Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
VolumeΒ 2011, Article IDΒ 608329, 10 pages
http://dx.doi.org/10.1155/2011/608329
Research Article

Principal Functions of Non-Selfadjoint Difference Operator with Spectral Parameter in Boundary Conditions

Department of Mathematics, Ankara University, 06100 Ankara, Turkey

Received 21 January 2011; Accepted 6 April 2011

Academic Editor: SvatoslavΒ Staněk

Copyright Β© 2011 Murat Olgun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We investigate the principal functions corresponding to the eigenvalues and the spectral singularities of the boundary value problem (BVP) π‘Ž 𝑛 βˆ’ 1 𝑦 𝑛 βˆ’ 1 + 𝑏 𝑛 𝑦 𝑛 + π‘Ž 𝑛 𝑦 𝑛 + 1 = πœ† 𝑦 𝑛 , 𝑛 ∈ β„• and ( 𝛾 0 + 𝛾 1 πœ† ) 𝑦 1 + ( 𝛽 0 + 𝛽 1 πœ† ) 𝑦 0 = 0 , where ( π‘Ž 𝑛 ) and ( 𝑏 𝑛 ) are complex sequences, πœ† is an eigenparameter, and 𝛾 𝑖 , 𝛽 𝑖 ∈ β„‚ for 𝑖 = 0 , 1.

1. Introduction

Let us consider the (BVP) βˆ’ 𝑦 ξ…ž ξ…ž + π‘ž ( π‘₯ ) 𝑦 = πœ† 2 𝑦 𝑦 , 0 ≀ π‘₯ < ∞ , ξ…ž ( 0 ) βˆ’ β„Ž 𝑦 ( 0 ) = 0 ( 1 . 1 ) in 𝐿 2 ( ℝ + ) , where π‘ž is a complex-valued function and πœ† ∈ β„‚ is a spectral parameter and β„Ž ∈ β„‚ . The spectral theory of the above BVP with continuous and point spectrum was investigated by Naĭmark [1]. He showed that the existence of the spectral singularities in the continuous spectrum of the BVP. He noted that the spectral singularities that belong to the continuous spectrum are the poles of the resolvents kernel but they are not the eigenvalues of the BVP. Also he showed that eigenfunctions and the associated functions (principal functions) corresponding to the spectral singularities are not the element of 𝐿 2 ( ℝ + ) . The spectral singularities in the spectral expansion of the BVP in terms of principal functions have been investigated in [2]. The spectral analysis of the quadratic pencil of Schrödinger, Dirac, and Klein-Gordon operators with spectral singularities was studied in [38]. The spectral analysis of a non-selfadjoint difference equation with spectral parameter has been studied in [9]. In this paper, it is proved that the BVP π‘Ž 𝑛 βˆ’ 1 𝑦 𝑛 βˆ’ 1 + 𝑏 𝑛 𝑦 𝑛 + π‘Ž 𝑛 𝑦 𝑛 + 1 = πœ† 𝑦 𝑛 ξ€· 𝛾 , 𝑛 ∈ β„• , ( 1 . 2 ) 0 + 𝛾 1 πœ† ξ€Έ 𝑦 1 + ξ€· 𝛽 0 + 𝛽 1 πœ† ξ€Έ 𝑦 0 = 0 ( 1 . 3 ) has a finite number of eigenvalues and spectral singularities with a finite multiplicities if s u p 𝑛 ∈ β„• ξ€Ί ξ€· e x p πœ€ 𝑛 𝛿 | | ξ€Έ ξ€· 1 βˆ’ π‘Ž 𝑛 | | + | | 𝑏 𝑛 | | ξ€Έ ξ€» < ∞ ( 1 . 4 ) for some πœ€ > 0 and 1 / 2 ≀ 𝛿 ≀ 1 .

Let 𝐿 denote difference operator of second order generated in β„“ 2 ( β„• ) by ( β„“ 𝑦 ) 𝑛 = π‘Ž 𝑛 βˆ’ 1 𝑦 𝑛 βˆ’ 1 + 𝑏 𝑛 𝑦 𝑛 + π‘Ž 𝑛 𝑦 𝑛 + 1 , 𝑛 ∈ β„• ( 1 . 5 ) and with boundary condition ξ€· 𝛾 0 + 𝛾 1 πœ† ξ€Έ 𝑦 1 + ξ€· 𝛽 0 + 𝛽 1 πœ† ξ€Έ 𝑦 0 = 0 , 𝛾 0 𝛽 1 βˆ’ 𝛾 1 𝛽 0 β‰  0 , 𝛾 1 β‰  π‘Ž 0 βˆ’ 1 𝛽 0 , ( 1 . 6 ) where { π‘Ž 𝑛 } 𝑛 ∈ β„• , { 𝑏 𝑛 } 𝑛 ∈ β„• are complex sequences and π‘Ž 𝑛 β‰  0 for all 𝑛 ∈ β„• βˆͺ { 0 } and 𝛾 𝑖 , 𝛽 𝑖 ∈ β„‚ for 𝑖 = 0 , 1 .

In this paper, which is extension of [9], we aim to investigate the properties of the principal functions corresponding to the eigenvalues and spectral singularities of the BVP (1.2)-(1.3).

2. Discrete Spectrum of (1.2)-(1.3)

Let s u p 𝑛 ∈ β„• ξ€Ί ξ€· e x p πœ€ 𝑛 𝛿 | | ξ€Έ ξ€· 1 βˆ’ π‘Ž 𝑛 | | + | | 𝑏 𝑛 | | ξ€Έ ξ€» < ∞ ( 2 . 1 ) for some πœ€ > 0 and 1 / 2 ≀ 𝛿 ≀ 1 . The following result is obtained in [10, 11]: under the condition (2.1), equation (1.2) has the solution 𝑒 𝑛 ( 𝑧 ) = 𝛼 𝑛 𝑒 𝑖 𝑛 𝑧  1 + ∞  π‘š = 1 𝐴 𝑛 π‘š 𝑒 𝑖 π‘š 𝑧 ξƒͺ , 𝑛 ∈ β„• βˆͺ { 0 } ( 2 . 2 ) for πœ† = 2 c o s 𝑧 , where 𝑧 ∈ β„‚ + ∢ = { 𝑧 ∢ 𝑧 ∈ β„‚ , I m 𝑧 β‰₯ 0 } and 𝛼 𝑛 , 𝐴 𝑛 π‘š are expressed in terms of ( π‘Ž 𝑛 ) and ( 𝑏 𝑛 ) as 𝛼 𝑛 =  ∞  π‘˜ = 𝑛 π‘Ž π‘˜ ξƒͺ βˆ’ 1 , 𝐴 𝑛 , 1 = βˆ’ ∞  π‘˜ = 𝑛 + 1 𝑏 π‘˜ , 𝐴 𝑛 , 2 = βˆ’ ∞  π‘˜ = 𝑛 + 1 ξ€· 1 βˆ’ π‘Ž 2 π‘˜ ξ€Έ + ∞  π‘˜ = 𝑛 + 1 𝑏 π‘˜ ∞  𝑝 = π‘˜ + 1 𝑏 𝑝 , 𝐴 𝑛 , π‘š + 2 = ∞  π‘˜ = 𝑛 + 1 ξ€· 1 βˆ’ π‘Ž 2 π‘˜ ξ€Έ 𝐴 ∞ π‘˜ + 1 , π‘š  π‘˜ = 𝑛 + 1 𝑏 π‘˜ 𝐴 π‘˜ , π‘š + 1 + 𝐴 𝑛 + 1 , π‘š . ( 2 . 3 ) Moreover, 𝐴 𝑛 π‘š satisfies | | 𝐴 𝑛 π‘š | | ≀ 𝐢 ∞  π‘˜ = 𝑛 + ⌈ π‘š / 2 βŒ‰ ξ€· | | 1 βˆ’ π‘Ž π‘˜ | | + | | 𝑏 π‘˜ | | ξ€Έ , ( 2 . 4 ) where ⌈ π‘š / 2 βŒ‰ is the integer part of π‘š / 2 and 𝐢 > 0 is a constant. So 𝑒 ( 𝑧 ) = { 𝑒 𝑛 ( 𝑧 ) } is continuous in I m 𝑧 = 0 and analytic in β„‚ + ∢ = { 𝑧 ∢ 𝑧 ∈ β„‚ , I m 𝑧 > 0 } with respect to 𝑧 .

Let us define 𝑓 ( 𝑧 ) using (2.2) and the boundary condition (1.3) as 𝑓 ξ€· 𝛾 ( 𝑧 ) = 0 + 2 𝛾 1 ξ€Έ 𝑒 c o s 𝑧 1 ξ€· 𝛽 ( 𝑧 ) + 0 + 2 𝛽 1 ξ€Έ 𝑒 c o s 𝑧 0 ( 𝑧 ) . ( 2 . 5 ) The function 𝑓 is analytic in β„‚ + , continuous in β„‚ + , and 𝑓 ( 𝑧 ) = 𝑓 ( 𝑧 + 2 πœ‹ ) .

We denote the set of eigenvalues and spectral singularities of 𝐿 by 𝜎 𝑑 ( 𝐿 ) and 𝜎 𝑠 𝑠 ( 𝐿 ) , respectively. From the definition of the eigenvalues and spectral singularities, we have [12] 𝜎 𝑑 ξ€½ ( 𝐿 ) = πœ† ∢ πœ† = 2 c o s 𝑧 , 𝑧 ∈ 𝑃 0 ξ€Ύ , 𝜎 , 𝐹 ( 𝑧 ) = 0 𝑠 𝑠   βˆ’ πœ‹ ( 𝐿 ) = πœ† ∢ πœ† = 2 c o s 𝑧 , 𝑧 ∈ 2 , 3 πœ‹ 2 ξ‚„  , 𝐹 ( 𝑧 ) = 0 ⧡ { 0 } . ( 2 . 6 ) From (2.2) and (2.5), we get ξ€Ί 𝛾 𝑓 ( 𝑧 ) = 0 + 𝛾 1 ξ€· 𝑒 𝑖 𝑧 + 𝑒 βˆ’ 𝑖 𝑧  𝛼 ξ€Έ ξ€» 1 𝑒 𝑖 𝑧  1 + ∞  π‘š = 1 𝐴 1 π‘š 𝑒 𝑖 π‘š 𝑧 + ξ€Ί 𝛽 ξƒͺ ξƒ­ 0 + 𝛽 1 ξ€· 𝑒 𝑖 𝑧 + 𝑒 βˆ’ 𝑖 𝑧  𝛼 ξ€Έ ξ€» 0  1 + ∞  π‘š = 1 𝐴 0 π‘š 𝑒 𝑖 π‘š 𝑧 ξƒͺ ξƒ­ = 𝛼 0 𝛽 1 𝑒 βˆ’ 𝑖 𝑧 + 𝛾 1 𝛼 1 + 𝛼 0 𝛽 0 + ξ€· 𝛾 0 𝛼 1 + 𝛼 0 𝛽 1 ξ€Έ 𝑒 𝑖 𝑧 + 𝛾 1 𝛼 1 𝑒 𝑖 2 𝑧 + ∞  π‘š = 1 𝛼 0 𝛽 1 𝐴 0 π‘š 𝑒 𝑖 ( π‘š βˆ’ 1 ) 𝑧 + ∞  π‘š = 1 ξ€· 𝛾 1 𝛼 1 𝐴 1 π‘š + 𝛼 0 𝛽 0 𝐴 0 π‘š ξ€Έ 𝑒 𝑖 π‘š 𝑧 + ∞  π‘š = 1 ξ€· 𝛾 0 𝛼 1 𝐴 1 π‘š + 𝛼 0 𝛽 1 𝐴 0 π‘š ξ€Έ 𝑒 𝑖 ( π‘š + 1 ) 𝑧 + ∞  π‘š = 1 𝛾 1 𝛼 1 𝐴 1 π‘š 𝑒 𝑖 ( π‘š + 2 ) 𝑧 . ( 2 . 7 ) Let 𝐹 ( 𝑧 ) = 𝑓 ( 𝑧 ) 𝑒 𝑖 𝑧 = 𝛼 0 𝛽 1 + ξ€· 𝛾 1 𝛼 1 + 𝛼 0 𝛽 0 ξ€Έ 𝑒 𝑖 𝑧 + ξ€· 𝛾 0 𝛼 1 + 𝛼 0 𝛽 1 ξ€Έ 𝑒 2 𝑖 𝑧 + 𝛾 1 𝛼 1 𝑒 3 𝑖 𝑧 + ∞  π‘š = 1 𝛼 0 𝛽 1 𝐴 0 π‘š 𝑒 𝑖 π‘š 𝑧 + ∞  π‘š = 1 ξ€· 𝛾 1 𝛼 1 𝐴 1 π‘š + 𝛼 0 𝛽 0 𝐴 0 π‘š ξ€Έ 𝑒 𝑖 ( π‘š + 1 ) 𝑧 + ∞  π‘š = 1 ξ€· 𝛾 0 𝛼 1 𝐴 1 π‘š + 𝛼 0 𝛽 1 𝐴 0 π‘š ξ€Έ 𝑒 𝑖 ( π‘š + 2 ) 𝑧 + ∞  π‘š = 1 𝛾 1 𝛼 1 𝐴 1 π‘š 𝑒 𝑖 ( π‘š + 3 ) 𝑧 ; ( 2 . 8 ) then the function 𝐹 is analytic in β„‚ + , continuous in β„‚ + , and 𝐹 ( 𝑧 ) = 𝐹 ( 𝑧 + 2 πœ‹ ) . It follows from (2.6) and (2.8) that 𝜎 𝑑 ξ€½ ( 𝐿 ) = πœ† ∢ πœ† = 2 c o s 𝑧 , 𝑧 ∈ 𝑃 0 ξ€Ύ , 𝜎 , 𝐹 ( 𝑧 ) = 0 𝑠 𝑠   βˆ’ πœ‹ ( 𝐿 ) = πœ† ∢ πœ† = 2 c o s 𝑧 , 𝑧 ∈ 2 , 3 πœ‹ 2 ξ‚„  , 𝐹 ( 𝑧 ) = 0 ⧡ { 0 } . ( 2 . 9 )

Definition 2.1. The multiplicity of a zero of 𝐹 in 𝑃 is called the multiplicity of the corresponding eigenvalue or spectral singularity of the BVP (1.2) and (1.3).

3. Principal Functions

Let πœ† 1 , πœ† 2 , … , πœ† 𝑝 and πœ† 𝑝 + 1 , πœ† 𝑝 + 2 , … , πœ† π‘ž denote the zeros of 𝐹 in 𝑃 0 ∢ = { 𝑧 ∢ 𝑧 ∈ β„‚ , 𝑧 = π‘₯ + 𝑖 𝑦 , βˆ’ πœ‹ / 2 ≀ π‘₯ ≀ 3 πœ‹ / 2 , 𝑦 > 0 } and [ βˆ’ πœ‹ / 2 , 3 πœ‹ / 2 ] with multiplicities π‘š 1 , π‘š 2 , … , π‘š 𝑝 and π‘š 𝑝 + 1 , π‘š 𝑝 + 2 , … , π‘š π‘ž , respectively.

Definition 3.1. Let πœ† = πœ† 0 be an eigenvalue of 𝐿 . If the vectors 𝑦 ( 0 ) , 𝑦 ( 1 ) , … , 𝑦 ( 𝑠 ) ; 𝑦 ( π‘˜ ) = { 𝑦 𝑛 ( π‘˜ ) } 𝑛 ∈ β„• π‘˜ = 0 , 1 , … , 𝑠 satisfy the equations ξ€· 𝑙 𝑦 ( 0 ) ξ€Έ 𝑛 βˆ’ πœ† 0 𝑦 𝑛 ( 0 ) ξ€· = 0 , 𝑙 𝑦 ( π‘˜ ) ξ€Έ 𝑛 βˆ’ πœ† 0 𝑦 𝑛 ( π‘˜ ) βˆ’ 𝑦 𝑛 ( π‘˜ βˆ’ 1 ) = 0 , π‘˜ = 1 , 2 , . . . , 𝑠 ; 𝑛 ∈ β„• , ( 3 . 1 ) then vector 𝑦 ( 0 ) is called the eigenvector corresponding to the eigenvalue πœ† = πœ† 0 of 𝐿 . The vectors 𝑦 ( 1 ) , … , 𝑦 ( 𝑠 ) are called the associated vectors corresponding to πœ† = πœ† 0 . The eigenvector and the associated vectors corresponding to πœ† = πœ† 0 are called the principal vectors of the eigenvalue πœ† = πœ† 0 .

The principal vectors of the spectral singularities of 𝐿 are defined similarly.

We define the vectors 𝑉 𝑛 ( π‘˜ ) ξ€· πœ† 𝑗 ξ€Έ = 1 ξ‚» 𝑑 π‘˜ ! π‘˜ 𝑑 πœ† π‘˜ 𝐸 𝑛 ξ‚Ό | | | | ( πœ† ) πœ† = πœ† 𝑗 , π‘˜ = 0 , 1 , … , π‘š 𝑗 𝑉 βˆ’ 1 ; 𝑗 = 1 , 2 , … , 𝑝 , 𝑛 ( π‘˜ ) ξ€· πœ† 𝑗 ξ€Έ = 1 ξ‚» 𝑑 π‘˜ ! π‘˜ 𝑑 πœ† π‘˜ 𝐸 𝑛 ξ‚Ό | | | | ( πœ† ) πœ† = πœ† 𝑗 , π‘˜ = 0 , 1 , … , π‘š 𝑗 βˆ’ 1 ; 𝑗 = 𝑝 + 1 , 𝑝 + 2 , … , π‘ž , ( 3 . 2 ) where πœ† = 2 c o s 𝑧 , 𝑧 ∈ 𝑃 0 , and ξ€½ 𝐸 𝑛 ξ€Ύ  𝑒 ( πœ† ) ∢ = 𝑛 ξ‚€ πœ† a r c c o s 2   , 𝑛 ∈ β„• . ( 3 . 3 ) Moreover, if 𝑦 ( πœ† ) = { 𝑦 𝑛 ( πœ† ) } 𝑛 ∈ β„• is a solution of (1.2), then ( 𝑑 π‘˜ / 𝑑 πœ† π‘˜ ) 𝑦 ( πœ† ) = { ( 𝑑 π‘˜ / 𝑑 πœ† π‘˜ ) 𝑦 𝑛 ( πœ† ) } 𝑛 ∈ β„• satisfies π‘Ž 𝑛 βˆ’ 1 𝑑 π‘˜ 𝑑 πœ† π‘˜ 𝑦 𝑛 βˆ’ 1 ( πœ† ) + 𝑏 𝑛 𝑑 π‘˜ 𝑑 πœ† π‘˜ 𝑦 𝑛 ( πœ† ) + π‘Ž 𝑛 𝑑 π‘˜ 𝑑 πœ† π‘˜ 𝑦 𝑛 + 1 𝑑 ( πœ† ) = πœ† π‘˜ 𝑑 πœ† π‘˜ 𝑦 𝑛 𝑑 ( πœ† ) + π‘˜ π‘˜ βˆ’ 1 𝑑 πœ† π‘˜ βˆ’ 1 𝑦 𝑛 ( πœ† ) . ( 3 . 4 ) From (3.2) and (3.4), we get that ξ€· β„“ 𝑉 ( 0 ) ξ€· πœ† 𝑗 ξ€Έ ξ€Έ 𝑛 βˆ’ πœ† 𝑗 𝑉 𝑛 ( 0 ) ξ€· πœ† 𝑗 ξ€Έ ξ€· = 0 , β„“ 𝑉 ( π‘˜ ) ξ€· πœ† 𝑗 ξ€Έ ξ€Έ 𝑛 βˆ’ πœ† 𝑗 𝑉 𝑛 ( π‘˜ ) ξ€· πœ† 𝑗 ξ€Έ βˆ’ 𝑉 𝑛 ( π‘˜ βˆ’ 1 ) ξ€· πœ† 𝑗 ξ€Έ = 0 , π‘˜ = 1 , 2 , … , π‘š 𝑗 βˆ’ 1 ; 𝑗 = 1 , 2 , … , π‘ž . ( 3 . 5 ) Consequently, the vectors 𝑉 𝑛 ( π‘˜ ) ( πœ† 𝑗 ) ; π‘˜ = 0 , 1 , … , π‘š 𝑗 βˆ’ 1 , 𝑗 = 1 , 2 , … , 𝑝 and 𝑉 𝑛 ( π‘˜ ) ( πœ† 𝑗 ) ; π‘˜ = 0 , 1 , … , π‘š 𝑗 βˆ’ 1 , 𝑗 = 𝑝 + 1 , 𝑝 + 2 , … , π‘ž are the principal vectors of eigenvalues and spectral singularities of 𝐿 , respectively.

Theorem 3.2. 𝑉 𝑛 ( π‘˜ ) ξ€· πœ† 𝑗 ξ€Έ ∈ β„“ 2 ( β„• ) ; π‘˜ = 0 , 1 , … , π‘š 𝑗 𝑉 βˆ’ 1 , 𝑗 = 1 , 2 , … , 𝑝 , 𝑛 ( π‘˜ ) ξ€· πœ† 𝑗 ξ€Έ βˆ‰ β„“ 2 ( β„• ) ; π‘˜ = 0 , 1 , … , π‘š 𝑗 βˆ’ 1 , 𝑗 = 𝑝 + 1 , … , π‘ž . ( 3 . 6 )

Proof. Using 𝐸 𝑛 ( πœ† ) = 𝑒 𝑛 ( a r c c o s ( πœ† / 2 ) ) , we obtain that ξ‚» 𝑑 π‘˜ 𝑑 πœ† π‘˜ 𝐸 𝑛 ξ‚Ό | | | | ( πœ† ) πœ† = πœ† 𝑗 = π‘˜  𝜈 = 0 𝐢 𝜈 ξ‚» 𝑑 𝜈 𝑑 πœ† 𝜈 𝑒 𝑛 ξ‚Ό ( 𝑧 ) 𝑧 = 𝑧 𝑗 , 𝑛 ∈ β„• , ( 3 . 7 ) where πœ† 𝑗 = 2 c o s 𝑧 𝑗 ; 𝑧 𝑗 ∈ 𝑃 = 𝑃 0 βˆͺ [ βˆ’ πœ‹ / 2 , 3 πœ‹ / 2 ] , 𝑗 = 1 , 2 , … , π‘ž ; 𝐢 𝜈 is a constant depending on πœ† 𝑗 .
From (2.2), we find that ξ‚» 𝑑 𝜈 𝑑 𝑧 𝜈 𝑒 𝑛 ξ‚Ό ( 𝑧 ) 𝑧 = 𝑧 𝑗 = 𝛼 𝑛 𝑒 𝑖 𝑛 𝑧 𝑗 ξƒ― ( 𝑖 𝑛 ) 𝜈 + ∞  π‘š = 1 [ ] 𝑖 ( 𝑛 + π‘š ) 𝜈 𝐴 𝑛 π‘š 𝑒 𝑖 π‘š 𝑧 𝑗 ξƒ° = 𝛼 𝑛 𝑒 𝑖 𝑛 𝑧 𝑗 ( 𝑖 𝑛 ) 𝜈 + 𝛼 𝑛 𝑒 𝑖 𝑛 𝑧 𝑗 ∞  π‘š = 1 [ ] 𝑖 ( 𝑛 + π‘š ) 𝜈 𝐴 𝑛 π‘š 𝑒 𝑖 π‘š 𝑧 𝑗 . ( 3 . 8 ) For the principal vectors 𝑉 𝑛 ( π‘˜ ) ( πœ† 𝑗 ) = { 𝑉 ( π‘˜ ) ( πœ† 𝑗 ) } 𝑛 ∈ β„• , π‘˜ = 0 , 1 , … , π‘š 𝑗 βˆ’ 1 , 𝑗 = 1 , 2 , … , 𝑝 , corresponding to the eigenvalues πœ† 𝑗 = 2 c o s 𝑧 𝑗 , 𝑗 = 1 , 2 , … , 𝑝 , of 𝐿 , we get ξ‚» 𝑑 π‘˜ 𝑑 πœ† π‘˜ 𝐸 𝑛 ξ‚Ό | | | | ( πœ† ) πœ† = πœ† 𝑗 = π‘˜  𝜈 = 0 𝐢 𝜈 ξƒ― 𝛼 𝑛 𝑒 𝑖 𝑛 𝑧 𝑗 ( 𝑖 𝑛 ) 𝜈 + 𝛼 𝑛 𝑒 𝑖 𝑛 𝑧 𝑗 ∞  π‘š = 1 [ ] 𝑖 ( 𝑛 + π‘š ) 𝜈 𝐴 𝑛 π‘š 𝑒 𝑖 π‘š 𝑧 𝑗 ξƒ° ; ( 3 . 9 ) then 𝑉 𝑛 ( π‘˜ ) ξ€· πœ† 𝑗 ξ€Έ = 1 ξƒ― π‘˜ ! π‘˜  𝜈 = 0 𝐢 𝜈  𝛼 𝑛 𝑒 𝑖 𝑛 𝑧 𝑗 ( 𝑖 𝑛 ) 𝜈 + 𝛼 𝑛 𝑒 𝑖 𝑛 𝑧 𝑗 ∞  π‘š = 1 [ ] 𝑖 ( 𝑛 + π‘š ) 𝜈 𝐴 𝑛 π‘š 𝑒 𝑖 π‘š 𝑧 𝑗 ξƒ­ ξƒ° ( 3 . 1 0 ) for π‘˜ = 0 , 1 , … , π‘š 𝑗 βˆ’ 1 , 𝑗 = 1 , 2 , … , 𝑝 .
Since I m πœ† 𝑗 > 0 , 𝑗 = 1 , 2 , … , 𝑝 from (3.10) we obtain that ∞  𝑛 = 1 | | | | | 1 π‘˜ ! π‘˜  𝜈 = 0 𝐢 𝜈 𝛼 𝑛 𝑒 𝑖 𝑛 𝑧 𝑗 ( 𝑖 𝑛 ) 𝜈 | | | | | 2 ≀ 1 ( π‘˜ ! ) 2  ∞  π‘˜ 𝑛 = 1  𝜈 = 0 | | 𝐢 𝜈 | | | | 𝛼 𝑛 | | 𝑒 βˆ’ 𝑛 I m 𝑧 𝑗 | | 𝑛 𝜈 | | ξƒ­ 2 ≀ 𝐴 ( π‘˜ ! ) 2  ∞  𝑛 = 1 𝑒 βˆ’ 𝑛 I m 𝑧 𝑗 ξ€· 1 + 𝑛 + 𝑛 2 + β‹― + 𝑛 π‘˜ ξ€Έ ξƒ­ 2 ≀ 𝐴 ( π‘˜ ! ) 2 ( π‘˜ + 1 ) 2  ∞  𝑛 = 1 𝑒 βˆ’ 𝑛 I m 𝑧 𝑗 𝑛 π‘˜ ξƒͺ 2 < ∞ , ( 3 . 1 1 ) where 𝐴 is a constant. Now we define the function 𝑔 𝑛 1 ( 𝑧 ) = π‘˜ ! π‘˜  𝜈 = 0 𝛼 𝑛 𝑒 𝑖 𝑛 𝑧 𝑗 ∞  π‘š = 1 [ ] 𝑖 ( 𝑛 + π‘š ) 𝜈 𝐴 𝑛 π‘š 𝑒 𝑖 π‘š 𝑧 𝑗 , 𝑗 = 1 , 2 , … , 𝑝 . ( 3 . 1 2 ) From (2.4), we obtain that | | 𝑔 𝑛 | | ≀ ( 𝑧 ) π‘˜  𝜈 = 0 | | 𝛼 𝑛 | | 𝑒 βˆ’ 𝑛 I m 𝑧 𝑗 ∞  π‘š = 1 | 𝑛 + π‘š | 𝜈 | | 𝐴 𝑛 π‘š | | 𝑒 βˆ’ π‘š I m 𝑧 𝑗 ≀ | | 𝛼 𝑛 | | 𝑒 βˆ’ 𝑛 I m 𝑧 𝑗  ∞  π‘š = 1 | | 𝐴 𝑛 π‘š | | 𝑒 βˆ’ π‘š I m 𝑧 𝑗 + ∞  π‘š = 1 | | 𝐴 ( 𝑛 + π‘š ) 𝑛 π‘š | | 𝑒 βˆ’ π‘š I m 𝑧 𝑗 + β‹― + ∞  π‘š = 1 ( 𝑛 + π‘š ) π‘˜ | | 𝐴 𝑛 π‘š | | 𝑒 βˆ’ π‘š I m 𝑧 𝑗 ξƒ­ < 𝐡 𝑒 βˆ’ 𝑛 I m 𝑧 𝑗 , ( 3 . 1 3 ) where 𝐡 = | 𝛼 𝑛 | βˆ‘ ∞ π‘š = 1 βˆ‘ π‘˜ 𝜈 = 0 | 𝐴 𝑛 π‘š | 𝑒 βˆ’ π‘š I m 𝑧 𝑗 ( 𝑛 + π‘š ) 𝜈 . Therefore, we have ∞  𝑛 = 1 | | 𝑔 𝑛 ( | | 𝑧 ) 2 ≀ ∞  𝑛 = 1 𝐡 2 𝑒 βˆ’ 2 𝑛 I m 𝑧 𝑗 , 𝑗 = 1 , 2 , … , 𝑝 < ∞ . ( 3 . 1 4 ) It follows from (3.11) and (3.14) that 𝑉 𝑛 ( π‘˜ ) ( πœ† 𝑗 ) ∈ β„“ 2 ( β„• ) , π‘˜ = 0 , 1 , … , π‘š 𝑗 βˆ’ 1 , 𝑗 = 1 , 2 , … , 𝑝 .
If we consider (3.10) for the principal vectors corresponding to the spectral singularities πœ† 𝑗 = 2 c o s 𝑧 𝑗 , 𝑗 = 𝑝 + 1 , 𝑝 + 2 , … , π‘ž , of 𝐿 and consider that I m 𝑧 𝑗 = 0 for the spectral singularities, then we have 𝑉 𝑛 ( π‘˜ ) ξ€· πœ† 𝑗 ξ€Έ = 1 ξƒ― π‘˜ ! π‘˜  𝜈 = 0 𝐢 𝜈 𝛼 𝑛 𝑒 𝑖 𝑛 𝑧 𝑗 ( 𝑖 𝑛 ) 𝜈 + 𝛼 𝑛 𝑒 𝑖 𝑛 𝑧 𝑗 π‘˜  ∞ 𝜈 = 0  π‘š = 1 [ ] 𝑖 ( 𝑛 + π‘š ) 𝜈 𝐴 𝑛 π‘š 𝑒 𝑖 π‘š 𝑧 𝑗 ξƒ° ( 3 . 1 5 ) for π‘˜ = 0 , 1 , … , π‘š 𝑗 βˆ’ 1 , 𝑗 = 𝑝 + 1 , 𝑝 + 2 , … , π‘ž .
Since I m πœ† 𝑗 = 0 , 𝑗 = 𝑝 + 1 , … , π‘ž from (3.15) we find that 1 π‘˜ ! ∞  𝑛 = 1 | | | | | π‘˜  𝜈 = 0 𝐢 𝜈 𝛼 𝑛 𝑒 𝑖 𝑛 𝑧 𝑗 ( 𝑖 𝑛 ) 𝜈 | | | | | 2 = ∞ . ( 3 . 1 6 ) Now we define 𝑑 𝑛 βˆ‘ ( 𝑧 ) = π‘˜ 𝜈 = 0 βˆ‘ ∞ π‘š = 1 [ 𝑖 ( 𝑛 + π‘š ) ] 𝜈 𝐴 𝑛 π‘š 𝑒 𝑖 π‘š 𝑧 𝑗 , and using (2.4) we get | | 𝑑 𝑛 | | ≀ ( 𝑧 ) π‘˜  ∞ 𝜈 = 0  π‘š = 1 | | ( 𝑛 + π‘š ) 𝜈 | | | | 𝐴 𝑛 π‘š | | ≀ π‘˜  ∞ 𝜈 = 0  π‘š = 1 ( 𝑛 + π‘š ) 𝜈 𝐢 ∞  π‘˜ = 𝑛 + ⌈ π‘š / 2 βŒ‰ ξ€· | | 1 βˆ’ π‘Ž π‘˜ | | + | | 𝑏 π‘˜ | | ξ€Έ ≀ 𝐢 π‘˜  ∞ 𝜈 = 0  π‘š = 1 ( 𝑛 + π‘š ) 𝜈 ∞  π‘˜ = 𝑛 + ⌈ π‘š / 2 βŒ‰ ξ€· | | e x p ( βˆ’ πœ€ π‘˜ ) e x p ( πœ€ π‘˜ ) 1 βˆ’ π‘Ž π‘˜ | | + | | 𝑏 π‘˜ | | ξ€Έ ≀ 𝐢 π‘˜  ∞ 𝜈 = 0  π‘š = 1 ( 𝑛 + π‘š ) 𝜈  e x p βˆ’ πœ€ 4 ( ξ‚„ 𝑛 + π‘š ) ∞  π‘˜ = 𝑛 + ⌈ π‘š / 2 βŒ‰ ξ€· | | e x p ( πœ€ π‘˜ ) 1 βˆ’ π‘Ž π‘˜ | | + | | 𝑏 π‘˜ | | ξ€Έ ≀ 𝐢 1 π‘˜  ∞ 𝜈 = 0  π‘š = 1 ( 𝑛 + π‘š ) 𝜈  e x p βˆ’ πœ€ 4 ξ‚„ ( 𝑛 + π‘š ) = 𝐢 1 𝑒 ∞ ( βˆ’ πœ€ / 4 ) 𝑛  π‘˜ π‘š = 1  𝜈 = 0 ( 𝑛 + π‘š ) 𝜈 ξ‚€ e x p βˆ’ πœ€ 4 π‘š  = 𝐴 𝑒 ( βˆ’ πœ€ / 4 ) 𝑛 , ( 3 . 1 7 ) where 𝐴 = 𝐢 1 ∞  π‘˜ π‘š = 1  𝜈 = 0 ( 𝑛 + π‘š ) 𝜈 ξ‚€ e x p βˆ’ πœ€ 4 π‘š  . ( 3 . 1 8 )
If we use (3.17), we obtain that 1 π‘˜ ! ∞  𝑛 = 1 | | | | | 𝛼 𝑛 𝑒 𝑖 𝑛 𝑧 𝑗 π‘˜  ∞ 𝜈 = 0  π‘š = 1 [ ] 𝑖 ( 𝑛 + π‘š ) 𝜈 𝐴 𝑛 π‘š 𝑒 𝑖 π‘š 𝑧 𝑗 | | | | | 2 ≀ 1 π‘˜ ! ∞  𝑛 = 1 𝛼 2 𝑛 𝐴 2 𝑒 βˆ’ πœ€ 𝑛 / 2 < ∞ . ( 3 . 1 9 ) So 𝑉 𝑛 ( π‘˜ ) βˆ‰ β„“ 2 ( β„• ) , π‘˜ = 0 , 1 , … , π‘š 𝑗 βˆ’ 1 , 𝑗 = 𝑝 + 1 , 𝑝 + 2 , … π‘ž .

Let us introduce Hilbert spaces 𝐻 π‘˜ ξƒ― ξ€½ 𝑦 ( β„• ) = 𝑦 = 𝑛 ξ€Ύ 𝑛 ∈ β„• ∢  𝑛 ∈ β„• ( 1 + | 𝑛 | ) 2 π‘˜ | | 𝑦 𝑛 | | 2 ξƒ° , 𝐻 < ∞ βˆ’ π‘˜ ξƒ― ξ€½ 𝑒 ( β„• ) = 𝑒 = 𝑛 ξ€Ύ 𝑛 ∈ β„• ∢  𝑛 ∈ β„• ( 1 + | 𝑛 | ) βˆ’ 2 π‘˜ | | 𝑒 𝑛 | | 2 ξƒ° < ∞ , π‘˜ = 0 , 1 , 2 , … , ( 3 . 2 0 ) with β€– 𝑦 β€– 2 π‘˜ = βˆ‘ 𝑛 ∈ β„• ( 1 + | 𝑛 | ) 2 π‘˜ | 𝑦 𝑛 | 2 , β€– 𝑒 β€– 2 βˆ’ π‘˜ = βˆ‘ 𝑛 ∈ β„• ( 1 + | 𝑛 | ) βˆ’ 2 π‘˜ | 𝑒 𝑛 | 2 , respectively. It is obvious that 𝐻 0 ( β„• ) = β„“ 2 ( β„• ) and 𝐻 π‘˜ + 1 ( β„• ) β«‹ 𝐻 π‘˜ ( β„• ) β«‹ 𝑙 2 ( β„• ) β«‹ 𝐻 βˆ’ π‘˜ ( β„• ) β«‹ 𝐻 βˆ’ ( π‘˜ + 1 ) ( β„• ) , π‘˜ = 1 , 2 , … ( 3 . 2 1 )

Theorem 3.3. 𝑉 𝑛 ( π‘˜ ) ( πœ† 𝑗 ) ∈ 𝐻 βˆ’ ( π‘˜ + 1 ) ( β„• ) , π‘˜ = 0 , 1 , … , π‘š 𝑗 βˆ’ 1 , 𝑗 = 𝑝 + 1 , … , π‘ž .

Proof. From (3.15), we have ∞  𝑛 = 1 ( 1 + | 𝑛 | ) βˆ’ 2 ( π‘˜ + 1 ) | | | | | 1 π‘˜ ! π‘˜  𝜈 = 0 𝐢 𝜈 𝛼 𝑛 𝑒 𝑖 𝑛 𝑧 𝑗 ( 𝑖 𝑛 ) 𝜈 | | | | | 2 < ∞ , ∞  𝑛 = 1 ( 1 + | 𝑛 | ) βˆ’ 2 ( π‘˜ + 1 ) | | | | | 1 π‘˜ ! π‘˜  𝜈 = 0 𝛼 𝑛 𝑒 𝑖 𝑛 𝑧 𝑗 ∞  π‘š = 1 [ ] 𝑖 ( 𝑛 + π‘š ) 𝜈 𝐴 𝑛 π‘š 𝑒 𝑖 π‘š 𝑧 𝑗 | | | | | 2 < ∞ ( 3 . 2 2 ) for π‘˜ = 0 , 1 , … , π‘š 𝑗 βˆ’ 1 , 𝑗 = 𝑝 + 1 , 𝑝 + 2 , … , π‘ž . Therefore, we obtain that 𝑉 𝑛 ( π‘˜ ) ( πœ† 𝑗 ) ∈ 𝐻 βˆ’ ( π‘˜ + 1 ) ( β„• ) , π‘˜ = 0 , 1 , … , π‘š 𝑗 βˆ’ 1 , 𝑗 = 𝑝 + 1 , 𝑝 + 2 , … , π‘ž .

Let us choose π‘š 0 = m a x { π‘š 𝑝 + 1 , π‘š 𝑝 + 2 , … , π‘š π‘ž } . By Theorem 3.2 and (3.21), we get the following.

Theorem 3.4. 𝑉 𝑛 ( π‘˜ ) ( πœ† 𝑗 ) ∈ 𝐻 βˆ’ π‘š 0 ( β„• ) , π‘˜ = 0 , 1 , … , π‘š 𝑗 βˆ’ 1 , 𝑗 = 𝑝 + 1 , 𝑝 + 2 , … , π‘ž .

Proof. The proof of theorem is trivial.

References

  1. M. A. Naĭmark, β€œInvestigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis,” American Mathematical Society Translations, vol. 16, pp. 103–193, 1960. View at Google Scholar
  2. V. E. Lyance, β€œA differential operator with spectral singularities, I, II,” AMS Translations, vol. 2, no. 60, pp. 227–283, 1967. View at Google Scholar
  3. E. Bairamov, Ö. Çakar, and A. O. Çelebi, β€œQuadratic pencil of Schrödinger operators with spectral singularities: discrete spectrum and principal functions,” Journal of Mathematical Analysis and Applications, vol. 216, no. 1, pp. 303–320, 1997. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH Β· View at MathSciNet
  4. A. M. Krall, E. Bairamov, and Ö. Çakar, β€œSpectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition,” Journal of Differential Equations, vol. 151, no. 2, pp. 252–267, 1999. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH Β· View at MathSciNet
  5. E. Bairamov, Ö. Çakar, and A. M. Krall, β€œAn eigenfunction expansion for a quadratic pencil of a Schrödinger operator with spectral singularities,” Journal of Differential Equations, vol. 151, no. 2, pp. 268–289, 1999. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH Β· View at MathSciNet
  6. E. Bairamov and A. O. Çelebi, β€œSpectrum and spectral expansion for the non-selfadjoint discrete Dirac operators,” The Quarterly Journal of Mathematics. Oxford. Second Series, vol. 50, no. 200, pp. 371–384, 1999. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH Β· View at MathSciNet
  7. E. Bairamov and A. O. Çelebi, β€œSpectral properties of the Klein-Gordon s-wave equation with complex potential,” Indian Journal of Pure and Applied Mathematics, vol. 28, no. 6, pp. 813–824, 1997. View at Google Scholar
  8. G. B. Tunca and E. Bairamov, β€œDiscrete spectrum and principal functions of non-selfadjoint differential operator,” Czechoslovak Mathematical Journal, vol. 49, no. 4, pp. 689–700, 1999. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH Β· View at MathSciNet
  9. E. Bairamov, Y. Aygar, and T. Koprubasi, β€œThe spectrum of eigenparameter-dependent discrete Sturm-Liouville equations,” Journal of Computational and Applied Mathematics, vol. 235, pp. 4519–4523, 2011. View at Google Scholar
  10. G. Š. Guseĭnov, β€œDetermination of an infinite Jacobi matrix from scattering data,” Doklady Akademii Nauk SSSR, vol. 227, no. 6, pp. 1289–1292, 1976. View at Google Scholar Β· View at Zentralblatt MATH
  11. G. S. Guseinov, β€œThe inverse problem of scattering theory for a second order difference equation on the whole axis,” Doklady Akademii Nauk SSSR, vol. 17, pp. 1684–1688, 1976. View at Google Scholar
  12. M. A. Naĭmark, Linear Differential Operators, II, Ungar, New York, NY, USA, 1968.