Abstract

The paper is devoted to integro-differential operators, which correspond to nonlocal reaction-diffusion equations considered on the whole axis. Their Fredholm property and properness will be proved. This will allow one to define the topological degree.

1. Introduction

Consider the semilinear parabolic equation πœ•π‘’=πœ•πœ•π‘‘2π‘’πœ•π‘₯2+𝐹(𝑒,𝐽(𝑒)),(1.1) where ξ€œπ½(𝑒)=βˆžβˆ’βˆžπœ™(π‘₯βˆ’π‘¦)𝑒(𝑦,𝑑)𝑑𝑦.(1.2) Here πœ™βˆΆβ„β†’β„ is a bounded function, not necessarily continuous, πœ™β‰₯0 on ℝ. The support of the function πœ™ is supposed to be bounded, suppπœ™βŠ†[βˆ’π‘,𝑁]. We will also assume that βˆ«βˆžβˆ’βˆžπœ™(𝑦)𝑑𝑦=1. Conditions on the function 𝐹 will be specified below.

Integro-differential equations of this type arise in population dynamics (see [1, 2] and references therein). They are referred to as nonlocal reaction-diffusion equations. A travelling wave solution of (1.1) is a solution of this equation of the particular form 𝑒(π‘₯,𝑑)=𝑀(π‘₯βˆ’π‘π‘‘). It satisfies the equationπ‘€ξ…žξ…ž+π‘π‘€ξ…ž+𝐹(𝑀,𝐽(𝑀))=0.(1.3) The constant π‘βˆˆβ„ is the wave speed. It is unknown and should be found together with the function 𝑀(π‘₯). There are numerous works devoted to the existence [3–7], stability and nonlinear dynamics [1, 1, 2, 8–16] of travelling wave solutions of some particular cases of (1.1). Properties of travelling waves are determined by the properties of the integro-differential operator in the left-hand side of (1.3). In this paper we will study the Fredholm property of this operator and its properness. We will use them to define the topological degree and will discuss some applications.

Let 𝐸=𝐢2+𝛼(ℝ), 𝐸0=𝐢𝛼(ℝ), 0<𝛼<1 the usual Holder spaces endowed with the norms ‖𝑒‖𝐸0=supπ‘₯,π‘¦βˆˆβ„||||𝑒(π‘₯)βˆ’π‘’(𝑦)||||π‘₯βˆ’π‘¦π›Ό+supπ‘₯βˆˆβ„||||𝑒(π‘₯),‖𝑒‖𝐸=‖𝑒‖𝐸0+β€–β€–π‘’ξ…žβ€–β€–πΈ0+β€–β€–π‘’ξ…žξ…žβ€–β€–πΈ0.(1.4) We are interested in the solutions of equation (1.3) with the limits 𝑀± at ±∞, where the values 𝑀± are such that 𝐹(𝑀±,𝑀±)=0. We are looking for the solutions 𝑀 of (1.3) under the form 𝑀=𝑒+πœ“, where πœ“βˆˆπΆβˆž(ℝ), such that πœ“(π‘₯)=𝑀+ for π‘₯β‰₯1 and πœ“(π‘₯)=π‘€βˆ’ for π‘₯β‰€βˆ’1. Thus (1.3) becomes (𝑒+πœ“)ξ…žξ…ž+𝑐(𝑒+πœ“)ξ…ž+𝐹(𝑒+πœ“,𝐽(𝑒+πœ“))=0.(1.5) Denote by 𝐴 the operator in the left-hand side of (1.5), that is π΄βˆΆπΈβ†’πΈ0,𝐴𝑒=(𝑒+πœ“)ξ…žξ…ž+𝑐(𝑒+πœ“)ξ…ž+𝐹(𝑒+πœ“,𝐽(𝑒+πœ“)).(1.6)

Suppose that 𝐹 is differentiable with respect to both variables. The linearization of 𝐴 about a function 𝑒1∈𝐸 is the operator πΏβˆΆπΈβ†’πΈ0,πΏπ‘’β‰‘π΄ξ…žξ€·π‘’1𝑒=π‘’ξ…žξ…ž+π‘π‘’ξ…ž+πœ•πΉξ€·π‘’πœ•π‘’1𝑒+πœ“,𝐽1+πœ“ξ€Έξ€Έπ‘’+πœ•πΉξ€·π‘’πœ•π‘ˆ1𝑒+πœ“,𝐽1+πœ“ξ€Έξ€Έπ½(𝑒),(1.7) where πœ•πΉ/πœ•π‘’ and πœ•πΉ/πœ•π‘ˆ are the derivatives of 𝐹(𝑒,π‘ˆ) with respect to the first and to the second variable, respectively.

For the linearized operator 𝐿, we introduce the limiting operators. Since for 𝑀1=𝑒1+πœ“, there exist the limits limπ‘₯β†’Β±βˆžπ‘€1(π‘₯)=𝑀±, it follows that 𝐽(𝑀1)=𝐽(𝑒1+πœ“)→𝑀± as π‘₯β†’Β±βˆž and the limiting operators are given by 𝐿±𝑒=π‘’ξ…žξ…ž+π‘π‘’ξ…ž+π‘ŽΒ±π‘’+𝑏±𝐽(𝑒),(1.8) where π‘ŽΒ±=πœ•πΉξ€·π‘€πœ•π‘’Β±,𝑀±,𝑏±=πœ•πΉξ€·π‘€πœ•π‘ˆΒ±,𝑀±.(1.9)

We will now recall the main definitions and results concerning the essential spectrum and Fredholm property for linear operators and the properness of nonlinear operators.

1.1. Essential Spectrum and Fredholm Property

Let us recall that a linear operator π‘€βˆΆπΈ1→𝐸2 acting from a Banach space 𝐸1 into another Banach space 𝐸2 is called a Fredholm operator if its kernel has a finite dimension, its image is closed, and the codimension of the image is also finite. The last two conditions are equivalent to the following solvability condition: the equation 𝐿𝑒=𝑓 is solvable if and only if πœ™π‘–(𝑓)=0 for a finite number of functionals πœ™π‘– from the dual space πΈβˆ—2.

Suppose that 𝐸1βŠ‚πΈ2. By definition, the essential spectrum of the operator 𝐿 is the set of all complex πœ† for which the operator πΏβˆ’πœ†πΌ, where 𝐼 is the identity operator, does not satisfy the Fredholm property. The essential spectrum of general elliptic boundary value problems in unbounded domains can be determined in terms of limiting operators [17]. For the integro-differential operators under consideration, since they have constant coefficients at infinity, the essential spectrum can be found explicitly. It is proved [5, 6] that the operator πΏβˆ’πœ†πΌ is normally solvable with a finite-dimensional kernel if and only if the equations 𝐿±𝑒=πœ†π‘’ do not have nonzero bounded solutions. Applying the Fourier transform to the last equations, we obtain πœ†Β±(πœ‰)=βˆ’πœ‰2+π‘π‘–πœ‰+π‘ŽΒ±+π‘Β±ξ‚πœ™(πœ‰),πœ‰βˆˆβ„,(1.10) where ξ‚πœ™(πœ‰) is the Fourier transform of the function πœ™(π‘₯). Thus, the operator 𝐿 is normally solvable with a finite-dimensional kernel if and only if the curves πœ†Β±(πœ‰) on the complex plane do not pass through the origin. Under some additional conditions, it can be also shown that the codimension of the operator is finite, that is, it satisfies the Fredholm property, and its index can be found.

A nonlinear operator 𝐡∢𝐸1→𝐸2 is called Fredholm if the linearized operator π΅ξ…ž satisfies this property. In what follows we will use the Fredholm property in some weighted spaces (see below).

1.2. Properness and Topological Degree

An operator 𝐡∢𝐸1→𝐸2 is called proper on closed bounded sets if the intersection of the inverse image of a compact set πΎβŠ‚πΈ2 with any closed bounded set in 𝐸1 is compact. For the sake of brevity, we will call such operators proper. It is an important property because it implies that the set of solution of the operator equation 𝐡(𝑒)=0 is compact.

It appears that elliptic (or ordinary differential) operators are not generally proper when considered in HΓΆlder or Sobolev spaces in unbounded domains. We illustrate this situation with a simple example. Consider the equation π‘€ξ…žξ…ž+𝐻(𝑀)=0,π‘₯βˆˆβ„,(1.11) where 𝐻(𝑀)=𝑀(π‘€βˆ’1). It can be verified that this equation has a positive solution 𝑀(π‘₯), which converges to zero at infinity. This convergence is exponential. So the solution belongs to HΓΆlder and to Sobolev spaces. Along with the function 𝑀(π‘₯), any shifted function 𝑀(π‘₯+β„Ž), β„Žβˆˆβ„ is also a solution. Hence there is a family of solutions, and the set of solutions is not compact. Similar examples can be constructed for the integro-differential equation.

In order to obtain proper operators, we introduce weighted spaces πΆπœ‡π‘˜+𝛼(ℝ) with a growing at infinity polynomial weight function πœ‡(π‘₯). The norm in this space is given by the equalityβ€–π‘’β€–πΆπœ‡π‘˜+𝛼(ℝ)=β€–πœ‡π‘’β€–πΆπ‘˜+𝛼(ℝ).(1.12) Let us return to the previous example. The family of functions 𝑀(π‘₯+β„Ž) is not uniformly bounded in the weighted space. If we take any bounded closed set in the function space, it can contain the solutions 𝑀(π‘₯+β„Ž) only for a compact set of the values of β„Ž. Therefore the set of solutions is compact in any bounded closed set. This example shows the role of weighted spaces for the properness of the operators.

Properness of general nonlinear elliptic problems in unbounded domains and in weighted spaces is proved in [18]. In this work, we will prove properness of the integro-differential operators. After that, using the construction of the topological degree for Fredholm and proper operators with the zero index [18], we will define the degree for the integro-differential operators. We will finish this paper with some applications of these methods to travelling waves solutions.

2. Properness in Weighted Spaces

In this section we study the properness of the semilinear operator 𝐴.

Definition 2.1. If 𝑋, π‘Œ are Banach spaces, an operator π΄βˆΆπ‘‹β†’π‘Œ is called proper if for any compact set π·βŠ‚π‘Œ and any bounded closed set π΅βŠ‚π‘‹, the intersection π΄βˆ’1(𝐷)∩𝐡 is a compact set in 𝑋.

Remark 2.2. The operator 𝐴∢𝐸=𝐢2+𝛼(ℝ)→𝐸0=𝐢𝛼(ℝ) may not be proper from 𝐸 to 𝐸0 (see the comments related to (1.11) from the introduction).

We will show in the sequel that 𝐴 is proper in some weighted spaces associated to 𝐸 and 𝐸0.

Let πœ‡βˆΆβ„β†’β„ be the function given by πœ‡(π‘₯)=1+π‘₯2,π‘₯βˆˆβ„. Denote 𝐸=𝐢2+𝛼(ℝ), 𝐸0=𝐢𝛼(ℝ) endowed with the usual norms ‖⋅‖𝐸 and ‖⋅‖𝐸0. We will work in the weighted Holder spaces πΈπœ‡ and 𝐸0πœ‡, which are 𝐸 and 𝐸0, respectively, with the norms β€–π‘’β€–πœ‡=β€–πœ‡π‘’β€–πΈ and ‖𝑒‖0πœ‡=β€–πœ‡π‘’β€–πΈ0.

We begin with the following estimate for the integral term 𝐽(𝑒).

Lemma 2.3. Suppose that πœ‡(π‘₯)=1+π‘₯2 and πœ™βˆΆβ„β†’β„ is a function such that πœ™β‰₯0 on ℝ, suppπœ™=[βˆ’π‘,𝑁] is bounded,βˆ«βˆžβˆ’βˆžπœ™(𝑦)𝑑𝑦=1 and πœ™βˆˆπΈ0. Then ‖𝐽(𝑒)β€–0πœ‡β‰€πΎβ€–πœ‡π‘’β€–πΆ(ℝ),(βˆ€)π‘’βˆˆπΈ0,(2.1) for some constant 𝐾>0.

Proof. If suppπœ™=[βˆ’π‘,𝑁], then suppπœ™(π‘₯βˆ’β‹…)=[π‘₯βˆ’π‘,π‘₯+𝑁]. First we write ξ€œπœ‡(π‘₯)𝐽(𝑒)(π‘₯)=π‘₯+𝑁π‘₯βˆ’π‘πœ‡(π‘₯)πœ‡(𝑦)πœ™(π‘₯βˆ’π‘¦)πœ‡(𝑦)𝑒(𝑦)𝑑𝑦.(2.2) Since πœ‡(π‘₯)/πœ‡(𝑦) is bounded for |π‘₯βˆ’π‘¦|≀𝑁 and βˆ«βˆžβˆ’βˆžπœ™(𝑦)𝑑𝑦=1, we have β€–πœ‡π½(𝑒)‖𝐢(ℝ)≀𝐾1β€–πœ‡π‘’β€–πΆ(ℝ), for some positive constant 𝐾1.
For every π‘₯1,π‘₯2βˆˆβ„, π‘₯1β‰ π‘₯2, denote𝐻π‘₯1,π‘₯2ξ€Έ=||πœ‡ξ€·π‘₯1𝐽π‘₯(𝑒)1ξ€Έξ€·π‘₯βˆ’πœ‡2𝐽π‘₯(𝑒)2ξ€Έ||||π‘₯1βˆ’π‘₯2||𝛼.(2.3)
If |π‘₯1βˆ’π‘₯2|β‰₯1, we have 𝐻(π‘₯1,π‘₯2)≀2𝐾1β€–πœ‡π‘’β€–πΆ(ℝ). If |π‘₯1βˆ’π‘₯2|<1, then𝐻π‘₯1,π‘₯2ξ€Έ=1||π‘₯1βˆ’π‘₯2||𝛼||||ξ€œπ‘₯1π‘₯+𝑁1βˆ’π‘ξ€Ίπœ‡ξ€·π‘₯1ξ€Έπœ™ξ€·π‘₯1ξ€Έξ€·π‘₯βˆ’π‘¦βˆ’πœ‡2ξ€Έπœ™ξ€·π‘₯2𝑒+ξ€œβˆ’π‘¦ξ€Έξ€»(𝑦)𝑑𝑦π‘₯1π‘₯+𝑁1βˆ’π‘πœ‡ξ€·π‘₯2ξ€Έπœ™ξ€·π‘₯2ξ€Έξ€œβˆ’π‘¦π‘’(𝑦)π‘‘π‘¦βˆ’π‘₯2π‘₯+𝑁2βˆ’π‘πœ‡ξ€·π‘₯2ξ€Έπœ™ξ€·π‘₯2ξ€Έ||||≀|||||ξ€œβˆ’π‘¦π‘’(𝑦)𝑑𝑦π‘₯1π‘₯+𝑁1βˆ’π‘ξƒ―ξ€Ίπœ‡ξ€·π‘₯1ξ€Έξ€·π‘₯βˆ’πœ‡2πœ™ξ€·π‘₯ξ€Έξ€»1ξ€Έβˆ’π‘¦||π‘₯πœ‡(𝑦)1βˆ’π‘₯2||𝛼+πœ‡ξ€·π‘₯2πœ™ξ€·π‘₯ξ€Έξ€Ί1ξ€Έξ€·π‘₯βˆ’π‘¦βˆ’πœ™2βˆ’π‘¦ξ€Έξ€»||π‘₯πœ‡(𝑦)1βˆ’π‘₯2||𝛼||||+1Γ—πœ‡(𝑦)𝑒(𝑦)𝑑𝑦||π‘₯1βˆ’π‘₯2||𝛼||||ξ€œπ‘₯2π‘₯βˆ’π‘1βˆ’π‘πœ‡ξ€·π‘₯2ξ€Έπœ™ξ€·π‘₯πœ‡(𝑦)2ξ€Έ||||+1βˆ’π‘¦πœ‡(𝑦)𝑒(𝑦)𝑑𝑦||π‘₯1βˆ’π‘₯2||𝛼||||ξ€œπ‘₯1π‘₯+𝑁2+π‘πœ‡ξ€·π‘₯2ξ€Έπœ™ξ€·π‘₯πœ‡(𝑦)2ξ€Έ||||.βˆ’π‘¦πœ‡(𝑦)𝑒(𝑦)𝑑𝑦(2.4)
Since |π‘₯1βˆ’π‘₯2|<1 and |π‘₯1βˆ’π‘¦|≀𝑁, then |π‘₯2βˆ’π‘¦|≀𝑁+1. In this case, the boundedness of πœ™ and of (πœ‡(π‘₯1)βˆ’πœ‡(π‘₯2))/πœ‡(𝑦)|π‘₯1βˆ’π‘₯2|𝛼, implies that𝐻π‘₯1,π‘₯2≀𝐾2β€–πœ‡π‘’β€–πΆ(ℝ)+𝐾3β€–πœ™β€–πΈ0β€–πœ‡π‘’β€–πΆ(ℝ)+2𝐾4||π‘₯1βˆ’π‘₯2||1βˆ’π›Όβ€–πœ‡π‘’β€–πΆ(ℝ),(2.5) for some 𝐾2,𝐾3,𝐾4>0. Thus the desired estimate holds and the lemma is proved.

We study the operator 𝐴 acting from πΈπœ‡ into 𝐸0πœ‡. In order to introduce a topological degree (in Section 4), we prove the properness of 𝐴 in the more general case when the coefficient 𝑐 and function 𝐹 depend also on a parameter 𝜏∈[0,1]. Let π΄πœβˆΆπΈπœ‡β†’πΈ0πœ‡, 𝜏∈[0,1] be the operator defined through π΄πœπ‘’=(𝑒+πœ“)ξ…žξ…ž+𝑐(𝜏)(𝑒+πœ“)ξ…ž+𝐹𝜏(𝑒+πœ“,𝐽(𝑒+πœ“)).(2.6)

We note that the linearization 𝐿𝜏 of 𝐴𝜏 about a function 𝑒1βˆˆπΈπœ‡ is πΏπœπ‘’=π‘’ξ…žξ…ž+𝑐(𝜏)π‘’ξ…ž+πœ•πΉπœξ€·π‘’πœ•π‘’1𝑒+πœ“,𝐽1+πœ“ξ€Έξ€Έπ‘’+πœ•πΉπœξ€·π‘’πœ•π‘ˆ1𝑒+πœ“,𝐽1𝐽+πœ“ξ€Έξ€Έ(𝑒),(2.7) while its limiting operators are given by πΏΒ±πœπ‘’=π‘’ξ…žξ…ž+𝑐(𝜏)π‘’ξ…ž+πœ•πΉπœξ€·π‘€πœ•π‘’Β±,𝑀±𝑒+πœ•πΉπœξ€·π‘€πœ•π‘ˆΒ±,𝑀±𝐽(𝑒).(2.8)

Assume that the following hypotheses are satisfied(𝐻1) For any 𝜏∈[0,1], the function 𝐹𝜏(𝑒,π‘ˆ) and its derivatives with respect to 𝑒 and π‘ˆ satisfy the Lipschitz condition: there exists 𝐾>0 such that ||πΉπœξ€·π‘’1,π‘ˆ1ξ€Έβˆ’πΉπœξ€·π‘’2,π‘ˆ2ξ€Έ||ξ€·||𝑒≀𝐾1βˆ’π‘’2||+||π‘ˆ1βˆ’π‘ˆ2||ξ€Έ,(2.9) for any (𝑒1,π‘ˆ1),(𝑒2,π‘ˆ2)βˆˆβ„2. Similarly for πœ•πΉπœ/πœ•π‘’ and πœ•πΉπœ/πœ•π‘ˆ: ||||πœ•πΉπœξ€·π‘’1,π‘ˆ1ξ€Έβˆ’πœ•π‘’πœ•πΉπœξ€·π‘’2,π‘ˆ2ξ€Έ||||ξ€·||π‘’πœ•π‘’β‰€πΎ1βˆ’π‘’2||+||π‘ˆ1βˆ’π‘ˆ2||ξ€Έ,||||πœ•πΉπœξ€·π‘’1,π‘ˆ1ξ€Έβˆ’πœ•π‘ˆπœ•πΉπœξ€·π‘’2,π‘ˆ2ξ€Έ||||ξ€·||π‘’πœ•π‘ˆβ‰€πΎ1βˆ’π‘’2||+||π‘ˆ1βˆ’π‘ˆ2||ξ€Έ.(2.10)(𝐻2)𝑐(𝜏), 𝐹𝜏(𝑒,π‘ˆ) and the derivatives of 𝐹𝜏(𝑒,π‘ˆ) are Lipschitz continuous in 𝜏, that is, there exists a constant 𝑐>0 such that ||π‘ξ€·πœ(𝜏)βˆ’π‘0ξ€Έ||||β‰€π‘πœβˆ’πœ0||,||𝐹𝜏(𝑒,π‘ˆ)βˆ’πΉπœ0||||(𝑒,π‘ˆ)β‰€π‘πœβˆ’πœ0||,||||πœ•πΉπœ(𝑒,π‘ˆ)βˆ’πœ•π‘’πœ•πΉπœ0(𝑒,π‘ˆ)||||||πœ•π‘’β‰€π‘πœβˆ’πœ0||,||||πœ•πΉπœ(𝑒,π‘ˆ)βˆ’πœ•π‘ˆπœ•πΉπœ0(𝑒,π‘ˆ)||||||πœ•π‘ˆβ‰€π‘πœβˆ’πœ0||,(2.11)(βˆ€)𝜏,𝜏0∈[0,1], for all (𝑒,π‘ˆ) from any bounded set in ℝ2.(𝐻3) (Condition NS) For any 𝜏∈[0,1], the limiting equations π‘’ξ…žξ…ž+𝑐(𝜏)π‘’ξ…ž+πœ•πΉπœξ€·π‘€πœ•π‘’Β±,𝑀±𝑒+πœ•πΉπœξ€·π‘€πœ•π‘ˆΒ±,𝑀±𝐽(𝑒)=0(2.12) do not have nonzero solutions in 𝐸.

Lemma 2.4. Suppose that conditions (𝐻1)-(𝐻2) hold. If πœπ‘›β†’πœ0 and πœ‡π‘’π‘›β†’πœ‡π‘’0 in 𝐢(ℝ), then β€–β€–πΉπœπ‘›ξ€·π‘’π‘›ξ€·π‘’+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒0𝑒+πœ“,𝐽0β€–β€–+πœ“ξ€Έξ€Έ0πœ‡βŸΆ0.(2.13)

Proof. We have the equality πΉπœπ‘›ξ€·π‘’π‘›ξ€·π‘’+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒0𝑒+πœ“,𝐽0+πœ“ξ€Έξ€Έ=πΉπœπ‘›ξ€·π‘’π‘›ξ€·π‘’+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœπ‘›ξ€·π‘’0𝑒+πœ“,𝐽0+πœ“ξ€Έξ€Έ+πΉπœπ‘›ξ€·π‘’0𝑒+πœ“,𝐽0+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒0𝑒+πœ“,𝐽0.+πœ“ξ€Έξ€Έ(2.14) Condition (𝐻1) leads to the estimate of the first difference ||πΉπœπ‘›ξ€·π‘’π‘›ξ€·π‘’+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœπ‘›ξ€·π‘’0𝑒+πœ“,𝐽0||ξ€·||𝑒+πœ“ξ€Έξ€Έβ‰€πΎπ‘›βˆ’π‘’0||+||π½ξ€·π‘’π‘›βˆ’π‘’0ξ€Έ||ξ€Έ.(2.15) In view of hypothesis πœ‡π‘’π‘›β†’πœ‡π‘’0 in 𝐢(ℝ), the above inequality allows us to conclude that the weighted norm converges to zero.
In order to estimate the second difference, we begin with the following representation:πΉπœπ‘›ξ€·π‘’0𝑒+πœ“,𝐽0+πœ“ξ€Έξ€Έβˆ’πΉπœπ‘›ξ€·π‘’(πœ“,𝐽(πœ“))=𝐽0ξ€Έξ€œ10πœ•πΉπœπ‘›ξ€·π‘’0𝑒+πœ“,𝐽(πœ“)+𝑑𝐽0ξ€Έξ€Έπœ•π‘ˆπ‘‘π‘‘+𝑒0ξ€œ10πœ•πΉπœπ‘›ξ€·π‘‘π‘’0ξ€Έ+πœ“,𝐽(πœ“)πœ•π‘’π‘‘π‘‘.(2.16) Similarly, 𝐹𝜏0𝑒0𝑒+πœ“,𝐽0+πœ“ξ€Έξ€Έβˆ’πΉπœ0=𝐽𝑒(πœ“,𝐽(πœ“))0ξ€Έξ€œ10πœ•πΉπœ0𝑒0𝑒+πœ“,𝐽(πœ“)+𝑑𝐽0ξ€Έξ€Έπœ•π‘ˆπ‘‘π‘‘+𝑒0ξ€œ10πœ•πΉπœ0𝑑𝑒0ξ€Έ+πœ“,𝐽(πœ“)πœ•π‘’π‘‘π‘‘.(2.17) Therefore, πΉπœπ‘›ξ€·π‘’0𝑒+πœ“,𝐽0+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒0𝑒+πœ“,𝐽0𝑒+πœ“ξ€Έξ€Έ=𝐽0ξ€Έξƒ©ξ€œ10πœ•πΉπœπ‘›ξ€·π‘’0𝑒+πœ“,𝐽(πœ“)+𝑑𝐽0ξ€Έξ€Έξ€œπœ•π‘ˆπ‘‘π‘‘βˆ’10πœ•πΉπœ0𝑒0𝑒+πœ“,𝐽(πœ“)+𝑑𝐽0ξ€Έξ€Έξƒͺπœ•π‘ˆπ‘‘π‘‘+𝑒0ξƒ©ξ€œ10πœ•πΉπœπ‘›ξ€·π‘‘π‘’0ξ€Έ+πœ“,𝐽(πœ“)ξ€œπœ•π‘’π‘‘π‘‘βˆ’10πœ•πΉπœ0𝑑𝑒0ξ€Έ+πœ“,𝐽(πœ“)ξƒͺπœ•π‘’π‘‘π‘‘+πΉπœπ‘›(πœ“,𝐽(πœ“))βˆ’πΉπœ0(πœ“,𝐽(πœ“))≑𝐴+𝐡+𝐢(2.18) (𝐴 denotes the first line in the right-hand side, 𝐡: the second, 𝐢: the third). The expressions 𝐴 and 𝐡 converge to zero in the weighted norm of πΈπœ‡=πΆπ›Όπœ‡(ℝ), due to the Lipschitz condition with respect to 𝜏 of the derivatives of 𝐹𝜏 (see (𝐻2)). The expression 𝐢 is a function with a finite support. It also converges to zero in the weighted norm as πœπ‘›β†’πœ0. This concludes the proof.

We can now prove the properness of the 𝜏-dependent operator 𝐴𝜏. Denote by 𝐸loc=ξ€½π‘’βˆˆπΆ2+𝛼,𝐸(𝐼),(βˆ€)𝐼=boundedintervalπœ‡,loc=ξ€½πœ‡π‘’βˆˆπΆ2+𝛼(𝐼),(βˆ€)𝐼=boundedinterval(2.19) and similarly 𝐸0loc and 𝐸0πœ‡,loc.

Theorem 2.5. If πœ™βˆˆπΈ0, under assumptions (𝐻1)βˆ’(𝐻3), the operator 𝐴𝜏(𝑒)βˆΆπΈπœ‡Γ—[0,1]→𝐸0πœ‡ from (2.6) is proper with respect to (𝑒,𝜏) on πΈπœ‡Γ—[0,1].

Proof. Consider a convergent sequence π‘“π‘›βˆˆπΈ0πœ‡, say 𝑓𝑛→𝑓0 in 𝐸0πœ‡. Let (𝑒𝑛,πœπ‘›) be a solution in πΈπœ‡Γ—[0,1] of the equation π΄πœπ‘›(𝑒𝑛)=𝑓𝑛, such that β€–β€–π‘’π‘›β€–β€–πœ‡β‰€π‘€,(βˆ€)𝑛β‰₯1.(2.20) We prove that one can choose a convergent in πΈπœ‡ subsequence of the sequence 𝑒𝑛. Without loss of generality we may assume that πœπ‘›β†’πœ0 as π‘›β†’βˆž. Equation π΄πœπ‘›(𝑒𝑛)=𝑓𝑛 can be written as 𝑒𝑛+πœ“ξ…žξ…žξ€·πœ+𝑐𝑛𝑒𝑛+πœ“ξ…ž+πΉπœπ‘›ξ€·π‘’π‘›ξ€·π‘’+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έ=𝑓𝑛.(2.21) Multiplying the equation by πœ‡ and denoting 𝑣𝑛(π‘₯)=πœ‡(π‘₯)𝑒𝑛(π‘₯), 𝑔𝑛(π‘₯)=πœ‡(π‘₯)𝑓𝑛(π‘₯), we derive that π‘£π‘›ξ…žξ…ž+ξ‚Έπœ‡βˆ’2ξ…žπœ‡ξ€·πœ+π‘π‘›ξ€Έξ‚Ήπ‘£ξ…žπ‘›+ξƒ¬βˆ’πœ‡ξ…žξ…žπœ‡ξ‚΅πœ‡+2ξ…žπœ‡ξ‚Ά2ξ€·πœβˆ’π‘π‘›ξ€Έπœ‡ξ…žπœ‡ξƒ­π‘£π‘›+πœ‡πΉπœπ‘›ξ€·π‘’π‘›ξ€·π‘’+πœ“,π½π‘›ξ€·πœ“+πœ“ξ€Έξ€Έ+πœ‡ξ…žξ…žξ€·πœ+π‘π‘›ξ€Έπœ“ξ…žξ€Έ=𝑔𝑛.(2.22) Indeed, since πœ‡π‘’ξ…žπ‘›=(πœ‡π‘’π‘›)ξ…žβˆ’πœ‡ξ…žπ‘’π‘›=π‘£ξ…žπ‘›βˆ’πœ‡ξ…žπ‘£π‘›/πœ‡ and πœ‡π‘’π‘›ξ…žξ…ž=(πœ‡π‘’π‘›)ξ…žξ…žβˆ’πœ‡ξ…žξ…žπ‘’π‘›βˆ’2πœ‡ξ…žπ‘’ξ…žπ‘›=π‘£π‘›ξ…žξ…žβˆ’πœ‡ξ…žξ…žπ‘£π‘›/πœ‡βˆ’2πœ‡ξ…ž(π‘£ξ…žπ‘›/πœ‡βˆ’πœ‡ξ…žπ‘£π‘›/πœ‡2), by (2.21) one easily obtains (2.22).
The sequence 𝑣𝑛=πœ‡π‘’π‘› is uniformly bounded in 𝐸:‖‖𝑣𝑛‖‖𝐸=β€–β€–πœ‡π‘’π‘›β€–β€–πΈ=β€–β€–π‘’π‘›β€–β€–πœ‡β‰€π‘€,(βˆ€)𝑛β‰₯1.(2.23) Then it is locally convergent on a subsequence. More exactly, for every bounded interval [βˆ’π‘,𝑁] of π‘₯, there is a subsequence (denoted again 𝑣𝑛) converging in 𝐢2+𝛼[βˆ’π‘,𝑁] to a limiting function 𝑣0∈𝐢2+𝛼[βˆ’π‘,𝑁]. By a diagonalization process we can prolong 𝑣0 to ℝ such that 𝑣0∈𝐸. Since ‖𝑣𝑛‖𝐸≀𝑀, (βˆ€)𝑛β‰₯1, we can easily see that ‖𝑣0‖𝐸≀𝑀.
Let 𝑒0 be the limit that corresponds to 𝑒𝑛. Then πœ‡π‘’π‘›β†’πœ‡π‘’0 in 𝐸loc and 𝑣0=πœ‡π‘’0.
We now want to pass to the limit as π‘›β†’βˆž in (2.21) and (2.22). To this end observe that (𝐻2) implies thatβ€–β€–πΉπœπ‘›ξ€·π‘’π‘›ξ€·π‘’+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒0𝑒+πœ“,𝐽0β€–β€–+πœ“ξ€Έξ€Έ0πœ‡=β€–β€–πΉπœπ‘›ξ€·π‘’π‘›ξ€·π‘’+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒𝑛𝑒+πœ“,𝐽𝑛‖‖+πœ“ξ€Έξ€Έ0πœ‡+β€–β€–πΉπœ0𝑒𝑛𝑒+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒0𝑒+πœ“,𝐽0β€–β€–+πœ“ξ€Έξ€Έ0πœ‡β‰€π‘1||πœπ‘›βˆ’πœ0||+β€–β€–πΉπœ0𝑒𝑛𝑒+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒0𝑒+πœ“,𝐽0β€–β€–+πœ“ξ€Έξ€Έ0πœ‡.(2.24) Since 𝐹𝜏0 is continuous from 𝐸0πœ‡Γ—πΈ0πœ‡ to 𝐸0πœ‡ (see (𝐻1)) and 𝐽(𝑒𝑛+πœ“)→𝐽(𝑒0+πœ“) in 𝐸0πœ‡,loc, we derive that πΉπœπ‘›ξ€·π‘’π‘›ξ€·π‘’+πœ“,𝐽𝑛+πœ“ξ€Έξ€ΈβŸΆπΉπœ0𝑒0𝑒+πœ“,𝐽0+πœ“ξ€Έξ€Έasπ‘›βŸΆβˆž,in𝐸0πœ‡,loc.(2.25) Passing to the limit as π‘›β†’βˆž, uniformly on bounded intervals of π‘₯ in (2.21) and (2.22), one obtains that𝑒0ξ€Έ+πœ“ξ…žξ…žξ€·πœ+𝑐0𝑒0ξ€Έ+πœ“ξ…ž+𝐹𝜏0𝑒0𝑒+πœ“,𝐽0+πœ“ξ€Έξ€Έ=𝑓0,𝑣(2.26)0ξ…žξ…ž+ξ‚Έπœ‡βˆ’2ξ…žπœ‡ξ€·πœ+𝑐0ξ€Έξ‚Ήπ‘£ξ…ž0+ξƒ¬βˆ’πœ‡ξ…žξ…žπœ‡ξ‚΅πœ‡+2ξ…žπœ‡ξ‚Ά2ξ€·πœβˆ’π‘0ξ€Έπœ‡ξ…žπœ‡ξƒ­π‘£0+πœ‡πΉπœ0𝑒0𝑒+πœ“,𝐽0ξ€·πœ“+πœ“ξ€Έξ€Έ+πœ‡ξ…žξ…žξ€·πœ+𝑐0ξ€Έπœ“ξ…žξ€Έ=πœ‡π‘“0.(2.27)
Subtracting (2.27) from (2.22) and denoting 𝑉𝑛=π‘£π‘›βˆ’π‘£0, one findsπ‘‰π‘›ξ…žξ…ž+ξ‚Έπœ‡βˆ’2ξ…žπœ‡ξ€·πœ+π‘π‘›ξ€Έξ‚Ήπ‘‰ξ…žπ‘›+ξƒ¬βˆ’πœ‡ξ…žξ…žπœ‡ξ‚΅πœ‡+2ξ…žπœ‡ξ‚Ά2ξ€·πœβˆ’π‘π‘›ξ€Έπœ‡ξ…žπœ‡ξƒ­π‘‰π‘›ξ€ΊπΉ+πœ‡πœπ‘›ξ€·π‘’π‘›ξ€·π‘’+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒0𝑒+πœ“,𝐽0+ξ€Ίπ‘ξ€·πœ+πœ“ξ€Έξ€Έξ€»π‘›ξ€Έξ€·πœβˆ’π‘0ξ‚΅π‘£ξ€Έξ€»ξ…ž0βˆ’πœ‡ξ…žπœ‡π‘£0+πœ‡πœ“ξ…žξ‚Ά=πœ‡π‘“π‘›βˆ’πœ‡π‘“0.(2.28)
Recall that 𝑉𝑛=π‘£π‘›βˆ’π‘£0β†’0 as π‘›β†’βˆž in 𝐸loc. We show that 𝑉𝑛→0 in 𝐢(ℝ). Suppose that it is not the case. Then, without any loss of generality, we can chose a sequence π‘₯π‘›β†’βˆž such that |𝑉𝑛(π‘₯𝑛)|β‰₯πœ€>0. This means that |𝑣𝑛(π‘₯𝑛)βˆ’π‘£0(π‘₯𝑛)|β‰₯πœ€>0. Let𝑉𝑛(π‘₯)=𝑉𝑛π‘₯+π‘₯𝑛=𝑣𝑛π‘₯+π‘₯π‘›ξ€Έβˆ’π‘£0ξ€·π‘₯+π‘₯𝑛=πœ‡π‘₯+π‘₯𝑛𝑒𝑛π‘₯+π‘₯π‘›ξ€Έβˆ’π‘’0ξ€·π‘₯+π‘₯𝑛.ξ€Έξ€»(2.29) Then, ||𝑉𝑛||=||𝑉(0)𝑛π‘₯𝑛||β‰₯πœ€>0.(2.30) Writing (2.28) in π‘₯+π‘₯𝑛, one obtains ξ‚π‘‰π‘›ξ…žξ…žξƒ¬πœ‡(π‘₯)+βˆ’2ξ…žξ€·π‘₯+π‘₯π‘›ξ€Έπœ‡ξ€·π‘₯+π‘₯π‘›ξ€Έξ€·πœ+π‘π‘›ξ€Έξƒ­ξ‚π‘‰ξ…žπ‘›+βŽ‘βŽ’βŽ’βŽ£βˆ’πœ‡(π‘₯)ξ…žξ…žξ€·π‘₯+π‘₯π‘›ξ€Έπœ‡ξ€·π‘₯+π‘₯π‘›ξ€Έξƒ©πœ‡+2ξ…žξ€·π‘₯+π‘₯π‘›ξ€Έπœ‡ξ€·π‘₯+π‘₯𝑛ξƒͺ2ξ€·πœβˆ’π‘π‘›ξ€Έπœ‡ξ…žξ€·π‘₯+π‘₯π‘›ξ€Έπœ‡ξ€·π‘₯+π‘₯π‘›ξ€ΈβŽ€βŽ₯βŽ₯βŽ¦ξ‚π‘‰π‘›ξ€·(π‘₯)+πœ‡π‘₯+π‘₯π‘›πΉξ€Έξ€Ίπœπ‘›ξ€·π‘’π‘›ξ€·π‘’+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒0𝑒+πœ“,𝐽0+πœ“ξ€Έξ€Έξ€»ξ€·π‘₯+π‘₯𝑛+ξ€Ίπ‘ξ€·πœπ‘›ξ€Έξ€·πœβˆ’π‘0ξ‚Έπ‘£ξ€Έξ€»ξ…ž0βˆ’πœ‡ξ…žπœ‡π‘£0+πœ‡πœ“ξ…žξ‚Ήξ€·π‘₯+π‘₯𝑛=ξ€·πœ‡π‘“π‘›βˆ’πœ‡π‘“0ξ€Έξ€·π‘₯+π‘₯𝑛.(2.31) We will pass to the limit as π‘›β†’βˆž in (2.31). First we note that by (2.29) and (2.23), there exists 𝑉0∈𝐸 such that 𝑉𝑛→𝑉0 as π‘›β†’βˆž in 𝐸loc. Next, it is obvious that 1πœ‡ξ€·π‘₯+π‘₯π‘›ξ€Έπœ‡βŸΆ0,ξ…žξ€·π‘₯+π‘₯π‘›ξ€Έπœ‡ξ€·π‘₯+π‘₯π‘›ξ€Έπœ‡βŸΆ0,ξ…žξ…žξ€·π‘₯+π‘₯π‘›ξ€Έπœ‡ξ€·π‘₯+π‘₯π‘›ξ€ΈβŸΆ0,π‘›βŸΆβˆž,(2.32) while condition 𝑓𝑛→𝑓0 in 𝐸0πœ‡ leads to (πœ‡π‘“π‘›βˆ’πœ‡π‘“0)(π‘₯+π‘₯𝑛)β†’0. Inequality (2.23) implies a similar estimate for 𝑣0, so 𝑣0(π‘₯+π‘₯𝑛) and π‘£ξ…ž0(π‘₯+π‘₯𝑛) are bounded in 𝐸. We also have πœ“ξ…ž(π‘₯+π‘₯𝑛)=0 for π‘₯+π‘₯𝑛>1 and for π‘₯+π‘₯𝑛<βˆ’1 and πœ‡ξ€·π‘₯+π‘₯π‘›πΉξ€Έξ€Ίπœπ‘›ξ€·π‘’π‘›ξ€·π‘’+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒0𝑒+πœ“,𝐽0+πœ“ξ€Έξ€Έξ€Έξ€»ξ€·π‘₯+π‘₯𝑛=πœ‡π‘₯+π‘₯π‘›πΉξ€Έξ€Ίπœπ‘›ξ€·π‘’π‘›ξ€·π‘’+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒𝑛𝑒+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έξ€»ξ€·π‘₯+π‘₯𝑛+πœ‡π‘₯+π‘₯π‘›πΉξ€Έξ€Ίπœ0𝑒𝑛𝑒+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒0𝑒+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έξ€»ξ€·π‘₯+π‘₯𝑛+πœ‡π‘₯+π‘₯π‘›πΉξ€Έξ€Ίπœ0𝑒0𝑒+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒0𝑒+πœ“,𝐽0+πœ“ξ€Έξ€Έξ€»ξ€·π‘₯+π‘₯𝑛.(2.33) Denote by 𝑇𝑛1, 𝑇𝑛2, and 𝑇𝑛3 the three terms in the right-hand side. Hypothesis (𝐻2) for 𝐹𝜏0 infers that 𝑇𝑛1⟢0,π‘›βŸΆβˆžin𝐸0loc.(2.34)
Next, (2.29) leads to 𝑇𝑛2=𝑉𝑛(𝐹π‘₯)𝜏0𝑒𝑛𝑒+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒0𝑒+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έξ€»ξ€·π‘₯+π‘₯𝑛𝑒𝑛π‘₯+π‘₯π‘›ξ€Έβˆ’π‘’0ξ€·π‘₯+π‘₯𝑛=𝑉𝑛(π‘₯)πœ•πΉπœ0ξ€·π‘ ξ€·π‘’πœ•π‘’π‘›ξ€Έ+𝑒+πœ“(1βˆ’π‘ )0𝑒+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έξ€·π‘₯+π‘₯𝑛=𝑉𝑛(π‘₯)πœ•πΉπœ0ξ€·πœ•π‘’π‘ π‘’π‘›+(1βˆ’π‘ )𝑒0𝑒+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έξ€·π‘₯+π‘₯𝑛,(2.35) for some π‘ βˆˆ[0,1]. By (2.20) we obtain |𝑒𝑛(π‘₯+π‘₯𝑛)|≀𝑀/πœ‡(π‘₯+π‘₯𝑛), |𝑒0(π‘₯+π‘₯𝑛)|≀𝑀/πœ‡(π‘₯+π‘₯𝑛), hence 𝑠𝑒𝑛+(1βˆ’π‘ )𝑒0+πœ“ξ€Έξ€·π‘₯+π‘₯π‘›ξ€ΈβŸΆπ‘€Β±,𝐽𝑒𝑛+πœ“ξ€Έξ€·π‘₯+π‘₯𝑛=ξ€œβˆžβˆ’βˆžπœ™ξ€·π‘₯+π‘₯π‘›ξ€Έπ‘’βˆ’π‘¦π‘›ξ€œ(𝑦)𝑑𝑦+βˆžβˆ’βˆžπœ™ξ€·π‘₯+π‘₯π‘›ξ€Έβˆ’π‘¦πœ“(𝑦)𝑑𝑦.(2.36) By the change of variable π‘₯π‘›βˆ’π‘¦=βˆ’π‘§, it follows that 𝐽𝑒𝑛+πœ“ξ€Έξ€·π‘₯+π‘₯𝑛=ξ€œβˆžβˆ’βˆžπœ™(π‘₯βˆ’π‘§)𝑒𝑛π‘₯π‘›ξ€Έξ€œ+𝑧𝑑𝑧+βˆžβˆ’βˆžξ€·π‘₯πœ™(π‘₯βˆ’π‘§)πœ“π‘›ξ€Έ+π‘§π‘‘π‘§βŸΆπ‘€Β±,(2.37) uniformly on bounded intervals of π‘₯. Hypothesis (𝐻1) shows that 𝑇𝑛2βŸΆπœ•πΉπœ0ξ€·π‘€πœ•π‘’Β±,𝑀±𝑉0,asπ‘›βŸΆβˆžin𝐸0loc.(2.38)
On the other hand,𝑇𝑛3𝐽𝑒=πœ‡π‘›ξ€Έξ€·π‘’+πœ“βˆ’π½0×𝐹+πœ“ξ€Έξ€Έπœ0𝑒0𝑒+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒0𝑒+πœ“,𝐽0+πœ“ξ€Έξ€Έπ½ξ€·π‘’π‘›ξ€Έξ€·π‘’+πœ“βˆ’π½0ξ€Έξ€·+πœ“π‘₯+π‘₯𝑛=𝐼𝑛(π‘₯)β‹…πœ•πΉπœ0ξ€·π‘’πœ•π‘ˆ0𝑒+πœ“,𝑠𝐽𝑛𝑒+πœ“+(1βˆ’π‘ )𝐽0+πœ“ξ€Έξ€Έξ€·π‘₯+π‘₯𝑛,(2.39) for some π‘ βˆˆ[0,1], where 𝐼𝑛(π‘₯)=πœ‡(𝐽(𝑒𝑛+πœ“)βˆ’π½(𝑒0+πœ“)). For πœ‡(π‘₯)=1+π‘₯2, π‘₯βˆˆβ„, with the aid of (2.29), we arrive at πΌπ‘›ξ€œ(π‘₯)=βˆžβˆ’βˆžπœ‡ξ€·π‘₯+π‘₯π‘›ξ€Έπœ‡ξ€·π‘§+π‘₯π‘›ξ€Έξ‚π‘‰πœ™(π‘₯βˆ’π‘§)π‘›ξ€œ(𝑧)π‘‘π‘§βŸΆβˆžβˆ’βˆžξ‚π‘‰πœ™(π‘₯βˆ’π‘§)0𝑉(𝑧)𝑑𝑧=𝐽0,(2.40) in 𝐸0loc. As above, since 𝐽(𝑒𝑛)(π‘₯+π‘₯𝑛)β†’0, 𝐽(𝑒0)(π‘₯+π‘₯𝑛)β†’0, 𝐽(πœ“)(π‘₯+π‘₯𝑛)→𝑀± uniformly on bounded intervals of π‘₯, we deduce that 𝑇𝑛3βŸΆπœ•πΉπœ0ξ€·π‘€πœ•π‘ˆΒ±,𝑀±𝐽𝑉0,asπ‘›βŸΆβˆžin𝐸0loc.(2.41)
Now we may pass to the limit in (2.31). With the aid of (2.33)–(2.41) and (𝐻2), one arrives at𝑉0ξ…žξ…žξ€·πœ+𝑐0ξ€Έξ‚π‘‰ξ…ž0+πœ•πΉπœ0ξ€·π‘€πœ•π‘’Β±,𝑀±𝑉0+πœ•πΉπœ0ξ€·π‘€πœ•π‘ˆΒ±,𝑀±𝐽𝑉0=0,(2.42) which contradicts (𝐻3). Therefore we have proved that 𝑉𝑛→0 in 𝐢(ℝ).
Now we have to show that 𝑉𝑛→0 in 𝐸=𝐢2+𝛼(ℝ). To this end, we write (2.28) in the form 𝑆(𝑉𝑛)=β„Žπ‘›, where 𝑆(𝑉𝑛) is the linear part from the left-hand side andβ„Žπ‘›=ξ€·πœ‡π‘“π‘›βˆ’πœ‡π‘“0ξ€Έξ€ΊπΉβˆ’πœ‡πœπ‘›ξ€·π‘’π‘›ξ€·π‘’+πœ“,𝐽𝑛+πœ“ξ€Έξ€Έβˆ’πΉπœ0𝑒0𝑒+πœ“,𝐽0βˆ’ξ€Ίπ‘ξ€·πœ+πœ“ξ€Έξ€Έξ€»π‘›ξ€Έξ€·πœβˆ’π‘0ξ‚΅π‘£ξ€Έξ€»ξ…ž0βˆ’πœ‡ξ…žπœ‡π‘£0+πœ‡πœ“ξ…žξ‚Ά.(2.43) Using Lemma 2.1 from [6] for the linear operator 𝑆, we can write ‖‖𝑉𝑛‖‖𝐸‖‖𝑆𝑉≀𝐢𝑛‖‖𝐸0+‖‖𝑉𝑛‖‖𝐢(ℝ)ξ€Έ.(2.44) We make use of Lemma 2.4, hypothesis (𝐻2) for 𝑐(πœπ‘›)βˆ’π‘(𝜏0), and of the convergence 𝑓𝑛→𝑓0 in 𝐸0πœ‡, to deduce that 𝑆(𝑉𝑛)=β„Žπ‘›β†’0 in 𝐸0=𝐢𝛼(ℝ). Since 𝑉𝑛→0 in 𝐢(ℝ), we conclude that 𝑒𝑛→𝑒0 in πΈπœ‡. The theorem is proved.

3. Fredholm Property in Weighted Spaces

Consider the operator πΏπœβˆΆπΈπœ‡=πΆπœ‡2+𝛼→𝐸0πœ‡=πΆπ›Όπœ‡,πΏπœπ‘’=π‘’ξ…žξ…ž+𝑐(𝜏)π‘’ξ…ž+πœ•πΉπœξ€·π‘’πœ•π‘’1𝑒+πœ“,𝐽1+πœ“ξ€Έξ€Έπ‘’+πœ•πΉπœξ€·π‘’πœ•π‘ˆ1𝑒+πœ“,𝐽1𝐽+πœ“ξ€Έξ€Έ(𝑒),(3.1) and its limiting operatorsπΏΒ±πœπ‘’=π‘’ξ…žξ…ž+𝑐(𝜏)π‘’ξ…ž+πœ•πΉπœξ€·π‘€πœ•π‘’Β±,𝑀±𝑒+πœ•πΉπœξ€·π‘€πœ•π‘ˆΒ±,𝑀±𝐽(𝑒).(3.2)

Recall here condition NS for 𝐿𝜏, that is, hypothesis (𝐻3): for each 𝜏∈[0,1], the limiting equations πΏΒ±πœπ‘’=0 do not have nonzero solutions.

We prove now the Fredholm property of 𝐿𝜏 as an operator acting between the above weighted Holder spaces.

Theorem 3.1. If condition NS is satisfied, then the operator πΏπœβˆΆπΈπœ‡=πΆπœ‡2+𝛼→𝐸0πœ‡=πΆπ›Όπœ‡ (acting between weighted spaces) is normally solvable with a finite-dimensional kernel.

Proof. Like in Theorem 2.2 from [6], we can prove that 𝐿𝜏 from 𝐸 to 𝐸0 is normally solvable with a finite-dimensional kernel. To verify the property in the weighted spaces, we use Lemma 2.24 in [18]: if πΏπœβˆΆπΈβ†’πΈ0 is normally solvable with a finite-dimensional kernel and the operator πΎβˆΆπΈπœ‡β†’πΈ0, 𝐾𝑒=πœ‡πΏπœπ‘’βˆ’πΏπœ(πœ‡π‘’) is compact, then πΏπœβˆΆπΈπœ‡β†’πΈ0πœ‡ is normally solvable with a finite-dimensional kernel.
Let {𝑒𝑖} be a sequence such that ||𝑒𝑖||πΈπœ‡β‰€π‘€. We prove the existence of a subsequence of {𝐾𝑒𝑖} which converges in 𝐸0=𝐢𝛼(ℝ). Consider the sequence 𝑣𝑖=πœ‡π‘’π‘–. Since ‖𝑣𝑖‖=β€–π‘’π‘–β€–πΈπœ‡β‰€π‘€, one can find a subsequence, denoted again {𝑣𝑖}, which converges locally in 𝐢2 to a function 𝑣0, which can be prolonged to ℝ by a diagonalization process. We have 𝑣0∈𝐸, ‖𝑣0‖𝐸≀𝑀 and 𝑣𝑖→𝑣0 in 𝐸loc (in 𝐢2+𝛼(𝐼), for every bounded interval 𝐼).
Let 𝑒0 be such that 𝑣0=πœ‡π‘’0. Thenβ€–β€–πΎπ‘’π‘–βˆ’πΎπ‘’0‖‖𝐸0=β€–β€–β€–πΎξ‚΅π‘§π‘–πœ‡ξ‚Άβ€–β€–β€–πΈ0,𝑧𝑖=π‘£π‘–βˆ’π‘£0𝑒=πœ‡π‘–βˆ’π‘’0ξ€Έ.(3.3) Observe that ‖𝑧𝑖‖𝐸≀2𝑀 and 𝑧𝑖→0 in 𝐸loc. Now we can write πΎξ‚΅π‘§π‘–πœ‡ξ‚Ά=πœ‡πΏπœξ‚΅π‘§π‘–πœ‡ξ‚Άβˆ’πΏπœξ€·π‘§π‘–ξ€Έ=ξƒ©βˆ’πœ‡ξ…žξ…žπœ‡ξ‚΅πœ‡+2ξ…žπœ‡ξ‚Ά2πœ‡βˆ’π‘(𝜏)ξ…žπœ‡ξƒͺπ‘§π‘–πœ‡βˆ’2ξ…žπœ‡π‘§ξ…žπ‘–+πœ•πΉπœξ€·π‘’πœ•π‘ˆ1𝑒+πœ“,𝐽1𝑧+πœ“ξ€Έξ€Έπœ‡π½π‘–πœ‡ξ‚Άξ€·π‘§βˆ’π½π‘–ξ€Έξ‚Ή.(3.4) But ξ‚΅π‘§πœ‡π½π‘–πœ‡ξ‚Άξ€·π‘§βˆ’π½π‘–ξ€Έ=ξ€œβˆžβˆ’βˆžπœ™(π‘₯βˆ’π‘¦)𝑧𝑖(𝑦)πœ‡(π‘₯)ξ‚Ή=ξ€œπœ‡(𝑦)βˆ’1π‘‘π‘¦βˆžβˆ’βˆžπœ™(πœ‰)𝑧𝑖(π‘₯βˆ’πœ‰)πœ‡(π‘₯)ξ‚Ήπœ‡(π‘₯βˆ’πœ‰)βˆ’1π‘‘πœ‰.(3.5) Since πœ‡(π‘₯)/πœ‡(π‘₯βˆ’πœ‰)βˆ’1β‰€β„Ž(π‘₯), where β„Ž(π‘₯)β†’0 as π‘₯β†’Β±βˆž, 𝑧𝑖(π‘₯) is uniformly bounded and 𝑧𝑖(π‘₯)β†’0 as π‘–β†’βˆž locally with respect to π‘₯, it follows that πœ‡π½(𝑧𝑖/πœ‡)βˆ’π½(𝑧𝑖)β†’0 as π‘–β†’βˆž, uniformly with respect to π‘₯ on ℝ. Similarly, 𝑧𝑖, π‘§ξ…žπ‘– are uniformly bounded, 𝑧𝑖→0, π‘§ξ…žπ‘–β†’0 as π‘–β†’βˆž locally and πœ‡ξ…žξ…ž/πœ‡β†’0, πœ‡ξ…ž/πœ‡β†’0 as π‘₯β†’Β±βˆž, so the first two terms from (3.4) tend to zero uniformly with respect to π‘₯βˆˆβ„, as π‘–β†’βˆž. This implies that 𝐾(𝑧𝑖/πœ‡)β†’0 as π‘–β†’βˆž in 𝐢(ℝ). Therefore, with the aid of the local convergence 𝑧𝑖→0 in 𝐢2, we conclude that 𝐾𝑒𝑖→𝐾𝑒0 as π‘–β†’βˆž in 𝐸0=𝐢𝛼(ℝ). The theorem is proved.

We prove now the Fredholm property for πΏπœβˆΆπΈπœ‡β†’πΈ0πœ‡, under an additional hypothesis. To this end, let 𝐼 be the identity operator on πΈπœ‡.

Condition NS[πœ†]
For each 𝜏∈[0,1], the limiting equations πΏΒ±πœπ‘’βˆ’πœ†π‘’=0 associated to the operator πΏπœβˆ’πœ†πΌ do not have nonzero solutions in πΈπœ‡, for any πœ†β‰₯0.

We recall an auxiliary result from [6] which will be employed below.

Lemma 3.2. Consider the operators 𝐿0,𝐿1∢𝐢2+𝛼(ℝ)→𝐢𝛼(ℝ) defined by 𝐿0𝑒=πΏπœπ‘’βˆ’πœŒπ‘’, 𝐿1𝑒=π‘’ξ…žξ…žβˆ’πœŒπ‘’(𝜌β‰₯0) and the homotopy πΏπ‘ βˆΆπΆ2+𝛼(ℝ)→𝐢𝛼(ℝ), 𝐿𝑠=(1βˆ’π‘ )𝐿0+𝑠𝐿1, π‘ βˆˆ[0,1]. Then there exists 𝜌β‰₯0 large enough such that the limiting equations (𝐿𝑠)±𝑒=0 do not have nonzero solutions for any π‘ βˆˆ[0,1].

Theorem 3.3. If Condition NS(πœ†) is satisfied, then 𝐿𝜏, regarded as an operator from πΈπœ‡ to 𝐸0πœ‡, has the Fredholm property and its index is zero.

Proof. We put 𝐿0𝑒=πΏπœπ‘’βˆ’πœ†π‘’, 𝐿1𝑒=π‘’ξ…žξ…žβˆ’πœ†π‘’ and πΏπ‘ βˆΆπΈπœ‡=πΆπœ‡2+𝛼(ℝ)→𝐸0πœ‡=πΆπ›Όπœ‡(ℝ), 𝐿𝑠=(1βˆ’π‘ )𝐿0+𝑠𝐿1, π‘ βˆˆ[0,1]. Condition NS(πœ†) for 𝐿𝜏 implies Condition NS for 𝐿0=πΏπœβˆ’πœ†πΌ. Then, Theorem 3.1 ensures that 𝐿0=πΏπœβˆ’πœ†πΌ, regarded from πΈπœ‡ to 𝐸0πœ‡, is normally solvable with a finite-dimensional kernel. For operator 𝐿1, we have ker𝐿1={0}, Im𝐿1=𝐸0πœ‡, hence 𝐿1 is a Fredholm operator and its index is ind𝐿1=0.
By Lemma 3.2 applied for 𝐿𝑠, there exists πœ†β‰₯0 large enough such that Condition NS holds for all 𝐿𝑠, π‘ βˆˆ[0,1]. In view of Theorem 3.1, it follows that the operators 𝐿𝑠 are normally solvable with a finite-dimensional kernel. In other words, the homotopy 𝐿𝑠 gives a continuous deformation from the operator 𝐿0 to the operator 𝐿1, in the class of the normally solvable operators with finite-dimensional kernels. Such deformation preserves the Fredholm property and the index. Since the index of 𝐿1 is zero, we derive that the index of all 𝐿𝑠 is zero. In particular, for 𝑠=0 and πœ†=0, one arrives at the conclusion that 𝐿𝜏 has the Fredholm property and its index is zero. This completes the proof.

4. Topological Degree

In this section we apply the topological degree construction for Fredholm and proper operators with the zero index constructed in [18] to the integro-differential operators.

Definitions 4. Recall in the beginning the definition of the topological degree. Consider two Banach spaces 𝐸1, 𝐸2, a class Ξ¦ of operators acting from 𝐸1 to 𝐸2 and a class of homotopies 𝐴𝐻=𝜏(𝑒)∢𝐸1Γ—[]0,1⟢𝐸2,suchthat𝐴𝜏[]ξ€Ύ(𝑒)∈Φ,(βˆ€)𝜏∈0,1.(4.1)
Let π·βŠ‚πΈ1 be an open bounded set and 𝐴∈Φ such that 𝐴(𝑒)β‰ 0, π‘’βˆˆπœ•π·, where πœ•π· is the boundary of 𝐷. Suppose that for such a pair (𝐷,𝐴), there exists an integer 𝛾(𝐴,𝐷) with the following properties.
(i)Homotopy invariance. If 𝐴𝜏(𝑒)∈𝐻 and 𝐴𝜏(𝑒)β‰ 0, for π‘’βˆˆπœ•π·, 𝜏∈[0,1], then 𝛾𝐴0𝐴,𝐷=𝛾1ξ€Έ,𝐷.(4.2)(ii)Additivity. If 𝐴∈Φ, 𝐷 is the closure of 𝐷 and 𝐷1,𝐷2βŠ‚π· are open sets, such that 𝐷1∩𝐷2=⊘ and 𝐴(𝑒)β‰ 0,for all π‘’βˆˆπ·β§΅(𝐷1βˆͺ𝐷2), then 𝛾(𝐴,𝐷)=𝛾𝐴,𝐷1ξ€Έξ€·+𝛾𝐴,𝐷2ξ€Έ.(4.3)(iii)Normalization. There exists a bounded linear operator 𝐽∢𝐸1→𝐸2 with a bounded inverse defined on all 𝐸2 such that, for every bounded set π·βŠ‚πΈ1 with 0∈𝐷, 𝛾(𝐽,𝐷)=1.(4.4)
The integer 𝛾(𝐴,𝐷) is called a topological degree.

4.1. Degree for Fredholm and Proper Operators

We now recall a general result concerning the existence of a topological degree which was proved in [18, 19].

Let 𝐸1 and 𝐸2 be Banach spaces, 𝐸1βŠ†πΈ2 algebraically and topologically and let πΊβŠ‚πΈ1 be an open bounded set.

Denote by 𝐼∢𝐸1→𝐸2 the imbedding operator, 𝐼𝑒=𝑒, and by Ξ¦ a class of bounded linear operators 𝐿∢𝐸1→𝐸2 satisfying the following conditions:(a)the operator πΏβˆ’πœ†πΌβˆΆπΈ1→𝐸2 is Fredholm for all πœ†β‰₯0,(b)for every operator 𝐿∈Φ, there is πœ†0=πœ†0(𝐿) such that πΏβˆ’πœ†πΌ has a uniformly bounded inverse for all πœ†>πœ†0.

Denote by β„± the classξ€½β„±=𝐡∈𝐢1𝐺,𝐸2ξ€Έ,𝐡proper,π΅ξ…žξ€Ύ,(π‘₯)∈Φ,(βˆ€)π‘₯∈𝐺(4.5) where π΅ξ…ž(π‘₯) is the FrΓ©chet derivative of the operator 𝐡.

Finally, one introduces the class β„‹ of homotopies given byξ€½β„‹=𝐡(π‘₯,𝜏)∈𝐢1ξ€·[]𝐺×0,1,𝐸2ξ€Έ[]ξ€Ύ.,𝐡proper,𝐡(β‹…,𝜏)βˆˆβ„±,(βˆ€)𝜏∈0,1(4.6) Here the properness of 𝐡 is understood in both variables π‘₯∈𝐺 and 𝜏∈[0,1].

Theorem 4.1 (see [18]). For every π΅βˆˆβ„‹ and every open set 𝐷, with π·βŠ‚πΊ,there exists a topological degree 𝛾(𝐡,𝐷).

Remark 4.2. Condition (b) can be weakened. Let πΈξ…ž1 and πΈξ…ž2 be two Banach spaces such that πΈπ‘–βŠ‚πΈξ…žπ‘–, 𝑖=1,2 where the inclusion is understood in the algebraic and topological sense. In the case of the HΓΆlder space πΆπ‘˜+𝛼(ℝ), this can be the space πΆπ‘˜(ℝ) with an integer nonnegative π‘˜. We can also consider some integral spaces π‘Šβˆžπ‘˜,𝑝(ℝ) [17]. Instead of (b) above we can impose the following condition [20]:(bξ…ž)for every operator πΏβˆΆπΈξ…ž1β†’πΈξ…ž2, there is πœ†0=πœ†0(𝐿) such that πΏβˆ’πœ†πΌ has a uniformly bounded inverse for all πœ†>πœ†0.

4.2. Degree for the Integrodifferential Operators

Now, let 𝐸1=πΈπœ‡ and 𝐸2=𝐸0πœ‡ be the weighted spaces introduced in the previous section, with πœ‡(π‘₯)=1+π‘₯2, π‘₯βˆˆβ„. We will apply Theorem 4.1 for the integro-differential operator 𝐴 of the form (1.6), where function πœ“βˆˆπΆβˆž(ℝ), πœ“(π‘₯)=𝑀+, for π‘₯β‰₯1, πœ“(π‘₯)=π‘€βˆ’ for π‘₯β‰€βˆ’1 and(𝐻4)𝐹(𝑒,π‘ˆ) and its derivatives with respect to 𝑒 and π‘ˆ are Lipschitz continuous in (𝑒,π‘ˆ);(𝐻5)the limiting equations π‘’ξ…žξ…ž+π‘π‘’ξ…ž+πœ•πΉξ€·π‘€πœ•π‘’Β±,𝑀±𝑒+πœ•πΉξ€·π‘€πœ•π‘ˆΒ±,𝑀±𝐽(𝑒)βˆ’πœ†π‘’=0(4.7) do not have nonzero solutions in 𝐸, (βˆ€)πœ†β‰₯0.

Under these hypotheses, Theorem 2.5 assures that operator 𝐴 is proper. Moreover, its FrΓ©chet derivative is π΄ξ…ž=𝐿 from (1.7) and it is a Fredholm operator with the index zero (Theorem 3.3).

Consider β„± the class of operators 𝐴 defined through (1.6), such that (𝐻4)-(𝐻5) are satisfied. Consider also the class β„‹ of homotopies π΄πœβˆΆπΈπœ‡β†’πΈ0πœ‡, 𝜏∈[0,1], of the form (2.6), satisfying (𝐻1)-(𝐻2) and(𝐻6)for every 𝜏∈[0,1], the equations π‘’ξ…žξ…ž+𝑐(𝜏)π‘’ξ…ž+πœ•πΉπœξ€·π‘€πœ•π‘’Β±,𝑀±𝑒+πœ•πΉπœξ€·π‘€πœ•π‘ˆΒ±,𝑀±𝐽(𝑒)βˆ’πœ†π‘’=0(4.8) do not have nonzero solutions in 𝐸, (βˆ€)πœ†β‰₯0. By Theorem 2.5 and Theorem 3.3, we infer that operators 𝐴𝜏(𝑒) are FrΓ©chet differentiable, proper with respect to (𝑒,𝜏) and their FrΓ©chet derivatives π΄ξ…žπœ=𝐿𝜏 verify condition (a) above. Condition (bξ…ž) follows from the lemma in the appendix. Hence β„‹ has the form (4.6). Applying Theorem 4.1 for the class of operators β„± and the class of homotopies β„‹, we are led to the following result.

Theorem 4.3. Suppose that functions 𝐹𝜏 and 𝑐(𝜏) satisfy conditions (𝐻1)-(𝐻2) and (𝐻4)βˆ’(𝐻6). Then a topological degree exists for the class β„± of operators and the class β„‹ of homotopies.

5. Applications to Travelling Waves

In this section we will discuss some applications of the Fredholm property, properness and topological degree to study travelling wave solutions of (1.1). Let us begin with the classification of the nonlinearities. Denote𝐹0(𝑀)=𝐹(𝑀,𝑀).(5.1) We obtain this function from 𝐹(𝑀,𝐽(𝑀)) if we formally replace the kernel πœ™(π‘₯) of the integral by the 𝛿-function. The corresponding reaction-diffusion equationπœ•π‘’=πœ•πœ•π‘‘2π‘’πœ•π‘₯2+𝐹0(𝑒)(5.2) is called bistable if πΉξ…ž0(𝑀±)<0, monostable if one of these derivatives is positive and another one negative and, finally, unstable if πΉξ…ž0(𝑀±)>0. As it is well-known, it can have travelling wave solutions, that is solutions, which satisfy the problemπ‘€ξ…žξ…ž+π‘π‘€ξ…ž+𝐹0(𝑀)=0,𝑀(±∞)=𝑀±.(5.3) Let 𝑀0(π‘₯) be a solution of (5.3) with some 𝑐=𝑐0. The operator 𝐿0 linearized about this solution,𝐿0𝑒=π‘’ξ…žξ…ž+𝑐0π‘’ξ…ž+πΉξ…ž0𝑀0𝑒(5.4) has the essential spectrum given by two parabolas:πœ†0Β±(πœ‰)=βˆ’πœ‰2+𝑐0π‘–πœ‰+πΉξ…ž0𝑀±,πœ‰βˆˆβ„.(5.5) Therefore the operator 𝐿0 satisfies the Fredholm property if and only if πΉξ…ž0(𝑀±)β‰ 0. If this condition is satisfied, then the index of the operator is well defined. In the bistable case it equals 0, in the monostable case 1, in the unstable case 0 [9].

In the case of the integro-differential operator𝐿𝑒=π‘’ξ…žξ…ž+𝑐0π‘’ξ…ž+πΉξ…žπ‘’(𝑀,𝐽(𝑀))𝑒+πΉξ…žπ‘ˆ(𝑀,𝐽(𝑀))𝐽(𝑒),(5.6) the essential spectrum is given by the curvesπœ†Β±(πœ‰)=βˆ’πœ‰2+𝑐0π‘–πœ‰+πΉξ…žπ‘’ξ€·π‘€Β±,𝑀±+πΉξ…žπ‘ˆξ€·π‘€Β±,π‘€Β±ξ€Έξ‚πœ™(πœ‰),πœ‰βˆˆβ„,(5.7) where ξ‚πœ™(πœ‰) is the Fourier transform of the function πœ™(π‘₯). If we replace 𝐽(𝑒) by 𝑒, that is, πœ™(π‘₯) by the 𝛿 -function, then the spectrum of the integro-differential operator coincides with the spectrum of the reaction-diffusion operator.

We note thatπΉξ…žπ‘’ξ€·π‘€Β±,𝑀±+πΉξ…žπ‘ˆξ€·π‘€Β±,π‘€Β±ξ€Έξ‚πœ™(0)=πΉξ…ž0𝑀±,ξ‚ξ€œReπœ™(πœ‰)=βˆžβˆ’βˆžξ€œπœ™(π‘₯)cos(πœ‰π‘₯)𝑑π‘₯<βˆžβˆ’βˆžπœ™(π‘₯)𝑑π‘₯=1.(5.8)

5.1. Fredholm Property

Bistable Case
Let πΉξ…ž0𝑀±=πΉξ…žπ‘’ξ€·π‘€Β±,𝑀±+πΉξ…žπ‘ˆξ€·π‘€Β±,𝑀±<0(5.9) (we recall that ξ‚πœ™(0)=1). Suppose that πΉξ…žπ‘’(𝑀+,𝑀+)<0 and πΉξ…žπ‘ˆ(𝑀+,𝑀+)>0. Then Reπœ†+(πœ‰)<0 for all πœ‰βˆˆβ„ since πΉξ…žπ‘’ξ€·π‘€Β±,𝑀±+ReπΉξ…žπ‘ˆξ€·π‘€Β±,π‘€Β±ξ€Έξ‚πœ™(πœ‰)β‰€πΉξ…žπ‘’ξ€·π‘€Β±,𝑀±+πΉξ…žπ‘ˆξ€·π‘€Β±,𝑀±=πΉξ…ž0𝑀±.(5.10) Hence the essential spectrum is completely in the left-half plane. This allows us to prove properness of the corresponding operators in weighted spaces and to define the topological degree.

Consider now the case where πΉξ…žπ‘’(𝑀+,𝑀+)>0 and πΉξ…žπ‘ˆ(𝑀+,𝑀+)<0. The principal difference with the previous case is that the essential spectrum of the integro-differential operator may not be completely in the left-half plane (Figure 1) though this is the case for the reaction-diffusion operator. Depending on the parameters, the essential spectrum can cross the imaginary axis for some pure imaginary values. However the linear operator remains Fredholm since the essential spectrum does not cross the origin; the nonlinear operator remains proper in the corresponding weighted spaces.

Thus, the bistable case for the reaction-diffusion equation gives rise to two different cases for the integro-differential equation. We will call both of them bistable but will distinguish them when necessary.

Monostable Case
Suppose that πΉξ…ž0(𝑀+)>0 and πΉξ…ž0(π‘€βˆ’)<0. Then πœ†0βˆ’(πœ‰) is in the left-half plane for all πœ‰βˆˆβ„; πœ†0+(πœ‰) is partially in the right-half plane, πœ†0+(0)>0. The essential spectrum of the integro-differential operator 𝐿 given by the curves πœ†Β±(πœ‰) has a similar structure. It does not cross the origin, so that the operator satisfies the Fredholm property. The curve πœ†+(πœ‰) is partially in the right-half plane, πœ†+(0)=πœ†0+(0)>0. The curve πœ†βˆ’(πœ‰) can be completely in the left-half plane or partially in the right-half plane (Figure 1). Similar to the bistable case, there are two subcases in the monostable case.

Index
In order to find the index of the operator 𝐿, we consider the operator 𝐿𝜏 which depends on the parameter 𝜏 characterizing the width of the support of the function πœ™πœ, supp πœ™πœ=[βˆ’π‘πœ,π‘πœ]. We recall that βˆ«βˆžβˆ’βˆžπœ™πœ(π‘₯)𝑑π‘₯=1. Let 𝐿1=𝐿, that is the value 𝜏=1 corresponds to the function πœ™ in the operator 𝐿.

Since the essential spectrum of the operator 𝐿𝜏 can be determined explicitly, then we can affirm that it converges to the essential spectrum of the operator 𝐿0 as πœβ†’0. Moreover, 𝐿𝜏 converges to 𝐿0 in the operator norm. The essential spectrum of the operator 𝐿𝜏 does not cross the origin. Therefore it is normally solvable with a finite-dimensional kernel. Hence the index of the operator 𝐿 equals the index of the operator 𝐿0 [12]. It is 0 in the bistable case and 1 in the monostable case (cf. [9]).

5.2. Topological Degree and Existence of Solutions

In the bistable case we can define the topological degree for the integro-differential operator and use the Leray-Schauder method to prove existence of solutions. In order to use this method we need to obtain a priori estimates of solutions. In [10], a priori estimates are obtained in the case where𝐹(𝑒,𝐽(𝑒))=𝐽(𝑒)𝑒(1βˆ’π‘’)βˆ’π›Όπ‘’.(5.11) Thus, we can now conclude about the existence of waves for this particular form of the nonlinearity. More general functions will be considered in the subsequent works.

5.3. Local Bifurcations and Branches of Solutions

Other conventional applications of the degree are related to local bifurcations and global branches of solutions (see, e.g., [14]). We can now use the corresponding results for the integro-differential operator in the bistable case. Let us emphasize that these results apply in particular for the case where the essential spectrum of the linearized operator crosses the imaginary axis (see above). Therefore the wave persists in this case unless a priori estimates are lost.

Appendix

Sectorial property of an operator implies certain location of its essential spectrum and an estimate of the resolvent. For general elliptic problems in unbounded domains it is proved in [20]. A simple particular case of second-order operators on the axis is considered in [21]. In the lemma below we prove an estimate of the resolvent using this last result.

Lemma A.1. Let 𝑀0∢𝐢2(𝑅)→𝐢(𝑅), 𝑀0𝑒=π‘’ξ…žξ…ž+𝑏(π‘₯)π‘’ξ…ž(π‘₯)+𝑐(π‘₯)𝑒+𝑑(π‘₯)𝐽(𝑒),(A.1) where the coefficients of this operator are sufficiently smooth bounded functions. Then the operator π‘€πœ†π‘’=𝑀0π‘’βˆ’πœ†π‘’, considered as acting in the same spaces, has a bounded inverse with the norm independent of πœ† for πœ†β‰₯πœ†0>0, where πœ†0 is sufficiently large.

Proof. Consider the equation π‘€πœ†π‘’=𝑓.(A.2) We need to obtain the estimate ‖𝑒‖𝐢2(ℝ)≀𝐾‖𝑓‖𝐢(ℝ)(A.3) of this equation where 𝐾 is independent of πœ† for all πœ† sufficiently large. Here and below we denote by 𝐾 the constants independent of 𝑒, 𝑓, and πœ†.
We first prove the estimate‖𝑒‖𝐢(ℝ)≀𝐾‖𝑓‖𝐢(ℝ)πœ†.(A.4) Since the operator ξ‚Šπ‘€π‘’=π‘’ξ…žξ…ž+𝑏(π‘₯)π‘’ξ…ž(π‘₯)+𝑐(π‘₯)𝑒(A.5) is sectorial [21], then ‖𝑒‖𝐢(ℝ)β€–β€–ξ‚Šβ€–β€–β‰€πΎπ‘€π‘’βˆ’πœ†π‘’πΆ(ℝ)πœ†=πΎβ€–π‘“βˆ’π‘‘(π‘₯)𝐽(𝑒)‖𝐢(ℝ)πœ†β‰€πΎπœ†ξ€·β€–π‘“β€–πΆ(ℝ)+‖𝑒‖𝐢(ℝ)ξ€Έ.(A.6) Estimate (A.4) follows from the last one for πœ† sufficiently large.
We can write (A.2) in the form𝑀0π‘’βˆ’πœŽπ‘’=𝑓+πœ†π‘’βˆ’πœŽπ‘’.(A.7) We can choose 𝜎>0 such that the operator in the left-hand side is invertible. Hence ‖𝑒‖𝐢2(ℝ)≀𝐾‖𝑓‖𝐢(ℝ)+πœ†β€–π‘’β€–πΆ(ℝ)+πœŽβ€–π‘’β€–πΆ(ℝ)ξ€Έ.(A.8) This estimate and (A.4) give (A.3). The lemma is proved.

This lemma remains valid for the operators acting in the weighted spaces.

Acknowledgments

This work was partially supported by the LEA Math Mode between CNRS France and Romanian Academy through the joint project β€œExistence of travelling waves for nonlocal reaction-diffusion equations”.