “Inequalities for means,” Journal of Mathematical Analysis and Applications, vol. 183, no. 1, pp. 155–166, 1994. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  18. P. Kahlig and J. Matkowski, “Functional equations involving the logarithmic mean,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 76, no. 7, pp. 385–390, 1996. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  19. A. O. Pittenger, “The logarithmic mean in n variables,” The American Mathematical Monthly, vol. 92, no. 2, pp. 99–104, 1985. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  20. G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, NJ, USA, 1951.
  21. B. C. Carlson, “Algorithms involving arithmetic and geometric means,” The American Mathematical Monthly, vol. 78, pp. 496–505, 1971. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  22. B. C. Carlson and J. L. Gustafson, “Total positivity of mean values and hypergeometric functions,” SIAM Journal on Mathematical Analysis, vol. 14, no. 2, pp. 389–395, 1983. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  23. H. Alzer and W. Janous, “Solution of problem 8∗,” Crux Mathematicorum, vol. 13, pp. 173–178, 1987. View at: 8*&author=H. Alzer &author=W. Janous&publication_year=1987" target="_blank">Google Scholar
  24. E. B. Leach and M. C. Sholander, “Extended mean values. II,” Journal of Mathematical Analysis and Applications, vol. 92, no. 1, pp. 207–223, 1983. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  25. H. Alzer, “Ungleichungen für Mittelwerte,” Archiv der Mathematik, vol. 47, no. 5, pp. 422–426, 1986. View at: Publisher Site | Google Scholar | Zentralblatt MATH
  26. H. Alzer, “Ungleichungen für (e/a)a(b/e)b,” Elemente der Mathematik, vol. 40, pp. 120–123, 1985. View at: Google Scholar
  27. H. Alzer and S.-L. Qiu, “Inequalities for means in two variables,” Archiv der Mathematik, vol. 80, no. 2, pp. 201–215, 2003. View at: Publisher Site | Google Scholar | Zentralblatt MATH

Copyright © 2011 Yu-Ming Chu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

491 Views | 415 Downloads | 13 Citations
 PDF  Download Citation  Citation
 Download other formatsMore
 Order printed copiesOrder