Abstract

We develop the Weyl-Titchmarsh theory for time scale symplectic systems. We introduce the ๐‘€ ( ๐œ† ) -function, study its properties, construct the corresponding Weyl disk and Weyl circle, and establish their geometric structure including the formulas for their center and matrix radii. Similar properties are then derived for the limiting Weyl disk. We discuss the notions of the system being in the limit point or limit circle case and prove several characterizations of the system in the limit point case and one condition for the limit circle case. We also define the Green function for the associated nonhomogeneous system and use its properties for deriving further results for the original system in the limit point or limit circle case. Our work directly generalizes the corresponding discrete time theory obtained recently by S. Clark and P. Zemรกnek (2010). It also unifies the results in many other papers on the Weyl-Titchmarsh theory for linear Hamiltonian differential, difference, and dynamic systems when the spectral parameter appears in the second equation. Some of our results are new even in the case of the second-order Sturm-Liouville equations on time scales.

1. Introduction

In this paper we develop systematically the Weyl-Titchmarsh theory for time scale symplectic systems. Such systems unify and extend the classical linear Hamiltonian differential systems and discrete symplectic and Hamiltonian systems, including the Sturm-Liouville differential and difference equations of arbitrary even order. As the research in the Weyl-Titchmarsh theory has been very active in the last years, we contribute to this development by presenting a theory which directly generalizes and unifies the results in several recent papers, such as [1โ€“4] and partly in [5โ€“14].

Historically, the theory nowadays called by Weyl and Titchmarsh started in [15] by the investigation of the second-order linear differential equation ๎€ท ๐‘Ÿ ( ๐‘ก ) ๐‘ง ๎…ž ๎€ธ [ ( ๐‘ก ) + ๐‘ž ( ๐‘ก ) ๐‘ง ( ๐‘ก ) = ๐œ† ๐‘ง ( ๐‘ก ) , ๐‘ก โˆˆ 0 , โˆž ) , ( 1 . 1 ) where ๐‘Ÿ , ๐‘ž โˆถ [ 0 , โˆž ) โ†’ โ„ are continuous, ๐‘Ÿ ( ๐‘ก ) > 0 , and ๐œ† โˆˆ โ„‚ , is a spectral parameter. By using a geometrical approach it was showed that (1.1) can be divided into two classes called the limit circle and limit point meaning that either all solutions of (1.1) are square integrable for all ๐œ† โˆˆ โ„‚ โงต โ„ or there is a unique (up to a multiplicative constant) square-integrable solution of (1.1) on [ 0 , โˆž ) . Analytic methods for the investigation of (1.1) have been introduced in a series of papers starting with [16]; see also [17]. We refer to [18โ€“20] for an overview of the original contributions to the Weyl-Titchmarsh theory for (1.1); see also [21]. Extensions of the Weyl-Titchmarsh theory to more general equations, namely, to the linear Hamiltonian differential systems ๐‘ง ๎…ž [ ] ๐‘ง [ ( ๐‘ก ) = ๐œ† ๐ด ( ๐‘ก ) + ๐ต ( ๐‘ก ) ( ๐‘ก ) , ๐‘ก โˆˆ 0 , โˆž ) , ( 1 . 2 ) was initiated in [22] and developed further in [6, 8, 10, 11, 23โ€“38].

According to [19], the first paper dealing with the parallel discrete time Weyl theory for second-order difference equations appears to be the work mentioned in [39]. Since then a long time elapsed until the theory of difference equations attracted more attention. The Weyl-Titchmarsh theory for the second-order Sturm-Liouville difference equations was developed in [22, 40, 41]; see also the references in [19]. For higher-order Sturm-Liouville difference equations and linear Hamiltonian difference systems, such as ฮ” ๐‘ฅ ๐‘˜ = ๐ด ๐‘˜ ๐‘ฅ ๐‘˜ + 1 + ๎‚€ ๐ต ๐‘˜ + ๐œ† ๐‘Š ๐‘˜ [ 2 ] ๎‚ ๐‘ข ๐‘˜ , ฮ” ๐‘ข ๐‘˜ = ๎‚€ ๐ถ ๐‘˜ โˆ’ ๐œ† ๐‘Š ๐‘˜ [ 1 ] ๎‚ ๐‘ฅ ๐‘˜ + 1 โˆ’ ๐ด โˆ— ๐‘˜ ๐‘ข ๐‘˜ [ , ๐‘˜ โˆˆ 0 , โˆž ) โ„ค , ( 1 . 3 ) where ๐ด ๐‘˜ , ๐ต ๐‘˜ , ๐ถ ๐‘˜ , ๐‘Š ๐‘˜ [ 1 ] , ๐‘Š ๐‘˜ [ 2 ] are complex ๐‘› ร— ๐‘› matrices such that ๐ต ๐‘˜ and ๐ถ ๐‘˜ are Hermitian and ๐‘Š ๐‘˜ [ 1 ] and ๐‘Š ๐‘˜ [ 2 ] are Hermitian and nonnegative definite, the Weyl-Titchmarsh theory was studied in [9, 14, 42]. Recently, the results for linear Hamiltonian difference systems were generalized in [1, 2] to discrete symplectic systems ๐‘ฅ ๐‘˜ + 1 = ๐’œ ๐‘˜ ๐‘ฅ ๐‘˜ + โ„ฌ ๐‘˜ ๐‘ข ๐‘˜ , ๐‘ข ๐‘˜ + 1 = ๐’ž ๐‘˜ ๐‘ฅ ๐‘˜ + ๐’Ÿ ๐‘˜ ๐‘ข ๐‘˜ + ๐œ† ๐’ฒ ๐‘˜ ๐‘ฅ ๐‘˜ + 1 [ , ๐‘˜ โˆˆ 0 , โˆž ) โ„ค , ( 1 . 4 ) where ๐’œ ๐‘˜ , โ„ฌ ๐‘˜ , ๐’ž ๐‘˜ , ๐’Ÿ ๐‘˜ , ๐’ฒ ๐‘˜ are complex ๐‘› ร— ๐‘› matrices such that ๐’ฒ ๐‘˜ is Hermitian and nonnegative definite and the 2 ๐‘› ร— 2 ๐‘› transition matrix in (1.4) is symplectic, that is, ๐’ฎ ๐‘˜ ๎‚ต ๐’œ โˆถ = ๐‘˜ โ„ฌ ๐‘˜ ๐’ž ๐‘˜ ๐’Ÿ ๐‘˜ ๎‚ถ , ๐’ฎ โˆ— ๐‘˜ ๐’ฅ ๐’ฎ ๐‘˜ ๎‚ต ๎‚ถ = ๐’ฅ , ๐’ฅ โˆถ = 0 ๐ผ โˆ’ ๐ผ 0 . ( 1 . 5 )

In the unifying theory for differential and difference equationsโ€”the theory of time scalesโ€”the classification of second-order Sturm-Liouville dynamic equations ๐‘ฆ ฮ” ฮ” ( ๐‘ก ) + ๐‘ž ( ๐‘ก ) ๐‘ฆ ๐œŽ ( ๐‘ก ) = ๐œ† ๐‘ฆ ๐œŽ ( [ ๐‘ก ) , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ , ( 1 . 6 ) to be of the limit point or limit circle type is given in [4, 43]. These two papers seem to be the only ones on time scales which are devoted to the Weyl-Titchmarsh theory for the second order dynamic equations. Another way of generalizing the Weyl-Titchmarsh theory for continuous and discrete Hamiltonian systems was presented in [3, 5]. In these references the authors consider the linear Hamiltonian system ๐‘ฅ ฮ” ( ๐‘ก ) = ๐ด ( ๐‘ก ) ๐‘ฅ ๐œŽ ( ๎€บ ๐‘ก ) + ๐ต ( ๐‘ก ) + ๐œ† ๐‘Š 2 ( ๎€ป ๐‘ข ๐‘ก ) ๐‘ข ( ๐‘ก ) , ฮ” ( ๎€บ ๐‘ก ) = ๐ถ ( ๐‘ก ) โˆ’ ๐œ† ๐‘Š 1 ( ๎€ป ๐‘ฅ ๐‘ก ) ๐œŽ ( ๐‘ก ) โˆ’ ๐ด โˆ— ( [ ๐‘ก ) ๐‘ข ( ๐‘ก ) , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ , ( 1 . 7 ) on the so-called Sturmian or general time scales, respectively. Here ๐‘“ ฮ” ( ๐‘ก ) is the time scale ฮ” -derivative and ๐‘“ ๐œŽ ( ๐‘ก ) โˆถ = ๐‘“ ( ๐œŽ ( ๐‘ก ) ) , where ๐œŽ ( ๐‘ก ) is the forward jump at ๐‘ก ; see the time scale notation in Section 2.

In the present paper we develop the Weyl-Titchmarsh theory for more general linear dynamic systems, namely, the time scale symplectic systems ๐‘ฅ ฮ” ( ๐‘ข ๐‘ก ) = ๐’œ ( ๐‘ก ) ๐‘ฅ ( ๐‘ก ) + โ„ฌ ( ๐‘ก ) ๐‘ข ( ๐‘ก ) , ฮ” ( ๐‘ก ) = ๐’ž ( ๐‘ก ) ๐‘ฅ ( ๐‘ก ) + ๐’Ÿ ( ๐‘ก ) ๐‘ข ( ๐‘ก ) โˆ’ ๐œ† ๐’ฒ ( ๐‘ก ) ๐‘ฅ ๐œŽ [ ( ๐‘ก ) , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ , ( ๐’ฎ ๐œ† ) where ๐’œ , โ„ฌ , ๐’ž , ๐’Ÿ , ๐’ฒ are complex ๐‘› ร— ๐‘› matrix functions on [ ๐‘Ž , โˆž ) ๐•‹ , ๐’ฒ ( ๐‘ก ) is Hermitian and nonnegative definite, ๐œ† โˆˆ โ„‚ , and the 2 ๐‘› ร— 2 ๐‘› coefficient matrix in system ( ๐’ฎ ๐œ† ) satisfies ๎‚ต ๎‚ถ ๐’ฎ ( ๐‘ก ) โˆถ = ๐’œ ( ๐‘ก ) โ„ฌ ( ๐‘ก ) ๐’ž ( ๐‘ก ) ๐’Ÿ ( ๐‘ก ) , ๐’ฎ โˆ— ( ๐‘ก ) ๐’ฅ + ๐’ฅ ๐’ฎ ( ๐‘ก ) + ๐œ‡ ( ๐‘ก ) ๐’ฎ โˆ— [ ( ๐‘ก ) ๐’ฅ ๐’ฎ ( ๐‘ก ) = 0 , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ , ( 1 . 8 ) where ๐œ‡ ( ๐‘ก ) โˆถ = ๐œŽ ( ๐‘ก ) โˆ’ ๐‘ก is the graininess of the time scale. The spectral parameter ๐œ† is only in the second equation of system ( ๐’ฎ ๐œ† ). This system was introduced in [44], and it naturally unifies the previously mentioned continuous, discrete, and time scale linear Hamiltonian systems (having the spectral parameter in the second equation only) and discrete symplectic systems into one framework. Our main results are the properties of the ๐‘€ ( ๐œ† ) function, the geometric description of the Weyl disks, and characterizations of the limit point and limit circle cases for the time scale symplectic system ( ๐’ฎ ๐œ† ). In addition, we give a formula for the ๐ฟ 2 ๐’ฒ solutions of a nonhomogeneous time scale symplectic system in terms of its Green function. These results generalize and unify in particular all the results in [1โ€“4] and some results from [5โ€“14]. The theory of time scale symplectic systems or Hamiltonian systems is a topic with active research in recent years; see, for example, [44โ€“51]. This paper can be regarded not only as a completion of these papers by establishing the Weyl-Titchmarsh theory for time scale symplectic systems but also as a comparison of the corresponding continuous and discrete time results. The references to particular statements in the literature are displayed throughout the text. Many results of this paper are new even for (1.6), being a special case of system ( ๐’ฎ ๐œ† ). An overview of these new results for (1.6) will be presented in our subsequent work.

This paper is organized as follows. In the next section we recall some basic notions from the theory of time scales and linear algebra. In Section 3 we present fundamental properties of time scale symplectic systems with complex coefficients, including the important Lagrange identity (Theorem 3.5) and other formulas involving their solutions. In Section 4 we define the time scale ๐‘€ ( ๐œ† ) -function for system ( ๐’ฎ ๐œ† ) and establish its basic properties in the case of the regular spectral problem. In Section 5 we introduce the Weyl disks and circles for system ( ๐’ฎ ๐œ† ) and describe their geometric structure in terms of contractive matrices in โ„‚ ๐‘› ร— ๐‘› . The properties of the limiting Weyl disk and Weyl circle are then studied in Section 6, where we also prove that system ( ๐’ฎ ๐œ† ) has at least ๐‘› linearly independent solutions in the space ๐ฟ 2 ๐’ฒ (see Theorem 6.7). In Section 7 we define the system ( ๐’ฎ ๐œ† ) to be in the limit point and limit circle case and prove several characterizations of these properties. In the final section we consider the system ( ๐’ฎ ๐œ† ) with a nonhomogeneous term. We construct its Green function, discuss its properties, and characterize the ๐ฟ 2 ๐’ฒ solutions of this nonhomogeneous system in terms of the Green function (Theorem 8.5). A certain uniqueness result is also proven for the limit point case.

2. Time Scales

Following [52, 53], a time scale ๐•‹ is any nonempty and closed subset of โ„ . A bounded time scale can be therefore identified as [ ๐‘Ž , ๐‘ ] ๐•‹ โˆถ = [ ๐‘Ž , ๐‘ ] โˆฉ ๐•‹ which we call the time scale interval, where ๐‘Ž โˆถ = m i n ๐•‹ and ๐‘ โˆถ = m a x ๐•‹ . Similarly, a time scale which is unbounded above has the form [ ๐‘Ž , โˆž ) ๐•‹ โˆถ = [ ๐‘Ž , โˆž ) โˆฉ ๐•‹ . The forward and backward jump operators on a time scale are denoted by ๐œŽ ( ๐‘ก ) and ๐œŒ ( ๐‘ก ) and the graininess function by ๐œ‡ ( ๐‘ก ) โˆถ = ๐œŽ ( ๐‘ก ) โˆ’ ๐‘ก . If not otherwise stated, all functions in this paper are considered to be complex valued. A function ๐‘“ on [ ๐‘Ž , ๐‘ ] ๐•‹ is called piecewise rd-continuous; we write ๐‘“ โˆˆ C p r d on [ ๐‘Ž , ๐‘ ] ๐•‹ if the right-hand limit ๐‘“ ( ๐‘ก + ) exists finite at all right-dense points ๐‘ก โˆˆ [ ๐‘Ž , ๐‘ ) ๐•‹ , and the left-hand limit ๐‘“ ( ๐‘ก โˆ’ ) exists finite at all left-dense points ๐‘ก โˆˆ ( ๐‘Ž , ๐‘ ] ๐•‹ and ๐‘“ is continuous in the topology of the given time scale at all but possibly finitely many right-dense points ๐‘ก โˆˆ [ ๐‘Ž , ๐‘ ) ๐•‹ . A function ๐‘“ on [ ๐‘Ž , โˆž ) ๐•‹ is piecewise rd-continuous; we write ๐‘“ โˆˆ C p r d on [ ๐‘Ž , โˆž ) ๐•‹ if ๐‘“ โˆˆ C p r d on [ ๐‘Ž , ๐‘ ] ๐•‹ for every ๐‘ โˆˆ ( ๐‘Ž , โˆž ) ๐•‹ . An ๐‘› ร— ๐‘› matrix-valued function ๐‘“ is called regressive on a given time scale interval if ๐ผ + ๐œ‡ ( ๐‘ก ) ๐‘“ ( ๐‘ก ) is invertible for all ๐‘ก in this interval.

The time scale ฮ” -derivative of a function ๐‘“ at a point ๐‘ก is denoted by ๐‘“ ฮ” ( ๐‘ก ) ; see [52, Definitionโ€‰โ€‰1.10]. Whenever ๐‘“ ฮ” ( ๐‘ก ) exists, the formula ๐‘“ ๐œŽ ( ๐‘ก ) = ๐‘“ ( ๐‘ก ) + ๐œ‡ ( ๐‘ก ) ๐‘“ ฮ” ( ๐‘ก ) holds true. The product rule for the ฮ” -differentiation of the product of two functions has the form ( ๐‘“ ๐‘” ) ฮ” ( ๐‘ก ) = ๐‘“ ฮ” ( ๐‘ก ) ๐‘” ( ๐‘ก ) + ๐‘“ ๐œŽ ( ๐‘ก ) ๐‘” ฮ” ( ๐‘ก ) = ๐‘“ ฮ” ( ๐‘ก ) ๐‘” ๐œŽ ( ๐‘ก ) + ๐‘“ ( ๐‘ก ) ๐‘” ฮ” ( ๐‘ก ) . ( 2 . 1 ) A function ๐‘“ on [ ๐‘Ž , ๐‘ ] ๐•‹ is called piecewise rd-continuously ฮ” -differentiable; we write ๐‘“ โˆˆ C 1 p r d on [ ๐‘Ž , ๐‘ ] ๐•‹ ; if it is continuous on [ ๐‘Ž , ๐‘ ] ๐•‹ , then ๐‘“ ฮ” ( ๐‘ก ) exists at all except for possibly finitely many points ๐‘ก โˆˆ [ ๐‘Ž , ๐œŒ ( ๐‘ ) ] ๐•‹ , and ๐‘“ ฮ” โˆˆ C p r d on [ ๐‘Ž , ๐œŒ ( ๐‘ ) ] ๐•‹ . As a consequence we have that the finitely many points ๐‘ก ๐‘– at which ๐‘“ ฮ” ( ๐‘ก ๐‘– ) does not exist belong to ( ๐‘Ž , ๐‘ ) ๐•‹ and these points ๐‘ก ๐‘– are necessarily right-dense and left-dense at the same time. Also, since at those points we know that ๐‘“ ฮ” ( ๐‘ก + ๐‘– ) and ๐‘“ ฮ” ( ๐‘ก โˆ’ ๐‘– ) exist finite, we replace the quantity ๐‘“ ฮ” ( ๐‘ก ๐‘– ) by ๐‘“ ฮ” ( ๐‘ก ยฑ ๐‘– ) in any formula involving ๐‘“ ฮ” ( ๐‘ก ) for all ๐‘ก โˆˆ [ ๐‘Ž , ๐œŒ ( ๐‘ ) ] ๐•‹ . Similarly as above we define ๐‘“ โˆˆ C 1 p r d on [ ๐‘Ž , โˆž ) ๐•‹ . The time scale integral of a piecewise rd-continuous function ๐‘“ over [ ๐‘Ž , ๐‘ ] ๐•‹ is denoted by โˆซ ๐‘ ๐‘Ž ๐‘“ ( ๐‘ก ) ฮ” ๐‘ก and over [ ๐‘Ž , โˆž ) ๐•‹ by โˆซ โˆž ๐‘Ž ๐‘“ ( ๐‘ก ) ฮ” ๐‘ก provided this integral is convergent in the usual sense; see [52, Definitionsโ€‰โ€‰1.71 andโ€‰โ€‰1.82].

Remark 2.1. As it is known in [52, Theoremโ€‰โ€‰5.8] and discussed in [54, Remarkโ€‰โ€‰3.8], for a fixed ๐‘ก 0 โˆˆ [ ๐‘Ž , ๐‘ ] ๐•‹ and a piecewise rd-continuous ๐‘› ร— ๐‘› matrix function ๐ด ( โ‹… ) on [ ๐‘Ž , ๐‘ ] ๐•‹ which is regressive on [ ๐‘Ž , ๐‘ก 0 ) ๐•‹ , the initial value problem ๐‘ฆ ฮ” ( ๐‘ก ) = ๐ด ( ๐‘ก ) ๐‘ฆ ( ๐‘ก ) for ๐‘ก โˆˆ [ ๐‘Ž , ๐œŒ ( ๐‘ ) ] ๐•‹ with ๐‘ฆ ( ๐‘ก 0 ) = ๐‘ฆ 0 has a unique solution ๐‘ฆ ( โ‹… ) โˆˆ C 1 p r d on [ ๐‘Ž , ๐‘ ] ๐•‹ for any ๐‘ฆ 0 โˆˆ โ„‚ ๐‘› . Similarly, this result holds on [ ๐‘Ž , โˆž ) ๐•‹ .

Let us recall some matrix notations from linear algebra used in this paper. Given a complex square matrix ๐‘€ , by ๐‘€ โˆ— , ๐‘€ > 0 , ๐‘€ โ‰ฅ 0 , ๐‘€ < 0 , ๐‘€ โ‰ค 0 , r a n k ๐‘€ , K e r ๐‘€ , d e f ๐‘€ , we denote, respectively, the conjugate transpose, positive definiteness, positive semidefiniteness, negative definiteness, negative semidefiniteness, rank, kernel, and the defect (i.e., the dimension of the kernel) of the matrix ๐‘€ . Moreover, we will use the notation I m ( ๐‘€ ) โˆถ = ( ๐‘€ โˆ’ ๐‘€ โˆ— ) / ( 2 ๐‘– ) and R e ( ๐‘€ ) โˆถ = ( ๐‘€ + ๐‘€ โˆ— ) / 2 for the Hermitian components of the matrix ๐‘€ ; see [55, pagesโ€‰โ€‰268-269] or [56, Factโ€‰โ€‰3.5.24]. This notation will be also used with ๐œ† โˆˆ โ„‚ , and in this case I m ( ๐œ† ) and R e ( ๐œ† ) represent the imaginary and real parts of ๐œ† .

Remark 2.2. If the matrix I m ( ๐‘€ ) is positive or negative definite, then the matrix ๐‘€ is necessarily invertible. The proof of this fact can be found, for example, in [2, Remarkโ€‰โ€‰2.6].

In order to simplify the notation we abbreviate [ ๐‘“ ๐œŽ ( ๐‘ก ) ] โˆ— and [ ๐‘“ โˆ— ( ๐‘ก ) ] ๐œŽ by ๐‘“ ๐œŽ โˆ— ( ๐‘ก ) . Similarly, instead of [ ๐‘“ ฮ” ( ๐‘ก ) ] โˆ— and [ ๐‘“ โˆ— ( ๐‘ก ) ] ฮ” we will use ๐‘“ ฮ” โˆ— ( ๐‘ก ) .

3. Time Scale Symplectic Systems

Let ๐’œ ( โ‹… ) , โ„ฌ ( โ‹… ) , ๐’ž ( โ‹… ) , ๐’Ÿ ( โ‹… ) , ๐’ฒ ( โ‹… ) be ๐‘› ร— ๐‘› piecewise rd-continuous functions on [ ๐‘Ž , โˆž ) ๐•‹ such that ๐’ฒ ( ๐‘ก ) โ‰ฅ 0 for all ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ ; that is, ๐’ฒ ( ๐‘ก ) is Hermitian and nonnegative definite, satisfying identity (1.8). In this paper we consider the linear system ( ๐’ฎ ๐œ† ) introduced in the previous section. This system can be written as ๐‘ง ฮ” ๎‚‹ ๐’ฒ ( ๐‘ก , ๐œ† ) = ๐’ฎ ( ๐‘ก ) ๐‘ง ( ๐‘ก , ๐œ† ) + ๐œ† ๐’ฅ ( ๐‘ก ) ๐‘ง ๐œŽ [ ) ( ๐‘ก , ๐œ† ) , ๐‘ก โˆˆ ๐‘Ž , โˆž ๐•‹ , ( ๐’ฎ ๐œ† ) where the 2 ๐‘› ร— 2 ๐‘› matrix ๎‚‹ ๐’ฒ ( ๐‘ก ) is defined and has the property ๎‚‹ ๎‚ต ๎‚ถ ๎‚‹ ๎‚ต ๎‚ถ ๐’ฒ ( ๐‘ก ) โˆถ = ๐’ฒ ( ๐‘ก ) 0 0 0 , ๐’ฅ ๐’ฒ ( ๐‘ก ) = 0 0 โˆ’ ๐’ฒ ( ๐‘ก ) 0 . ( 3 . 1 ) The system ( ๐’ฎ ๐œ† ) can be written in the equivalent form ๐‘ง ฮ” ( [ ๐‘ก , ๐œ† ) = ๐’ฎ ( ๐‘ก , ๐œ† ) ๐‘ง ( ๐‘ก , ๐œ† ) , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ , ( 3 . 2 ) where the matrix ๐’ฎ ( ๐‘ก , ๐œ† ) is defined through the matrices ๐’ฎ ( ๐‘ก ) and ๎‚‹ ๐’ฒ ( ๐‘ก ) from (1.8) and (3.1) by ๐’ฎ ๎‚‹ ๐’ฒ [ ] = ๎‚ต [ ] ๎‚ถ . ( ๐‘ก , ๐œ† ) โˆถ = ๐’ฎ ( ๐‘ก ) + ๐œ† ๐’ฅ ( ๐‘ก ) ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก ) ๐’œ ( ๐‘ก ) โ„ฌ ( ๐‘ก ) ๐’ž ( ๐‘ก ) โˆ’ ๐œ† ๐’ฒ ( ๐‘ก ) ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’œ ( ๐‘ก ) ๐’Ÿ ( ๐‘ก ) โˆ’ ๐œ† ๐œ‡ ( ๐‘ก ) ๐’ฒ ( ๐‘ก ) โ„ฌ ( ๐‘ก ) ( 3 . 3 ) By using the identity in (1.8), a direct calculation shows that the matrix function ๐’ฎ ( โ‹… , โ‹… ) satisfies ๐’ฎ โˆ— ๎‚€ ( ๐‘ก , ๐œ† ) ๐’ฅ + ๐’ฅ ๐’ฎ ๐‘ก , ๐œ† ๎‚ + ๐œ‡ ( ๐‘ก ) ๐’ฎ โˆ— ๎‚€ ( ๐‘ก , ๐œ† ) ๐’ฅ ๐’ฎ ๐‘ก , ๐œ† ๎‚ [ = 0 , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ , ๐œ† โˆˆ โ„‚ . ( 3 . 4 ) Here ๐’ฎ โˆ— ( ๐‘ก , ๐œ† ) = [ ๐’ฎ ( ๐‘ก , ๐œ† ) ] โˆ— , and ๐œ† is the usual conjugate number to ๐œ† .

Remark 3.1. The name time scale symplectic system or Hamiltonian system has been reserved in the literature for the system of the form ๐‘ง ฮ” ( [ ๐‘ก ) = ๐•Š ( ๐‘ก ) ๐‘ง ( ๐‘ก ) , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ , ( 3 . 5 ) in which the matrix function ๐•Š ( โ‹… ) satisfies the identity in (1.8); see [44โ€“47, 57], and compare also, for example, with [58โ€“61]. Since for a fixed ๐œ† , ๐œˆ โˆˆ โ„‚ the matrix ๐’ฎ ( ๐‘ก , ๐œ† ) from (3.3) satisfies ๐’ฎ โˆ— ( ๐‘ก , ๐œ† ) ๐’ฅ + ๐’ฅ ๐’ฎ ( ๐‘ก , ๐œˆ ) + ๐œ‡ ( ๐‘ก ) ๐’ฎ โˆ— ๎‚€ ( ๐‘ก , ๐œ† ) ๐’ฅ ๐’ฎ ( ๐‘ก , ๐œˆ ) = ๎‚ ๎€บ ๐œ† โˆ’ ๐œˆ ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ โˆ— ๎€ป ๎‚‹ [ ] ( ๐‘ก ) ๐’ฒ ( ๐‘ก ) ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก ) , ( 3 . 6 ) it follows that the system ( ๐’ฎ ๐œ† ) is a true time scale symplectic system according to the above terminology only for ๐œ† โˆˆ โ„ , while strictly speaking ( ๐’ฎ ๐œ† ) is not a time scale symplectic system for ๐œ† โˆˆ โ„‚ โงต โ„ . However, since ( ๐’ฎ ๐œ† ) is a perturbation of the time scale symplectic system ( ๐’ฎ 0 ) and since the important properties of time scale symplectic systems needed in the presented Weyl-Titchmarsh theory, such as (3.4) or (3.8), are satisfied in an appropriate modification, we accept with the above understanding the same terminology for the system ( ๐’ฎ ๐œ† ) for any ๐œ† โˆˆ โ„‚ .

Equation (3.4) represents a fundamental identity for the theory of time scale symplectic systems ( ๐’ฎ ๐œ† ). Some important properties of the matrix ๐’ฎ ( ๐‘ก , ๐œ† ) are displayed below. Note that formula (3.7) is a generalization of [46, equationโ€‰โ€‰(10.4)] to complex values of ๐œ† .

Lemma 3.2. Identity (3.4) is equivalent to the identity ๐’ฎ ๎‚€ ๐‘ก , ๐œ† ๎‚ ๐’ฅ + ๐’ฅ ๐’ฎ โˆ— ๎‚€ ( ๐‘ก , ๐œ† ) + ๐œ‡ ( ๐‘ก ) ๐’ฎ ๐‘ก , ๐œ† ๎‚ ๐’ฅ ๐’ฎ โˆ— [ ( ๐‘ก , ๐œ† ) = 0 , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ , ๐œ† โˆˆ โ„‚ . ( 3 . 7 ) In this case for any ๐œ† โˆˆ โ„‚ we have ๎€บ ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ โˆ— ๎€ป ๐’ฅ ๎‚ƒ ๎‚€ ( ๐‘ก , ๐œ† ) ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ๐‘ก , ๐œ† [ ๎‚ ๎‚„ = ๐’ฅ , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ ๎‚ƒ ๎‚€ , ( 3 . 8 ) ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ๐‘ก , ๐œ† ๐’ฅ ๎€บ ๎‚ ๎‚„ ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ โˆ— ๎€ป [ ( ๐‘ก , ๐œ† ) = ๐’ฅ , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ , ( 3 . 9 ) and the matrices ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) and ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) are invertible with [ ] ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) โˆ’ 1 ๎‚ƒ = โˆ’ ๐’ฅ ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ โˆ— ๎‚€ ๐‘ก , ๐œ† [ ๎‚ ๎‚„ ๐’ฅ , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ . ( 3 . 1 0 )

Proof. Let ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ and ๐œ† โˆˆ โ„‚ be fixed. If ๐‘ก is right-dense, that is, ๐œ‡ ( ๐‘ก ) = 0 , then identity (3.4) reduces to ๐’ฎ โˆ— ( ๐‘ก , ๐œ† ) ๐’ฅ + ๐’ฅ ๐’ฎ ( ๐‘ก , ๐œ† ) = 0 . Upon multiplying this equation by ๐’ฅ from the left and right side, we get identity (3.7) with ๐œ‡ ( ๐‘ก ) = 0 . If ๐‘ก is right scattered, that is, ๐œ‡ ( ๐‘ก ) > 0 , then (3.4) is equivalent to (3.8). It follows that the determinants of ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) and ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) are nonzero proving that these matrices are invertible with the inverse given by (3.10). Upon multiplying (3.8) by the invertible matrices [ ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) ] ๐’ฅ from the left and โˆ’ [ ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) ] โˆ’ 1 ๐’ฅ from the right and by using ๐’ฅ 2 = โˆ’ ๐ผ , we get formula (3.9), which is equivalent to (3.7) due to ๐œ‡ ( ๐‘ก ) > 0 .

Remark 3.3. Equation (3.10) allows writing the system ( ๐’ฎ ๐œ† ) in the equivalent adjoint form ๐‘ง ฮ” ( ๐‘ก , ๐œ† ) = ๐’ฅ ๐’ฎ โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ ๐’ฅ ๐‘ง ๐œŽ [ ( ๐‘ก , ๐œ† ) , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ . ( 3 . 1 1 ) System (3.11) can be found, for example, in [47, Remarkโ€‰โ€‰3.1(iii)] or [50, equationโ€‰โ€‰(3.2)] in the connection with optimality conditions for variational problems over time scales.

In the following result we show that (3.4) guarantees, among other properties, the existence and uniqueness of solutions of the initial value problems associated with ( ๐’ฎ ๐œ† ).

Theorem 3.4 (existence and uniqueness theorem). Let ๐œ† โˆˆ โ„‚ , ๐‘ก 0 โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ , and ๐‘ง 0 โˆˆ โ„‚ 2 ๐‘› be given. Then the initial value problem ( ๐’ฎ ๐œ† ) with ๐‘ง ( ๐‘ก 0 ) = ๐‘ง 0 has a unique solution ๐‘ง ( โ‹… , ๐œ† ) โˆˆ C 1 p r d on the interval [ ๐‘Ž , โˆž ) ๐•‹ .

Proof. The coefficient matrix of system ( ๐’ฎ ๐œ† ), or equivalently of system (3.2), is piecewise rd-continuous on [ ๐‘Ž , โˆž ) ๐•‹ . By Lemma 3.2, the matrix ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) is invertible for all ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ , which proves that the function ๐’ฎ ( โ‹… , ๐œ† ) is regressive on [ ๐‘Ž , โˆž ) ๐•‹ . Hence, the result follows from Remark 2.1.

If not specified otherwise, we use a common agreement that 2 ๐‘› -vector solutions of system ( ๐’ฎ ๐œ† ) and 2 ๐‘› ร— ๐‘› -matrix solutions of system ( ๐’ฎ ๐œ† ) are denoted by small letters and capital letters, respectively, typically by ๐‘ง ( โ‹… , ๐œ† ) or ฬƒ ๐‘ง ( โ‹… , ๐œ† ) and ๐‘ ( โ‹… , ๐œ† ) or ๎‚ ๐‘ ( โ‹… , ๐œ† ) .

Next we establish several identities involving solutions of system ( ๐’ฎ ๐œ† ) or solutions of two such systems with different spectral parameters. The first result is the Lagrange identity known in the special cases of continuous time linear Hamiltonian systems in [11, Theoremโ€‰โ€‰4.1] or [8, equationโ€‰โ€‰(2.23)], discrete linear Hamiltonian systems in [9, equationโ€‰โ€‰(2.55)] or [14, Lemmaโ€‰โ€‰2.2], discrete symplectic systems in [1, Lemmaโ€‰โ€‰2.6] or [2, Lemmaโ€‰โ€‰2.3], and time scale linear Hamiltonian systems in [3, Lemmaโ€‰โ€‰3.5] and [5, Theoremโ€‰โ€‰2.2].

Theorem 3.5 (Lagrange identity). Let ๐œ† , ๐œˆ โˆˆ โ„‚ and ๐‘š โˆˆ โ„• be given. If ๐‘ง ( โ‹… , ๐œ† ) and ๐‘ง ( โ‹… , ๐œˆ ) are 2 ๐‘› ร— ๐‘š solutions of systems ( ๐’ฎ ๐œ† ) and ( ๐’ฎ ๐œˆ ), respectively, then ๎€บ ๐‘ง โˆ— ๎€ป ( ๐‘ก , ๐œ† ) ๐’ฅ ๐‘ง ( ๐‘ก , ๐œˆ ) ฮ” = ๎‚€ ๎‚ ๐‘ง ๐œ† โˆ’ ๐œˆ ๐œŽ โˆ— ๎‚‹ ( ๐‘ก , ๐œ† ) ๐’ฒ ( ๐‘ก ) ๐‘ง ๐œŽ [ ( ๐‘ก , ๐œˆ ) , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ . ( 3 . 1 2 )

Proof. Formula (3.12) follows from the time scales product rule (2.1) by using the relation ๐‘ง ๐œŽ ( ๐‘ก , ๐œ† ) = [ ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) ] ๐‘ง ( ๐‘ก , ๐œ† ) and identity (3.6).

As consequences of Theorem 3.5, we obtain the following.

Corollary 3.6. Let ๐œ† , ๐œˆ โˆˆ โ„‚ and ๐‘š โˆˆ โ„• be given. If ๐‘ง ( โ‹… , ๐œ† ) and ๐‘ง ( โ‹… , ๐œˆ ) are 2 ๐‘› ร— ๐‘š solutions of systems ( ๐’ฎ ๐œ† ) and ( ๐’ฎ ๐œˆ ), respectively, then for all ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ we have ๐‘ง โˆ— ( ๐‘ก , ๐œ† ) ๐’ฅ ๐‘ง ( ๐‘ก , ๐œˆ ) = ๐‘ง โˆ— ( ๎‚€ ๐‘Ž , ๐œ† ) ๐’ฅ ๐‘ง ( ๐‘Ž , ๐œˆ ) + ๎‚ ๎€œ ๐œ† โˆ’ ๐œˆ ๐‘ก ๐‘Ž ๐‘ง ๐œŽ โˆ— ( ๎‚‹ ๐‘  , ๐œ† ) ๐’ฒ ( ๐‘  ) ๐‘ง ๐œŽ ( ๐‘  , ๐œˆ ) ฮ” ๐‘  . ( 3 . 1 3 )

One can easily see that if ๐‘ง ( โ‹… , ๐œ† ) is a solution of system ( ๐’ฎ ๐œ† ), then ๐‘ง ( โ‹… , ๐œ† ) is a solution of system ( ๐’ฎ ๐œ† ). Therefore, Theorem 3.5 with ๐œˆ = ๐œ† yields a Wronskian-type property of solutions of system ( ๐’ฎ ๐œ† ).

Corollary 3.7. Let ๐œ† โˆˆ โ„‚ and ๐‘š โˆˆ โ„• be given. For any 2 ๐‘› ร— ๐‘š solution ๐‘ง ( โ‹… , ๐œ† ) of systems ( ๐’ฎ ๐œ† ) ๐‘ง โˆ— ๎‚€ ( ๐‘ก , ๐œ† ) ๐’ฅ ๐‘ง ๐‘ก , ๐œ† ๎‚ โ‰ก ๐‘ง โˆ— ๎‚€ ( ๐‘Ž , ๐œ† ) ๐’ฅ ๐‘ง ๐‘Ž , ๐œ† ๎‚ [ , i s c o n s t a n t o n ๐‘Ž , โˆž ) ๐•‹ . ( 3 . 1 4 )

The following result gives another interesting property of solutions of system ( ๐’ฎ ๐œ† ) and ( ๐’ฎ ๐œ† ).

Lemma 3.8. Let ๐œ† โˆˆ โ„‚ and ๐‘š โˆˆ โ„• be given. For any 2 ๐‘› ร— ๐‘š solutions ๐‘ง ( โ‹… , ๐œ† ) and ฬƒ ๐‘ง ( โ‹… , ๐œ† ) of system ( ๐’ฎ ๐œ† ), the 2 ๐‘› ร— 2 ๐‘› matrix function ๐พ ( โ‹… , ๐œ† ) defined by ๐พ ( ๐‘ก , ๐œ† ) โˆถ = ๐‘ง ( ๐‘ก , ๐œ† ) ฬƒ ๐‘ง โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ โˆ’ ฬƒ ๐‘ง ( ๐‘ก , ๐œ† ) ๐‘ง โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ [ , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ , ( 3 . 1 5 ) satisfies the dynamic equation ๐พ ฮ” [ ] ( ๐‘ก , ๐œ† ) = ๐’ฎ ( ๐‘ก , ๐œ† ) ๐พ ( ๐‘ก , ๐œ† ) + ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) ๐พ ( ๐‘ก , ๐œ† ) ๐’ฎ โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ [ , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ , ( 3 . 1 6 ) and the identities ๐พ โˆ— ( ๐‘ก , ๐œ† ) = โˆ’ ๐พ ( ๐‘ก , ๐œ† ) and ๐พ ๐œŽ [ ] ๎‚ƒ ( ๐‘ก , ๐œ† ) = ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) ๐พ ( ๐‘ก , ๐œ† ) ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ โˆ— ๎‚€ ๐‘ก , ๐œ† [ ๎‚ ๎‚„ , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ . ( 3 . 1 7 )

Proof. Having that ๐‘ง ( โ‹… , ๐œ† ) and ฬƒ ๐‘ง ( โ‹… , ๐œ† ) are solutions of system ( ๐’ฎ ๐œ† ), it follows that ๐‘ง ( โ‹… , ๐œ† ) and ฬƒ ๐‘ง ( โ‹… , ๐œ† ) are solutions of system ( ๐’ฎ ๐œ† ). The results then follow by direct calculations.

Remark 3.9. The content of Lemma 3.8 appears to be new both in the continuous and discrete time cases. Moreover, when the matrix function ๐พ ( โ‹… , ๐œ† ) โ‰ก ๐พ ( ๐œ† ) is constant, identity (3.17) yields for any right-scattered ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ that ๐’ฎ ( ๐‘ก , ๐œ† ) ๐พ ( ๐œ† ) + ๐พ ( ๐œ† ) ๐’ฎ โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) ๐พ ( ๐œ† ) ๐’ฎ โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ = 0 . ( 3 . 1 8 ) It is interesting to note that this formula is very much like (3.7). More precisely, identity (3.7) is a consequence of (3.18) for the case of ๐พ ( ๐œ† ) โ‰ก ๐’ฅ .

Next we present properties of certain fundamental matrices ฮจ ( โ‹… , ๐œ† ) of system ( ๐’ฎ ๐œ† ), which are generalizations of the corresponding results in [46, Sectionโ€‰โ€‰10.2] to complex ๐œ† . Some of these results can be proven under the weaker condition that the initial value of ฮจ ( ๐‘Ž , ๐œ† ) does depend on ๐œ† and satisfies ฮจ โˆ— ( ๐‘Ž , ๐œ† ) ๐’ฅ ฮจ ( ๐‘Ž , ๐œ† ) = ๐’ฅ . However, these more general results will not be needed in this paper.

Lemma 3.10. Let ๐œ† โˆˆ โ„‚ be fixed. Ifโ€‰โ€‰ ฮจ ( โ‹… , ๐œ† ) is a fundamental matrix of system ( ๐’ฎ ๐œ† ) such that ฮจ ( ๐‘Ž , ๐œ† ) is symplectic and independent of ๐œ† , then for any ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ we have ฮจ โˆ— ๎‚€ ( ๐‘ก , ๐œ† ) ๐’ฅ ฮจ ๐‘ก , ๐œ† ๎‚ = ๐’ฅ , ฮจ โˆ’ 1 ( ๐‘ก , ๐œ† ) = โˆ’ ๐’ฅ ฮจ โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ ๐’ฅ , ฮจ ( ๐‘ก , ๐œ† ) ๐’ฅ ฮจ โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ = ๐’ฅ . ( 3 . 1 9 )

Proof. Identity (3.19)(i) is a consequence of Corollary 3.7, in which we use the fact that ฮจ ( ๐‘Ž , ๐œ† ) is symplectic and independent of ๐œ† . The second identity in (3.19) follows from the first one, while the third identity is obtained from the equation ฮจ ( ๐‘ก , ๐œ† ) ฮจ โˆ’ 1 ( ๐‘ก , ๐œ† ) = ๐ผ .

Remark 3.11. If the fundamental matrix ๎‚ ฮจ ( โ‹… , ๐œ† ) = ( ๐‘ ( โ‹… , ๐œ† ) ๐‘ ( โ‹… , ๐œ† ) ) in Lemma 3.10 is partitioned into two 2 ๐‘› ร— ๐‘› blocks, then (3.19)(i) and (3.19)(iii) have, respectively, the form ๐‘ โˆ— ๎‚€ ( ๐‘ก , ๐œ† ) ๐’ฅ ๐‘ ๐‘ก , ๐œ† ๎‚ = 0 , ๐‘ โˆ— ๎‚ ๐‘ ๎‚€ ( ๐‘ก , ๐œ† ) ๐’ฅ ๐‘ก , ๐œ† ๎‚ ๎‚ ๐‘ = ๐ผ , โˆ— ๎‚ ๐‘ ๎‚€ ( ๐‘ก , ๐œ† ) ๐’ฅ ๐‘ก , ๐œ† ๎‚ ๎‚ ๐‘ = 0 , ( 3 . 2 0 ) ๐‘ ( ๐‘ก , ๐œ† ) โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ โˆ’ ๎‚ ๐‘ ( ๐‘ก , ๐œ† ) ๐‘ โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ = ๐’ฅ . ( 3 . 2 1 ) Observe that the matrix on the left-hand side of (3.21) represents a constant matrix ๐พ ( ๐‘ก , ๐œ† ) from Lemma 3.8 and Remark 3.9.

Corollary 3.12. Under the conditions of Lemma 3.10, for any ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ , we have ฮจ ๐œŽ ( ๐‘ก , ๐œ† ) ๐’ฅ ฮจ โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ = [ ] ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) ๐’ฅ , ( 3 . 2 2 ) which in the notation of Remark 3.11 has the form ๐‘ ๐œŽ ๎‚ ๐‘ ( ๐‘ก , ๐œ† ) โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ โˆ’ ๎‚ ๐‘ ๐œŽ ( ๐‘ก , ๐œ† ) ๐‘ โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ = [ ] ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) ๐’ฅ . ( 3 . 2 3 )

Proof. Identity (3.22) follows from the equation ฮจ ๐œŽ ( ๐‘ก , ๐œ† ) = [ ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) ] ฮจ ( ๐‘ก , ๐œ† ) by applying formula (3.19)(ii).

4. ๐‘€ ( ๐œ† ) -Function for Regular Spectral Problem

In this section we consider the regular spectral problem on the time scale interval [ ๐‘Ž , ๐‘ ] ๐•‹ with some fixed ๐‘ โˆˆ ( ๐‘Ž , โˆž ) ๐•‹ . We will specify the corresponding boundary conditions in terms of complex ๐‘› ร— 2 ๐‘› matrices from the set ๎€ฝ ฮ“ โˆถ = ๐›ผ โˆˆ โ„‚ ๐‘› ร— 2 ๐‘› , ๐›ผ ๐›ผ โˆ— = ๐ผ , ๐›ผ ๐’ฅ ๐›ผ โˆ— ๎€พ = 0 . ( 4 . 1 ) The two defining conditions for ๐›ผ โˆˆ โ„‚ ๐‘› ร— 2 ๐‘› in (4.1) imply that the 2 ๐‘› ร— 2 ๐‘› matrix ( ๐›ผ โˆ— โˆ’ ๐’ฅ ๐›ผ โˆ— ) is unitary and symplectic. This yields the identity ๎€ท ๐›ผ โˆ— โˆ’ ๐’ฅ ๐›ผ โˆ— ๎€ธ ๎‚ต ๐›ผ ๎‚ถ ๐›ผ ๐’ฅ = ๐ผ โˆˆ โ„‚ 2 ๐‘› ร— 2 ๐‘› , t h a t i s , ๐›ผ โˆ— ๐›ผ โˆ’ ๐’ฅ ๐›ผ โˆ— ๐›ผ ๐’ฅ = ๐ผ . ( 4 . 2 ) The last equation also implies, compare with [60, Remarkโ€‰โ€‰2.1.2], that K e r ๐›ผ = I m ๐’ฅ ๐›ผ โˆ— . ( 4 . 3 )

Let ๐›ผ , ๐›ฝ โˆˆ ฮ“ be fixed and consider the boundary value problem ๎€ท ๐’ฎ ๐œ† ๎€ธ , ๐›ผ ๐‘ง ( ๐‘Ž , ๐œ† ) = 0 , ๐›ฝ ๐‘ง ( ๐‘ , ๐œ† ) = 0 . ( 4 . 4 ) Our first result shows that the boundary conditions in (4.4) are equivalent with the boundary conditions phrased in terms of the images of the 2 ๐‘› ร— 2 ๐‘› matrices ๐‘… ๐‘Ž ๎€ท โˆถ = ๐’ฅ ๐›ผ โˆ— 0 ๎€ธ , ๐‘… ๐‘ ๎€ท โˆถ = 0 โˆ’ ๐’ฅ ๐›ฝ โˆ— ๎€ธ , ( 4 . 5 ) which satisfy ๐‘… โˆ— ๐‘Ž ๐’ฅ ๐‘… ๐‘Ž = 0 , ๐‘… โˆ— ๐‘ ๐’ฅ ๐‘… ๐‘ = 0 , and r a n k ( ๐‘… โˆ— ๐‘Ž ๐‘… โˆ— ๐‘ ) = 2 ๐‘› .

Lemma 4.1. Let ๐›ผ , ๐›ฝ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ be fixed. A solution ๐‘ง ( โ‹… , ๐œ† ) of system ( ๐’ฎ ๐œ† ) satisfies the boundary conditions in (4.4) if and only if there exists a unique vector ๐œ‰ โˆˆ โ„‚ 2 ๐‘› such that ๐‘ง ( ๐‘Ž , ๐œ† ) = ๐‘… ๐‘Ž ๐œ‰ , ๐‘ง ( ๐‘ , ๐œ† ) = ๐‘… ๐‘ ๐œ‰ . ( 4 . 6 )

Proof. Assume that (4.4) holds. Identity (4.3) implies the existence of vectors ๐œ‰ ๐‘Ž , ๐œ‰ ๐‘ โˆˆ โ„‚ ๐‘› such that ๐‘ง ( ๐‘Ž , ๐œ† ) = โˆ’ ๐’ฅ ๐›ผ โˆ— ๐œ‰ ๐‘Ž and ๐‘ง ( ๐‘ , ๐œ† ) = โˆ’ ๐’ฅ ๐›ฝ โˆ— ๐œ‰ ๐‘ . It follows that ๐‘ง ( โ‹… , ๐œ† ) satisfies (4.6) with ๐œ‰ โˆถ = ( โˆ’ ๐œ‰ โˆ— ๐‘Ž ๐œ‰ โˆ— ๐‘ ) โˆ— . It remains to prove that ๐œ‰ is unique such a vector. If ๐‘ง ( โ‹… , ๐œ† ) satisfies (4.6) and also ๐‘ง ( ๐‘Ž , ๐œ† ) = ๐‘… ๐‘Ž ๐œ and ๐‘ง ( ๐‘ , ๐œ† ) = ๐‘… ๐‘ ๐œ for some ๐œ‰ , ๐œ โˆˆ โ„‚ 2 ๐‘› , then ๐‘… ๐‘Ž ( ๐œ‰ โˆ’ ๐œ ) = 0 and ๐‘… ๐‘ ( ๐œ‰ โˆ’ ๐œ ) = 0 . Hence, ๐’ฅ ๐›ผ โˆ— ( ๐ผ 0 ) ( ๐œ‰ โˆ’ ๐œ ) = 0 and โˆ’ ๐’ฅ ๐›ฝ โˆ— ( 0 ๐ผ ) ( ๐œ‰ โˆ’ ๐œ ) = 0 . If we multiply the latter two equalities by ๐›ผ ๐’ฅ and ๐›ฝ ๐’ฅ , respectively, and use ๐›ผ ๐›ผ โˆ— = ๐ผ = ๐›ฝ ๐›ฝ โˆ— , then we obtain ( ๐ผ 0 ) ( ๐œ‰ โˆ’ ๐œ ) = 0 and ( 0 ๐ผ ) ( ๐œ‰ โˆ’ ๐œ ) = 0 . This yields ๐œ‰ โˆ’ ๐œ = 0 , which shows that the vector ๐œ‰ in (4.6) is unique. The opposite direction, that is, that (4.6) implies (4.4), is trivial.

Following the standard terminology, see, for example, [62, 63], a number ๐œ† โˆˆ โ„‚ is an eigenvalue of (4.4) if this boundary value problem has a solution ๐‘ง ( โ‹… , ๐œ† ) โ‰ข 0 . In this case the function ๐‘ง ( โ‹… , ๐œ† ) is called the eigenfunction corresponding to the eigenvalue ๐œ† , and the dimension of the space of all eigenfunctions corresponding to ๐œ† (together with the zero function) is called the geometric multiplicity of ๐œ† .

Given ๐›ผ โˆˆ ฮ“ , we will utilize from now on the fundamental matrix ฮจ ( โ‹… , ๐œ† , ๐›ผ ) of system ( ๐’ฎ ๐œ† ) satisfying the initial condition from (4.4), that is, ฮจ ฮ” [ ] ( ๐‘ก , ๐œ† , ๐›ผ ) = ๐’ฎ ( ๐‘ก , ๐œ† ) ฮจ ( ๐‘ก , ๐œ† , ๐›ผ ) , ๐‘ก โˆˆ ๐‘Ž , ๐œŒ ( ๐‘ ) ๐•‹ ๎€ท ๐›ผ , ฮจ ( ๐‘Ž , ๐œ† , ๐›ผ ) = โˆ— โˆ’ ๐’ฅ ๐›ผ โˆ— ๎€ธ . ( 4 . 7 ) Then ฮจ ( ๐‘Ž , ๐œ† , ๐›ผ ) does not depend on ๐œ† , and it is symplectic and unitary with the inverse ฮจ โˆ’ 1 ( ๐‘Ž , ๐œ† , ๐›ผ ) = ฮจ โˆ— ( ๐‘Ž , ๐œ† , ๐›ผ ) . Hence, the properties of fundamental matrices derived earlier in Lemma 3.10, Remark 3.11, and Corollary 3.12 apply for the matrix function ฮจ ( โ‹… , ๐œ† , ๐›ผ ) .

The following assumption will be imposed in this section when studying the regular spectral problem.

Hypothesis 4.2. For every ๐œ† โˆˆ โ„‚ , we have ๎€œ ๐‘ ๐‘Ž ฮจ ๐œŽ โˆ— ๎‚‹ ( ๐‘ก , ๐œ† , ๐›ผ ) ๐’ฒ ( ๐‘ก ) ฮจ ๐œŽ ( ๐‘ก , ๐œ† , ๐›ผ ) ฮ” ๐‘ก > 0 . ( 4 . 8 )

Condition (4.8) can be written in the equivalent form as ๎€œ ๐‘ ๐‘Ž ๐‘ง ๐œŽ โˆ— ๎‚‹ ( ๐‘ก , ๐œ† ) ๐’ฒ ( ๐‘ก ) ๐‘ง ๐œŽ ( ๐‘ก , ๐œ† ) ฮ” ๐‘ก > 0 , ( 4 . 9 ) for every nontrivial solution ๐‘ง ( โ‹… , ๐œ† ) of system ( ๐’ฎ ๐œ† ). Assumptions (4.8) and (4.9) are equivalent by a simple argument using the uniqueness of solutions of system ( ๐’ฎ ๐œ† ). The latter form (4.9) has been widely used in the literature, such as in the continuous time case in [8, Hypothesisโ€‰โ€‰2.2], [30, equationโ€‰โ€‰(1.3)], [26, equationโ€‰โ€‰(2.3)], in the discrete time case in [9, Conditionโ€‰โ€‰(2.16)], [14, equationโ€‰โ€‰(1.7)], [1, Assumptionโ€‰โ€‰2.2], [2, Hypothesisโ€‰โ€‰2.4], and in the time scale Hamiltonian case in [3, Assumptionโ€‰โ€‰3] and [5, Conditionโ€‰โ€‰(3.9)].

Following Remark 3.11, we partition the fundamental matrix ฮจ ( โ‹… , ๐œ† , ๐›ผ ) as ๎€ท ๐‘ ๎‚ ๐‘ ๎€ธ ฮจ ( โ‹… , ๐œ† , ๐›ผ ) = ( โ‹… , ๐œ† , ๐›ผ ) ( โ‹… , ๐œ† , ๐›ผ ) , ( 4 . 1 0 ) where ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) and ๎‚ ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) are the 2 ๐‘› ร— ๐‘› solutions of system ( ๐’ฎ ๐œ† ) satisfying ๐‘ ( ๐‘Ž , ๐œ† , ๐›ผ ) = ๐›ผ โˆ— and ๎‚ ๐‘ ( ๐‘Ž , ๐œ† , ๐›ผ ) = โˆ’ ๐’ฅ ๐›ผ โˆ— . With the notation ฮ› ( ๐œ† , ๐›ผ , ๐›ฝ ) โˆถ = ฮจ ( ๐‘ , ๐œ† , ๐›ผ ) ฮจ โˆ— ( ๐‘Ž , ๐œ† , ๐›ผ ) ๐‘… ๐‘Ž โˆ’ ๐‘… ๐‘ = ๎€ท โˆ’ ๎‚ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) ๐’ฅ ๐›ฝ โˆ— ๎€ธ , ( 4 . 1 1 ) we have the classical characterization of the eigenvalues of (4.4); see, for example, the continuous time in [64, Chapterโ€‰โ€‰4], the discrete time in [14, Theoremโ€‰โ€‰2.3, Lemmaโ€‰โ€‰2.4], [2, Lemmaโ€‰โ€‰2.9, Theoremโ€‰โ€‰2.11], and the time scale case in [62, Lemmaโ€‰โ€‰3], [63, Corollaryโ€‰โ€‰1].

Proposition 4.3. For ๐›ผ , ๐›ฝ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ , we have with notation (4.11) the following. (i)The number ๐œ† is an eigenvalue of (4.4) if and only if d e t ฮ› ( ๐œ† , ๐›ผ , ๐›ฝ ) = 0 . (ii)The algebraic multiplicity of the eigenvalue ๐œ† , that is, the number d e f ฮ› ( ๐œ† , ๐›ผ , ๐›ฝ ) , is equal to the geometric multiplicity of ๐œ† . (iii)Under Hypothesis 4.2, the eigenvalues of (4.4) are real, and the eigenfunctions corresponding to different eigenvalues are orthogonal with respect to the semi-inner product โŸจ ๐‘ง ( โ‹… , ๐œ† ) , ๐‘ง ( โ‹… , ๐œˆ ) โŸฉ ๐’ฒ , ๐‘ ๎€œ โˆถ = ๐‘ ๐‘Ž ๐‘ง ๐œŽ โˆ— ๎‚‹ ( ๐‘ก , ๐œ† ) ๐’ฒ ( ๐‘ก ) ๐‘ง ๐œŽ ( ๐‘ก , ๐œˆ ) ฮ” ๐‘ก . ( 4 . 1 2 )

Proof. The arguments are here standard, and we refer to [44, Sectionโ€‰โ€‰5], [63, Corollaryโ€‰โ€‰1], [3, Theoremโ€‰โ€‰3.6].

The next algebraic characterization of the eigenvalues of (4.4) is more appropriate for the development of the Weyl-Titchmarsh theory for (4.4), since it uses the matrix ๐›ฝ ๎‚ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) which has dimension ๐‘› instead of using the matrix ฮ› ( ๐œ† , ๐›ผ , ๐›ฝ ) which has dimension 2 ๐‘› . Results of this type can be found in special cases of system ( ๐’ฎ ๐œ† ) in [8, Lemmaโ€‰โ€‰2.5], [11, Theoremโ€‰โ€‰4.1], [9, Lemmaโ€‰โ€‰2.8], [14, Lemmaโ€‰โ€‰3.1], [1, Lemmaโ€‰โ€‰2.5], [3, Theoremโ€‰โ€‰3.4], and [2, Lemmaโ€‰โ€‰3.1].

Lemma 4.4. Let ๐›ผ , ๐›ฝ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ be fixed. Then ๐œ† is an eigenvalue of (4.4) if and only if ๎‚ d e t ๐›ฝ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) = 0 . In this case the algebraic and geometric multiplicities of ๐œ† are equal to ๎‚ d e f ๐›ฝ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) .

Proof. One can follow the same arguments as in the proof of the corresponding discrete symplectic case in [2, Lemmaโ€‰โ€‰3.1]. However, having the result of Proposition 4.3, we can proceed directly by the methods of linear algebra. In this proof we abbreviate ฮ› โˆถ = ฮ› ( ๐œ† , ๐›ผ , ๐›ฝ ) and ๎‚ ๎‚ ๐‘ โˆถ = ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) . Assume that ฮ› is singular, that is, โˆ’ ๎‚ ๐‘ ๐‘ + ๐’ฅ ๐›ฝ โˆ— ๐‘‘ = 0 for some vectors ๐‘ , ๐‘‘ โˆˆ โ„‚ ๐‘› , not both zero. Then ๎‚ ๐‘ ๐‘ = ๐’ฅ ๐›ฝ โˆ— ๐‘‘ , which yields that ๐›ฝ ๎‚ ๐‘ ๐‘ = 0 . If ๐‘ = 0 , then ๐’ฅ ๐›ฝ โˆ— ๐‘‘ = 0 , which implies upon the multiplication by ๐›ฝ ๐’ฅ from the left that ๐‘‘ = 0 . Since not both ๐‘ and ๐‘‘ can be zero, it follows that ๐‘ โ‰  0 and the matrix ๐›ฝ ๎‚ ๐‘ is singular. Conversely, if ๐›ฝ ๎‚ ๐‘ ๐‘ = 0 for some nonzero vector ๐‘ โˆˆ โ„‚ ๐‘› , then โˆ’ ๎‚ ๐‘ ๐‘ + ๐’ฅ ๐›ฝ โˆ— ๐‘‘ = 0 ; that is, ฮ› is singular, with the vector ๎‚ ๐‘‘ โˆถ = โˆ’ ๐›ฝ ๐’ฅ ๐‘ ๐‘ . Indeed, by using identity (4.2) we have ๐’ฅ ๐›ฝ โˆ— ๐‘‘ = โˆ’ ๐’ฅ ๐›ฝ โˆ— ๎‚ ๐›ฝ ๐’ฅ ๐‘ ๐‘ = ( ๐ผ โˆ’ ๐›ฝ โˆ— ๎‚ ๎‚ ๐›ฝ ) ๐‘ ๐‘ = ๐‘ ๐‘ . From the above we can also see that the number of linearly independent vectors in ๎‚ ๐‘ K e r ๐›ฝ is the same as the number of linearly independent vectors in K e r ฮ› . Therefore, by Proposition 4.3(ii), the algebraic and geometric multiplicities of ๐œ† as an eigenvalue of (4.4) are equal to ๎‚ ๐‘ d e f ๐›ฝ .

Since the eigenvalues of (4.4) are real, it follows that the matrix ๐›ฝ ๎‚ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) is invertible for every ๐œ† โˆˆ โ„‚ except for at most ๐‘› real numbers. This motivates the definition of the ๐‘€ ( ๐œ† ) -function for the regular spectral problem.

Definition 4.5 ( ๐‘€ ( ๐œ† ) -function). Let ๐›ผ , ๐›ฝ โˆˆ ฮ“ . Whenever the matrix ๐›ฝ ๎‚ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) is invertible for some value ๐œ† โˆˆ โ„‚ , we define the Weyl-Titchmarsh ๐‘€ ( ๐œ† ) -function as the ๐‘› ร— ๐‘› matrix ๎‚ƒ ๐›ฝ ๎‚ ๎‚„ ๐‘€ ( ๐œ† ) = ๐‘€ ( ๐œ† , ๐‘ ) = ๐‘€ ( ๐œ† , ๐‘ , ๐›ผ , ๐›ฝ ) โˆถ = โˆ’ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) โˆ’ 1 ๐›ฝ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) . ( 4 . 1 3 )

The above definition of the ๐‘€ ( ๐œ† ) -function is a generalization of the corresponding definitions for the continuous and discrete linear Hamiltonian and symplectic systems in [8, Definitionโ€‰โ€‰2.6], [9, Definitionโ€‰โ€‰2.9], [14, equationโ€‰โ€‰(3.10)], [1, pageโ€‰โ€‰2859], [2, Definitionโ€‰โ€‰3.2] and time scale linear Hamiltonian systems in [3, equationโ€‰โ€‰(4.1)]. The dependence of the ๐‘€ ( ๐œ† ) -function on ๐‘ , ๐›ผ , and ๐›ฝ will be suppressed in the notation, and ๐‘€ ( ๐œ† , ๐‘ ) or ๐‘€ ( ๐œ† , ๐‘ , ๐›ผ , ๐›ฝ ) will be used only in few situations when we emphasize the dependence on ๐‘ (such as at the end of Section 5) or on ๐›ผ and ๐›ฝ (as in Lemma 4.14). By [65, Corollaryโ€‰โ€‰4.5], see also [44, Remarkโ€‰โ€‰2.2], the ๐‘€ ( โ‹… ) -function is an entire function in ๐œ† . Another important property of the ๐‘€ ( ๐œ† ) -function is established in the following.

Lemma 4.6. Let ๐›ผ , ๐›ฝ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ . Then ๐‘€ โˆ— ๎‚€ ( ๐œ† ) = ๐‘€ ๐œ† ๎‚ . ( 4 . 1 4 )

Proof. We abbreviate ๐‘ ( ๐œ† ) โˆถ = ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) and ๎‚ ๎‚ ๐‘ ( ๐œ† ) โˆถ = ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) . By using the definition of ๐‘€ ( ๐œ† ) in (4.13) and identity (3.21), we have ๐‘€ โˆ— ๎‚€ ( ๐œ† ) โˆ’ ๐‘€ ๐œ† ๎‚ = ๎‚ƒ ๐›ฝ ๎‚ ๐‘ ๎‚€ ๐œ† ๎‚ ๎‚„ โˆ’ 1 ๐›ฝ ๎‚ƒ ๐‘ ๎‚€ ๐œ† ๎‚ ๎‚ ๐‘ โˆ— ๎‚ ๐‘ ๎‚€ ( ๐œ† ) โˆ’ ๐œ† ๎‚ ๐‘ โˆ— ๎‚„ ๐›ฝ ( ๐œ† ) โˆ— ๎‚ƒ ๐›ฝ ๎‚ ๎‚„ ๐‘ ( ๐œ† ) โˆ— โˆ’ 1 ( 3 . 2 1 ) = ๎‚ƒ ๐›ฝ ๎‚ ๐‘ ๎‚€ ๐œ† ๎‚ ๎‚„ โˆ’ 1 ๐›ฝ ๐’ฅ ๐›ฝ โˆ— ๎‚ƒ ๐›ฝ ๎‚ ๎‚„ ๐‘ ( ๐œ† ) โˆ— โˆ’ 1 = 0 , ( 4 . 1 5 ) because ๐›ฝ โˆˆ ฮ“ . Hence, equality (4.14) holds true.

The following solution plays an important role in particular in the results concerning the square integrable solutions of system ( ๐’ฎ ๐œ† ).

Definition 4.7 (Weyl solution). For any matrix ๐‘€ โˆˆ โ„‚ ๐‘› ร— ๐‘› , we define the so-called Weyl solution of system ( ๐’ฎ ๐œ† ) by ๐’ณ ๎€ท ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ) โˆถ = ฮจ ( โ‹… , ๐œ† , ๐›ผ ) ๐ผ ๐‘€ โˆ— ๎€ธ โˆ— ๎‚ ๐‘ = ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) + ( โ‹… , ๐œ† , ๐›ผ ) ๐‘€ , ( 4 . 1 6 ) where ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) and ๎‚ ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) are defined in (4.10).

The function ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ) , being a linear combination of two solutions of system ( ๐’ฎ ๐œ† ), is also a solution of this system. Moreover, ๐›ผ ๐’ณ ( ๐‘Ž , ๐œ† , ๐›ผ , ๐‘€ ) = ๐ผ , and, if ๐›ฝ ๎‚ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) is invertible, then ๐›ฝ ๎‚ ๎‚ ๐’ณ ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) = ๐›ฝ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) [ ๐‘€ โˆ’ ๐‘€ ( ๐œ† ) ] . Consequently, if we take ๐‘€ โˆถ = ๐‘€ ( ๐œ† ) in Definition 4.7, then ๐›ฝ ๐’ณ ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ( ๐œ† ) ) = 0 ; that is, the Weyl solution ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ( ๐œ† ) ) satisfies the right endpoint boundary condition in (4.4).

Following the corresponding notions in [8, equationโ€‰โ€‰(2.18)], [9, equationโ€‰โ€‰(2.51)], [14, pageโ€‰โ€‰471], [1, pageโ€‰โ€‰2859], [2, equationโ€‰โ€‰(3.13)], [3, equationโ€‰โ€‰(4.2)], we define the Hermitian ๐‘› ร— ๐‘› matrix function โ„ฐ ( ๐‘€ ) for system ( ๐’ฎ ๐œ† ).

Definition 4.8. For a fixed ๐›ผ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ , we define the matrix function โ„ฐ โˆถ โ„‚ ๐‘› ร— ๐‘› โŸถ โ„‚ ๐‘› ร— ๐‘› , โ„ฐ ( ๐‘€ ) = โ„ฐ ( ๐‘€ , ๐‘ ) โˆถ = ๐‘– ๐›ฟ ( ๐œ† ) ๐’ณ โˆ— ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฅ ๐’ณ ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) , ( 4 . 1 7 ) where ๐›ฟ ( ๐œ† ) โˆถ = s g n I m ( ๐œ† ) .

For brevity we suppress the dependence of the function โ„ฐ ( โ‹… ) on ๐‘ and ๐œ† . In few cases we will need โ„ฐ ( ๐‘€ ) depending on ๐‘ (as in Theorem 5.1 and Definition 6.2) and in such situations we will use the notation โ„ฐ ( ๐‘€ , ๐‘ ) . Since ( ๐‘– ๐’ฅ ) โˆ— = ๐‘– ๐’ฅ , it follows that โ„ฐ ( ๐‘€ ) is a Hermitian matrix for any ๐‘€ โˆˆ โ„‚ ๐‘› ร— ๐‘› . Moreover, from Corollary 3.6, we obtain the identity | | | | ๎€œ โ„ฐ ( ๐‘€ ) = โˆ’ 2 ๐›ฟ ( ๐œ† ) I m ( ๐‘€ ) + 2 I m ( ๐œ† ) ๐‘ ๐‘Ž ๐’ณ ๐œŽ โˆ— ๎‚‹ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฒ ( ๐‘ก ) ๐’ณ ๐œŽ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ฮ” ๐‘ก , ( 4 . 1 8 ) where we used the fact that ๐’ณ โˆ— ( ๐‘Ž , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฅ ๐’ณ ( ๐‘Ž , ๐œ† , ๐›ผ , ๐‘€ ) ( 4 . 7 ) = ๐‘€ โˆ’ ๐‘€ โˆ— = 2 ๐‘– I m ( ๐‘€ ) . ( 4 . 1 9 )

Next we define the Weyl disk and Weyl circle for the regular spectral problem. The geometric characterizations of the Weyl disk and Weyl circle in terms of the contractive or unitary matrices which justify the terminology โ€œdiskโ€ or โ€œcircleโ€ will be presented in Section 5.

Definition 4.9 (Weyl disk and Weyl circle). For a fixed ๐›ผ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ , the set ๐ท ๎€ฝ ( ๐œ† ) = ๐ท ( ๐œ† , ๐‘ ) โˆถ = ๐‘€ โˆˆ โ„‚ ๐‘› ร— ๐‘› ๎€พ , โ„ฐ ( ๐‘€ ) โ‰ค 0 , ( 4 . 2 0 ) is called the Weyl disk, and the set ๐ถ ๎€ฝ ( ๐œ† ) = ๐ถ ( ๐œ† , ๐‘ ) โˆถ = ๐œ• ๐ท ( ๐œ† ) = ๐‘€ โˆˆ โ„‚ ๐‘› ร— ๐‘› ๎€พ , โ„ฐ ( ๐‘€ ) = 0 , ( 4 . 2 1 ) is called the Weyl circle.

The dependence of the Weyl disk and Weyl circle on ๐‘ will be again suppressed. In the following result we show that the Weyl circle consists of precisely those matrices ๐‘€ ( ๐œ† ) with ๐›ฝ โˆˆ ฮ“ . This result generalizes the corresponding statements in [8, Lemmaโ€‰โ€‰2.8], [9, Lemmaโ€‰โ€‰2.13], [14, Lemmaโ€‰โ€‰3.3], [1, Theoremโ€‰โ€‰3.1], [2, Theoremโ€‰โ€‰3.6], and [3, Theoremโ€‰โ€‰4.2].

Theorem 4.10. Let ๐›ผ โˆˆ ฮ“ , ๐œ† โˆˆ โ„‚ โงต โ„ , and ๐‘€ โˆˆ โ„‚ ๐‘› ร— ๐‘› . The matrix ๐‘€ belongs to the Weyl circle ๐ถ ( ๐œ† ) if and only if there exists ๐›ฝ โˆˆ ฮ“ such that ๐›ฝ ๐’ณ ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) = 0 . In this case and under Hypothesis 4.2, we have with such a matrix ๐›ฝ that ๐‘€ = ๐‘€ ( ๐œ† ) as defined in (4.13).

Proof. Assume that ๐‘€ โˆˆ ๐ถ ( ๐œ† ) , that is, โ„ฐ ( ๐‘€ ) = 0 . Then, with the vector ๐›ฝ โˆถ = ๐’ณ โˆ— ๎€ท ( ๐‘ ) ๐’ฅ = ๐ผ ๐‘€ โˆ— ๎€ธ ฮจ โˆ— ( ๐‘ , ๐œ† , ๐›ผ ) ๐’ฅ โˆˆ โ„‚ ๐‘› ร— 2 ๐‘› , ( 4 . 2 2 ) where ๐’ณ ( ๐‘ ) denotes ๐’ณ ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) , we have ๐›ฝ ๐’ณ ( ๐‘ ) = ๐’ณ โˆ— ๎‚ธ 1 ( ๐‘ ) ๐’ฅ ๐’ณ ( ๐‘ ) = ๎‚น ( ๐‘– ๐›ฟ ( ๐œ† ) ) โ„ฐ ( ๐‘€ ) = 0 . ( 4 . 2 3 ) Moreover, r a n k ๐›ฝ = ๐‘› , because the matrices ฮจ ( ๐‘ , ๐œ† , ๐›ผ ) and ๐’ฅ are invertible and r a n k ( ๐ผ ๐‘€ โˆ— ) = ๐‘› . In addition, the identity ๐’ฅ โˆ— = ๐’ฅ โˆ’ 1 yields ๐›ฝ ๐’ฅ ๐›ฝ โˆ— = ๐’ณ โˆ— ( ๐‘ ) ๐’ฅ ๐’ณ ( ๐‘ ) ( 4 . 2 3 ) = 0 . ( 4 . 2 4 ) Now, if the condition ๐›ฝ ๐›ฝ โˆ— = ๐ผ is not satisfied, then we replace ๐›ฝ by ฬƒ ๐›ฝ โˆถ = ( ๐›ฝ ๐›ฝ โˆ— ) โˆ’ 1 / 2 ๐›ฝ (note that ๐›ฝ ๐›ฝ โˆ— > 0 , so that ( ๐›ฝ ๐›ฝ โˆ— ) โˆ’ 1 / 2 is well defined), and in this case ฬƒ ๎€ท ๐›ฝ ๐’ณ ( ๐‘ ) = ๐›ฝ ๐›ฝ โˆ— ๎€ธ โˆ’ 1 / 2 ๐›ฝ ๐’ณ ( ๐‘ ) ( 4 . 2 3 ) ฬƒ ฬƒ ๐›ฝ = 0 , ๐›ฝ ๐’ฅ โˆ— = ๎€ท ๐›ฝ ๐›ฝ โˆ— ๎€ธ โˆ’ 1 / 2 ๐›ฝ ๐’ฅ ๐›ฝ โˆ— ๎€ท ๐›ฝ ๐›ฝ โˆ— ๎€ธ โˆ’ 1 / 2 ( 4 . 2 4 ) ฬƒ ๐›ฝ ฬƒ ๐›ฝ = 0 , โˆ— = ๎€ท ๐›ฝ ๐›ฝ โˆ— ๎€ธ โˆ’ 1 / 2 ๐›ฝ ๐›ฝ โˆ— ๎€ท ๐›ฝ ๐›ฝ โˆ— ๎€ธ โˆ’ 1 / 2 = ๐ผ . ( 4 . 2 5 ) Conversely, suppose that for a given ๐‘€ โˆˆ โ„‚ ๐‘› ร— ๐‘› there exists ๐›ฝ โˆˆ ฮ“ such that ๐›ฝ ๐’ณ ( ๐‘ ) = 0 . Then from (4.3) it follows that ๐’ณ ( ๐‘ ) = ๐’ฅ ๐›ฝ โˆ— ๐‘ƒ for the matrix ๐‘ƒ โˆถ = โˆ’ ๐›ฝ ๐’ฅ ๐’ณ ( ๐‘ ) โˆˆ โ„‚ ๐‘› ร— ๐‘› . Hence, โ„ฐ ( ๐‘€ ) = ๐‘– ๐›ฟ ( ๐œ† ) ๐‘ƒ โˆ— ๐›ฝ ๐’ฅ โˆ— ๐’ฅ ๐’ฅ ๐›ฝ โˆ— ๐‘ƒ = ๐‘– ๐›ฟ ( ๐œ† ) ๐‘ƒ โˆ— ๐›ฝ ๐’ฅ ๐›ฝ โˆ— ๐‘ƒ = 0 , ( 4 . 2 6 ) that is, ๐‘€ โˆˆ ๐ถ ( ๐œ† ) . Finally, since ๐œ† โˆˆ โ„‚ โงต โ„ , then by Proposition 4.3(iii) the number ๐œ† is not an eigenvalue of (4.4), which by Lemma 4.4 shows that the matrix ๐›ฝ ๎‚ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) is invertible. The definition of the Weyl solution in (4.16) then yields ๎‚ ๐‘ ๐›ฝ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) + ๐›ฝ ( ๐‘ , ๐œ† , ๐›ผ ) ๐‘€ = ๐›ฝ ๐’ณ ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) = 0 , ( 4 . 2 7 ) which implies that ๎‚ ๐‘€ = โˆ’ [ ๐›ฝ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) ] โˆ’ 1 ๐›ฝ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) = ๐‘€ ( ๐œ† ) .

Remark 4.11. The matrix ๐‘ƒ โˆถ = โˆ’ ๐›ฝ ๐’ฅ ๐’ณ ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) โˆˆ โ„‚ ๐‘› ร— ๐‘› from the proof of Theorem 4.10 is invertible. This fact was not needed in that proof. However, we show that ๐‘ƒ is invertible because this argument will be used in the proof of Lemma 4.14. First we prove that K e r ๐‘ƒ = K e r ๐’ณ ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) . For if ๐‘ƒ ๐‘‘ = 0 for some ๐‘‘ โˆˆ โ„‚ ๐‘› , then from identity (4.2) we get ๐’ณ ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) ๐‘‘ = ( ๐ผ โˆ’ ๐›ฝ โˆ— ๐›ฝ ) ๐’ณ ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) ๐‘‘ = ๐’ฅ ๐›ฝ โˆ— ๐‘ƒ ๐‘‘ = 0 . Therefore, K e r ๐‘ƒ โŠ† K e r ๐’ณ ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) . The opposite inclusion follows by the definition of ๐‘ƒ . And since, by (4.16), r a n k ๐’ณ ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) = r a n k ( ๐ผ ๐‘€ โˆ— ) โˆ— = ๐‘› , it follows that K e r ๐’ณ ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) = { 0 } . Hence, K e r ๐‘ƒ = { 0 } as well; that is, the matrix ๐‘ƒ is invertible.

The next result contains a characterization of the matrices ๐‘€ โˆˆ โ„‚ ๐‘› ร— ๐‘› which lie โ€œinsideโ€ the Weyl disk ๐ท ( ๐œ† ) . In the previous result (Theorem 4.10) we have characterized the elements of the boundary of the Weyl disk ๐ท ( ๐œ† ) , that is, the elements of the Weyl circle ๐ถ ( ๐œ† ) , in terms of the matrices ๐›ฝ โˆˆ ฮ“ . For such ๐›ฝ we have ๐›ฝ ๐’ฅ ๐›ฝ โˆ— = 0 , which yields ๐‘– ๐›ฟ ( ๐œ† ) ๐›ฝ ๐’ฅ ๐›ฝ โˆ— = 0 . Comparing with that statement we now utilize the matrices ๐›ฝ โˆˆ โ„‚ ๐‘› ร— 2 ๐‘› which satisfy ๐‘– ๐›ฟ ( ๐œ† ) ๐›ฝ ๐’ฅ ๐›ฝ โˆ— > 0 . In the special cases of the continuous and discrete time, this result can be found in [8, Lemmaโ€‰โ€‰2.13], [9, Lemmaโ€‰โ€‰2.18], and [2, Theoremโ€‰โ€‰3.13].

Theorem 4.12. Let ๐›ผ โˆˆ ฮ“ , ๐œ† โˆˆ โ„‚ โงต โ„ , and ๐‘€ โˆˆ โ„‚ ๐‘› ร— ๐‘› . The matrix ๐‘€ satisfies โ„ฐ ( ๐‘€ ) < 0 if and only if there exists ๐›ฝ โˆˆ โ„‚ ๐‘› ร— 2 ๐‘› such that ๐‘– ๐›ฟ ( ๐œ† ) ๐›ฝ ๐’ฅ ๐›ฝ โˆ— > 0 and ๐›ฝ ๐’ณ ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) = 0 . In this case and under Hypothesis 4.2, we have with such a matrix ๐›ฝ that ๐‘€ = ๐‘€ ( ๐œ† ) as defined in (4.13) and ๐›ฝ may be chosen so that ๐›ฝ ๐›ฝ โˆ— = ๐ผ .

Proof. For ๐‘€ โˆˆ โ„‚ ๐‘› ร— ๐‘› consider on [ ๐‘Ž , ๐‘ ] ๐•‹ the Weyl solution ๎‚ต ๐’ณ ๐’ณ ( โ‹… ) โˆถ = ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ) = 1 ๐’ณ ( โ‹… ) 2 ๎‚ถ ( โ‹… ) , w i t h ๐‘› ร— ๐‘› b l o c k s ๐’ณ 1 ( โ‹… ) a n d ๐’ณ 2 ( โ‹… ) . ( 4 . 2 8 ) Suppose first that โ„ฐ ( ๐‘€ ) < 0 . Then the matrices ๐’ณ ๐‘— ( ๐‘ ) , ๐‘— โˆˆ { 1 , 2 } , are invertible. Indeed, if one of them is singular, then there exists a nonzero vector ๐‘ฃ โˆˆ โ„‚ ๐‘› such that ๐’ณ 1 ( ๐‘ ) ๐‘ฃ = 0 or ๐’ณ 2 ( ๐‘ ) ๐‘ฃ = 0 . Then ๐‘ฃ โˆ— โ„ฐ ( ๐‘€ ) ๐‘ฃ = ๐‘– ๐›ฟ ( ๐œ† ) ๐‘ฃ โˆ— ๐’ณ โˆ— ( ๐‘ ) ๐’ฅ ๐’ณ ( ๐‘ ) ๐‘ฃ = ๐‘– ๐›ฟ ( ๐œ† ) ๐‘ฃ โˆ— ๎€บ ๐’ณ โˆ— 1 ( ๐‘ ) ๐’ณ 2 ( ๐‘ ) โˆ’ ๐’ณ โˆ— 2 ( ๐‘ ) ๐’ณ 1 ๎€ป ( ๐‘ ) ๐‘ฃ = 0 , ( 4 . 2 9 ) which contradicts โ„ฐ ( ๐‘€ ) < 0 . Now we set ๐›ฝ 1 โˆถ = ๐ผ , ๐›ฝ 2 โˆถ = โˆ’ ๐’ณ 1 ( ๐‘ ) ๐’ณ 2 โˆ’ 1 ( ๐‘ ) , and ๐›ฝ โˆถ = ( ๐›ฝ 1 ๐›ฝ 2 ) . Then for this 2 ๐‘› ร— ๐‘› matrix ๐›ฝ we have ๐›ฝ ๐’ณ ( ๐‘ ) = 0 and, by a similar calculation as in (4.29), โ„ฐ ( ๐‘€ ) = ๐‘– ๐›ฟ ( ๐œ† ) ๐’ณ โˆ— ( ๐‘ ) ๐’ฅ ๐’ณ ( ๐‘ ) = ๐‘– ๐›ฟ ( ๐œ† ) ๐’ณ โˆ— 2 ๎€ท ๐›ฝ ( ๐‘ ) 2 ๐›ฝ โˆ— 1 โˆ’ ๐›ฝ 1 ๐›ฝ โˆ— 2 ๎€ธ ๐’ณ 2 ( ๐‘ ) = 2 ๐›ฟ ( ๐œ† ) ๐’ณ โˆ— 2 ( ๎€ท ๐›ฝ ๐‘ ) I m 1 ๐›ฝ โˆ— 2 ๎€ธ ๐’ณ 2 ( ๐‘ ) = โˆ’ ๐‘– ๐›ฟ ( ๐œ† ) ๐’ณ โˆ— 2 ( ๐‘ ) ๐›ฝ ๐’ฅ ๐›ฝ โˆ— ๐’ณ 2 ( ๐‘ ) , ( 4 . 3 0 ) where we used the equality ๐›ฝ ๐’ฅ ๐›ฝ โˆ— = 2 ๐‘– I m ( ๐›ฝ 1 ๐›ฝ โˆ— 2 ) . Since โ„ฐ ( ๐‘€ ) < 0 and ๐’ณ 2 ( ๐‘ ) is invertible, it follows that ๐‘– ๐›ฟ ( ๐œ† ) ๐›ฝ ๐’ฅ ๐›ฝ โˆ— > 0 . Conversely, assume that for a given matrix ๐‘€ โˆˆ โ„‚ ๐‘› ร— ๐‘› there is ๐›ฝ = ( ๐›ฝ 1 ๐›ฝ 2 ) โˆˆ โ„‚ ๐‘› ร— 2 ๐‘› satisfying ๐‘– ๐›ฟ ( ๐œ† ) ๐›ฝ ๐’ฅ ๐›ฝ โˆ— > 0 and ๐›ฝ ๐’ณ ( ๐‘ ) = 0 . Condition ๐‘– ๐›ฟ ( ๐œ† ) ๐›ฝ ๐’ฅ ๐›ฝ โˆ— > 0 is equivalent to I m ( ๐›ฝ 1 ๐›ฝ โˆ— 2 ) < 0 when I m ( ๐œ† ) > 0 and to I m ( ๐›ฝ 1 ๐›ฝ โˆ— 2 ) > 0 when I m ( ๐œ† ) < 0 . The positive or negative definiteness of I m ( ๐›ฝ 1 ๐›ฝ โˆ— 2 ) implies the invertibility of ๐›ฝ 1 and ๐›ฝ 2 ; see Remark 2.2. Therefore, from the equality ๐›ฝ 1 ๐’ณ 1 ( ๐‘ ) + ๐›ฝ 2 ๐’ณ 2 ( ๐‘ ) = ๐›ฝ ๐’ณ ( ๐‘ ) = 0 , we obtain ๐’ณ 1 ( ๐‘ ) = โˆ’ ๐›ฝ 1 โˆ’ 1 ๐›ฝ 2 ๐’ณ 2 ( ๐‘ ) , and so โ„ฐ ๎€บ ๐’ณ ( ๐‘€ ) = ๐‘– ๐›ฟ ( ๐œ† ) โˆ— 1 ( ๐‘ ) ๐’ณ 2 ( ๐‘ ) โˆ’ ๐’ณ โˆ— 2 ( ๐‘ ) ๐’ณ 1 ๎€ป ( ๐‘ ) = ๐‘– ๐›ฟ ( ๐œ† ) ๐’ณ โˆ— 2 ( ๐‘ ) ๐›ฝ 1 โˆ’ 1 ๎€ท ๐›ฝ 2 ๐›ฝ โˆ— 1 โˆ’ ๐›ฝ 1 ๐›ฝ โˆ— 2 ๎€ธ ๐›ฝ 1 โˆ— โˆ’ 1 ๐’ณ 2 ( ๐‘ ) = โˆ’ ๐‘– ๐›ฟ ( ๐œ† ) ๐’ณ โˆ— 2 ( ๐‘ ) ๐›ฝ 1 โˆ’ 1 ๐›ฝ ๐’ฅ ๐›ฝ โˆ— ๐›ฝ 1 โˆ— โˆ’ 1 ๐’ณ 2 ( ๐‘ ) . ( 4 . 3 1 ) The matrix ๐’ณ 2 ( ๐‘ ) is invertible, because if ๐’ณ 2 ( ๐‘ ) ๐‘‘ = 0 for some nonzero vector ๐‘‘ โˆˆ โ„‚ ๐‘› , then ๐’ณ 1 ( ๐‘ ) ๐‘‘ = โˆ’ ๐›ฝ 1 โˆ’ 1 ๐›ฝ 2 ๐’ณ 2 ( ๐‘ ) ๐‘‘ = 0 , showing that r a n k ๐’ณ ( ๐‘ ) < ๐‘› . This however contradicts r a n k ๐’ณ ( ๐‘ ) = ๐‘› which we have from the definition of the Weyl solution ๐’ณ ( โ‹… ) in (4.16). Consequently, (4.31) yields through ๐‘– ๐›ฟ ( ๐œ† ) ๐›ฝ ๐’ฅ ๐›ฝ โˆ— > 0 that โ„ฐ ( ๐‘€ ) < 0 .
If the matrix ๐›ฝ does not satisfy ๐›ฝ ๐›ฝ โˆ— = ๐ผ , then we modify it according to the procedure described in the proof of Theorem 4.10. Finally, since ๐œ† โˆˆ โ„‚ โงต โ„ , we get from Proposition 4.3(iii) and Lemma 4.4 that the matrix ๐›ฝ ๎‚ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) is invertible which in turn implies through the calculation in (4.27) that ๎‚ ๐‘€ = โˆ’ [ ๐›ฝ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) ] โˆ’ 1 ๐›ฝ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) = ๐‘€ ( ๐œ† ) .

In the following lemma we derive some additional properties of the Weyl disk and the ๐‘€ ( ๐œ† ) -function. Special cases of this statement can be found in [8, Lemmaโ€‰โ€‰2.9], [33, Theoremโ€‰โ€‰3.1], [9, Lemmaโ€‰โ€‰2.14], [14, Lemmaโ€‰โ€‰3.2(ii)], [1, Theoremโ€‰โ€‰3.7], [2, Lemmaโ€‰โ€‰3.7], and [3, Theoremโ€‰โ€‰4.13].

Theorem 4.13. Let ๐›ผ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ . For any matrix ๐‘€ โˆˆ ๐ท ( ๐œ† ) we have | | | | ๎€œ ๐›ฟ ( ๐œ† ) I m ( ๐‘€ ) โ‰ฅ I m ( ๐œ† ) ๐‘ ๐‘Ž ๐’ณ ๐œŽ โˆ— ๎‚‹ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฒ ( ๐‘ก ) ๐’ณ ๐œŽ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ฮ” ๐‘ก โ‰ฅ 0 . ( 4 . 3 2 ) In addition, under Hypothesis 4.2, we have ๐›ฟ ( ๐œ† ) I m ( ๐‘€ ) > 0 .

Proof. By identity (4.18), for any matrix ๐‘€ โˆˆ ๐ท ( ๐œ† ) , we have | | | | ๎€œ 2 ๐›ฟ ( ๐œ† ) I m ( ๐‘€ ) = โˆ’ โ„ฐ ( ๐‘€ ) + 2 I m ( ๐œ† ) ๐‘ ๐‘Ž ๐’ณ ๐œŽ โˆ— ๎‚‹ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฒ ( ๐‘ก ) ๐’ณ ๐œŽ | | | | ๎€œ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ฮ” ๐‘ก โ‰ฅ 2 I m ( ๐œ† ) ๐‘ ๐‘Ž ๐’ณ ๐œŽ โˆ— ( ๎‚‹ ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฒ ( ๐‘ก ) ๐’ณ ๐œŽ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ฮ” ๐‘ก , ( 4 . 3 3 ) which yields together with ๎‚‹ ๐’ฒ ( ๐‘ก ) โ‰ฅ 0 on [ ๐‘Ž , ๐œŒ ( ๐‘ ) ] ๐•‹ the inequalities in (4.32). The last assertion in Theorem 4.13 is a simple consequence of Hypothesis 4.2.

In the last part of this section we wish to study the effect of changing ๐›ผ , which is one of the parameters of the ๐‘€ ( ๐œ† ) -function and the Weyl solution ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ) , when ๐›ผ varies within the set ฮ“ . For this purpose we will use the ๐‘€ ( ๐œ† ) -function with all its arguments in the following two statements.

Lemma 4.14. Let ๐›ผ , ๐›ฝ , ๐›พ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ . Then ๎€บ ๐‘€ ( ๐œ† , ๐‘ , ๐›ผ , ๐›ฝ ) = ๐›ผ ๐’ฅ ๐›พ โˆ— + ๐›ผ ๐›พ โˆ— ๐‘€ ( ๐œ† , ๐‘ , ๐›พ , ๐›ฝ ) ๎€ป ๎€บ ๐›ผ ๐›พ โˆ— โˆ’ ๐›ผ ๐’ฅ ๐›พ โˆ— ๎€ป ๐‘€ ( ๐œ† , ๐‘ , ๐›พ , ๐›ฝ ) โˆ’ 1 . ( 4 . 3 4 )

Proof. Let ๐‘€ ( ๐‘ , ๐œ† , ๐›ผ , ๐›ฝ ) and ๐‘€ ( ๐‘ , ๐œ† , ๐›พ , ๐›ฝ ) be given via (4.13), and consider the Weyl solutions ๐’ณ ๐›ผ ( โ‹… ) โˆถ = ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ( ๐‘ , ๐œ† , ๐›ผ , ๐›ฝ ) ) and ๐’ณ ๐›พ ( โ‹… ) โˆถ = ๐’ณ ( โ‹… , ๐œ† , ๐›พ , ๐‘€ ( ๐‘ , ๐œ† , ๐›พ , ๐›ฝ ) ) defined by (4.16) with ๐‘€ = ๐‘€ ( ๐‘ , ๐œ† , ๐›ผ , ๐›ฝ ) and ๐‘€ = ๐‘€ ( ๐‘ , ๐œ† , ๐›พ , ๐›ฝ ) , respectively. First we prove that the two Weyl solutions ๐’ณ ๐›ผ ( โ‹… ) and ๐’ณ ๐›พ ( โ‹… ) differ by a constant nonsingular multiple. By definition, ๐›ฝ ๐’ณ ๐›ผ ( ๐‘ ) = 0 and ๐›ฝ ๐’ณ ๐›พ ( ๐‘ ) = 0 , which implies through (4.3) that ๐’ณ ๐›ผ ( ๐‘ ) = ๐’ฅ ๐›ฝ โˆ— ๐‘ƒ ๐›ผ and ๐’ณ ๐›พ ( ๐‘ ) = ๐’ฅ ๐›ฝ โˆ— ๐‘ƒ ๐›พ for some matrices ๐‘ƒ ๐›ผ , ๐‘ƒ ๐›พ โˆˆ โ„‚ ๐‘› ร— ๐‘› , which are invertible by Remark 4.11. This implies that ๐’ณ ๐›ผ ( ๐‘ ) ๐‘ƒ ๐›ผ โˆ’ 1 = ๐’ฅ ๐›ฝ โˆ— = ๐’ณ ๐›พ ( ๐‘ ) ๐‘ƒ ๐›พ โˆ’ 1 . Consequently, ๐’ณ ๐›ผ ( ๐‘ ) = ๐’ณ ๐›พ ( ๐‘ ) ๐‘ƒ , where ๐‘ƒ โˆถ = ๐‘ƒ ๐›พ โˆ’ 1 ๐‘ƒ ๐›ผ . By the uniqueness of solutions of system ( ๐’ฎ ๐œ† ), see Theorem 3.4, we obtain that ๐’ณ ๐›ผ ( โ‹… ) = ๐’ณ ๐›พ ( โ‹… ) ๐‘ƒ on [ ๐‘Ž , ๐‘ ] ๐•‹ . Upon the evaluation at ๐‘ก = ๐‘Ž we get ๎‚ต ๐ผ ๎‚ถ ๎‚ต ๐ผ ๎‚ถ ฮจ ( ๐‘Ž , ๐œ† , ๐›ผ ) ๐‘€ ( ๐œ† , ๐‘ , ๐›ผ , ๐›ฝ ) = ฮจ ( ๐‘Ž , ๐œ† , ๐›พ ) ๐‘€ ( ๐œ† , ๐‘ , ๐›พ , ๐›ฝ ) ๐‘ƒ . ( 4 . 3 5 ) Since the matrices ฮจ ( ๐‘Ž , ๐œ† , ๐›ผ ) = ( ๐›ผ โˆ— โˆ’ ๐’ฅ ๐›ผ โˆ— ) and ฮจ ( ๐‘Ž , ๐œ† , ๐›พ ) = ( ๐›พ โˆ— โˆ’ ๐’ฅ ๐›พ โˆ— ) are unitary, it follows from (4.35) that ๎‚ต ๐ผ ๎‚ถ = ๎‚ต ๐›ผ ๎‚ถ ๎€ท ๐›พ ๐‘€ ( ๐œ† , ๐‘ , ๐›ผ , ๐›ฝ ) ๐›ผ ๐’ฅ โˆ— โˆ’ ๐’ฅ ๐›พ โˆ— ๎€ธ ๎‚ต ๐ผ ๎‚ถ ๐‘ƒ = ๎‚ต ๐‘€ ( ๐œ† , ๐‘ , ๐›พ , ๐›ฝ ) ๐›ผ ๐›พ โˆ— โˆ’ ๐›ผ ๐’ฅ ๐›พ โˆ— ๐‘€ ( ๐œ† , ๐‘ , ๐›พ , ๐›ฝ ) ๐›ผ ๐’ฅ ๐›พ โˆ— + ๐›ผ ๐›พ โˆ— ๎‚ถ ๐‘€ ( ๐œ† , ๐‘ , ๐›พ , ๐›ฝ ) ๐‘ƒ . ( 4 . 3 6 ) The first row above yields that ๐‘ƒ = [ ๐›ผ ๐›พ โˆ— โˆ’ ๐›ผ ๐’ฅ ๐›พ โˆ— ๐‘€ ( ๐œ† , ๐‘ , ๐›พ , ๐›ฝ ) ] โˆ’ 1 , while the second row is then written as identity (4.34).

Corollary 4.15. Let ๐›ผ , ๐›ฝ , ๐›พ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ . With notation (4.16) and (4.13) we have ๎€บ ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ( ๐œ† , ๐‘ , ๐›ผ , ๐›ฝ ) ) = ๐’ณ ( โ‹… , ๐œ† , ๐›พ , ๐‘€ ( ๐œ† , ๐‘ , ๐›พ , ๐›ฝ ) ) ๐›ผ ๐›พ โˆ— โˆ’ ๐›ผ ๐’ฅ ๐›พ โˆ— ๎€ป ๐‘€ ( ๐œ† , ๐‘ , ๐›พ , ๐›ฝ ) โˆ’ 1 . ( 4 . 3 7 )

Proof. The above identity follows from (4.35) and the formula for the matrix ๐‘ƒ from the end of the proof of Lemma 4.14.

5. Geometric Properties of Weyl Disks

In this section we study the geometric properties of the Weyl disks as the point ๐‘ moves through the interval [ ๐‘Ž , โˆž ) ๐•‹ . Our first result shows that the Weyl disks ๐ท ( ๐œ† , ๐‘ ) are nested. This statement generalizes the results in [11, Theoremโ€‰โ€‰4.5], [66, Sectionโ€‰โ€‰3.2.1], [9, equationโ€‰โ€‰(2.70)], [14, Theoremโ€‰โ€‰3.1], [3, Theoremโ€‰โ€‰4.4], and [5, Theoremโ€‰โ€‰3.3(i)].

Theorem 5.1 (nesting property of Weyl disks). Let ๐›ผ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ . Then ๐ท ๎€ท ๐œ† , ๐‘ 2 ๎€ธ ๎€ท โŠ† ๐ท ๐œ† , ๐‘ 1 ๎€ธ , f o r e v e r y ๐‘ 1 , ๐‘ 2 โˆˆ [ ) ๐‘Ž , โˆž ๐•‹ , ๐‘ 1 < ๐‘ 2 . ( 5 . 1 )

Proof. Let ๐‘ 1 , ๐‘ 2 โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ with ๐‘ 1 < ๐‘ 2 , and take ๐‘€ โˆˆ ๐ท ( ๐œ† , ๐‘ 2 ) , that is, โ„ฐ ( ๐‘€ , ๐‘ 2 ) โ‰ค 0 . From identity (4.18) with ๐‘ = ๐‘ 1 and later with ๐‘ = ๐‘ 2 and by using ๎‚‹ ๐’ฒ ( โ‹… ) โ‰ฅ 0 , we have โ„ฐ ๎€ท ๐‘€ , ๐‘ 1 ๎€ธ ( 4 . 1 8 ) | | | | ๎€œ = โˆ’ 2 ๐›ฟ ( ๐œ† ) I m ( ๐‘€ ) + 2 I m ( ๐œ† ) ๐‘ 1 ๐‘Ž ๐’ณ ๐œŽ โˆ— ๎‚‹ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฒ ( ๐‘ก ) ๐’ณ ๐œŽ | | | | ๎€œ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ฮ” ๐‘ก โ‰ค โˆ’ 2 ๐›ฟ ( ๐œ† ) I m ( ๐‘€ ) + 2 I m ( ๐œ† ) ๐‘ 2 ๐‘Ž ๐’ณ ๐œŽ โˆ— ( ๎‚‹ ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฒ ( ๐‘ก ) ๐’ณ ๐œŽ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ฮ” ๐‘ก ( 4 . 1 8 ) ๎€ท = โ„ฐ ๐‘€ , ๐‘ 2 ๎€ธ โ‰ค 0 . ( 5 . 2 ) Therefore, by Definition 4.9, the matrix ๐‘€ belongs to ๐ท ( ๐œ† , ๐‘ 1 ) , which shows the result.

Similarly for the regular case (Hypothesis 4.2) we now introduce the following assumption.

Hypothesis 5.2. There exists ๐‘ 0 โˆˆ ( ๐‘Ž , โˆž ) ๐•‹ such that Hypothesis 4.2 is satisfied with ๐‘ = ๐‘ 0 ; that is, inequality (4.8) holds with ๐‘ = ๐‘ 0 for every ๐œ† โˆˆ โ„‚ .

From Hypothesis 5.2 it follows by ๎‚‹ ๐’ฒ ( โ‹… ) โ‰ฅ 0 that inequality (4.8) holds for every ๐‘ โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ .

For the study of the geometric properties of Weyl disks we will use the following representation: โ„ฐ ( ๐‘€ , ๐‘ ) = ๐‘– ๐›ฟ ( ๐œ† ) ๐’ณ โˆ— ๎€ท ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฅ ๐’ณ ( ๐‘ , ๐œ† , ๐›ผ , ๐‘€ ) = ๐ผ ๐‘€ โˆ— ๎€ธ ๎‚ต โ„ฑ ( ๐‘ , ๐œ† , ๐›ผ ) ๐’ข โˆ— ๐ผ ๐‘€ ๎‚ถ ( ๐‘ , ๐œ† , ๐›ผ ) ๐’ข ( ๐‘ , ๐œ† , ๐›ผ ) โ„‹ ( ๐‘ , ๐œ† , ๐›ผ ) ๎‚ถ ๎‚ต , ( 5 . 3 ) of the matrix โ„ฐ ( ๐‘€ , ๐‘ ) , where we define on [ ๐‘Ž , โˆž ) ๐•‹ the ๐‘› ร— ๐‘› matrices โ„ฑ ( โ‹… , ๐œ† , ๐›ผ ) โˆถ = ๐‘– ๐›ฟ ( ๐œ† ) ๐‘ โˆ— ๎‚ ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) ๐’ฅ ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) , ๐’ข ( โ‹… , ๐œ† , ๐›ผ ) โˆถ = ๐‘– ๐›ฟ ( ๐œ† ) โˆ— ๎‚ ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) ๐’ฅ ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) , โ„‹ ( โ‹… , ๐œ† , ๐›ผ ) โˆถ = ๐‘– ๐›ฟ ( ๐œ† ) โˆ— ๎‚ ( โ‹… , ๐œ† , ๐›ผ ) ๐’ฅ ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) . ( 5 . 4 ) Since โ„ฐ ( ๐‘€ , ๐‘ ) is Hermitian, it follows that โ„ฑ ( โ‹… , ๐œ† , ๐›ผ ) and โ„‹ ( โ‹… , ๐œ† , ๐›ผ ) are also Hermitian. Moreover, by (4.7), we have โ„‹ ( ๐‘Ž , ๐œ† , ๐›ผ ) = 0 . In addition, if ๐‘ โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ , then Corollary 3.7 and Hypothesis 5.2 yield for any ๐œ† โˆˆ โ„‚ โงต โ„ | | | | ๎€œ โ„‹ ( ๐‘ , ๐œ† , ๐›ผ ) = 2 I m ( ๐œ† ) ๐‘ ๐‘Ž ๎‚ ๐‘ ๐œŽ โˆ— ๎‚‹ ๎‚ ๐‘ ( ๐‘ก , ๐œ† , ๐›ผ ) ๐’ฒ ( ๐‘ก ) ๐œŽ ( ๐‘ก , ๐œ† , ๐›ผ ) ฮ” ๐‘ก > 0 . ( 5 . 5 ) Therefore, โ„‹ ( ๐‘ , ๐œ† , ๐›ผ ) is invertible (positive definite) for all ๐‘ โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ and monotone nondecreasing as ๐‘ โ†’ โˆž , with a consequence that โ„‹ โˆ’ 1 ( ๐‘ , ๐œ† , ๐›ผ ) is monotone nonincreasing as ๐‘ โ†’ โˆž . The following factorization of โ„ฐ ( ๐‘€ , ๐‘ ) holds true; see also [2, equationโ€‰โ€‰(4.11)].

Lemma 5.3. Let ๐›ผ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ . With the notation (5.4), for any ๐‘€ โˆˆ โ„‚ ๐‘› ร— ๐‘› and ๐‘ โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ we have โ„ฐ ( ๐‘€ , ๐‘ ) = โ„ฑ ( ๐‘ , ๐œ† , ๐›ผ ) โˆ’ ๐’ข โˆ— ( ๐‘ , ๐œ† , ๐›ผ ) โ„‹ โˆ’ 1 + ๎€บ ๐’ข ( ๐‘ , ๐œ† , ๐›ผ ) ๐’ข ( ๐‘ , ๐œ† , ๐›ผ ) โˆ— ( ๐‘ , ๐œ† , ๐›ผ ) โ„‹ โˆ’ 1 ( ๐‘ , ๐œ† , ๐›ผ ) + ๐‘€ โˆ— ๎€ป โ„‹ ๎€บ โ„‹ ( ๐‘ , ๐œ† , ๐›ผ ) โˆ’ 1 ๎€ป , ( ๐‘ , ๐œ† , ๐›ผ ) ๐’ข ( ๐‘ , ๐œ† , ๐›ผ ) + ๐‘€ ( 5 . 6 ) whenever the matrix โ„‹ ( ๐‘ , ๐œ† , ๐›ผ ) is invertible.

Proof. The result is shown by a direct calculation.

The following identity is a generalization of its corresponding versions in [11, Lemmaโ€‰โ€‰4.3], [1, Lemmaโ€‰โ€‰3.3], [14, Propositionโ€‰โ€‰3.2], [2, Lemmaโ€‰โ€‰4.2], [3, Lemmaโ€‰โ€‰4.6], and [5, Theoremโ€‰โ€‰5.6].

Lemma 5.4. Let ๐›ผ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ . With the notation (5.4), for any ๐‘ โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ , we have ๐’ข โˆ— ( ๐‘ , ๐œ† , ๐›ผ ) โ„‹ โˆ’ 1 ( ๐‘ , ๐œ† , ๐›ผ ) ๐’ข ( ๐‘ , ๐œ† , ๐›ผ ) โˆ’ โ„ฑ ( ๐‘ , ๐œ† , ๐›ผ ) = โ„‹ โˆ’ 1 ๎‚€ ๐‘ , ๎‚ ๐œ† , ๐›ผ , ( 5 . 7 ) whenever the matrices โ„‹ ( ๐‘ , ๐œ† , ๐›ผ ) and โ„‹ ( ๐‘ , ๐œ† , ๐›ผ ) are invertible.

Proof. In order to simplify and abbreviate the notation we introduce the matrices ๎‚ ๎‚€ โ„ฑ โˆถ = โ„ฑ ( ๐‘ , ๐œ† , ๐›ผ ) , ๐’ข โˆถ = ๐’ข ( ๐‘ , ๐œ† , ๐›ผ ) , โ„‹ โˆถ = โ„‹ ( ๐‘ , ๐œ† , ๐›ผ ) , โ„ฑ โˆถ = โ„ฑ ๐‘ , ๎‚ , ๎‚ ๎‚€ ๐œ† , ๐›ผ ๐’ข โˆถ = ๐’ข ๐‘ , ๎‚ , ๎‚‹ ๎‚€ ๐œ† , ๐›ผ โ„‹ โˆถ = โ„‹ ๐‘ , ๎‚ , ๐œ† , ๐›ผ ( 5 . 8 ) and use the notation ๐‘ ( ๐œ† ) and ๎‚ ๐‘ ( ๐œ† ) for ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) and ๎‚ ๐‘ ( ๐‘ , ๐œ† , ๐›ผ ) , respectively. Then, since โ„ฑ โˆ— = โ„ฑ and ๐›ฟ ( ๐œ† ) ๐›ฟ ( ๐œ† ) = โˆ’ 1 , we get the identities ๐’ข โˆ— ๎‚ โ„ฑ โˆ’ โ„ฑ โˆ— ๎‚ ๐’ข = ๐‘ โˆ— ๎‚ƒ ๎‚ ( ๐œ† ) ๐’ฅ ๐‘ ( ๐œ† ) ๐‘ โˆ— ๎‚€ ๐œ† ๎‚ ๎‚ ๐‘ โˆ’ ๐‘ ( ๐œ† ) โˆ— ๎‚€ ๐œ† ๎‚€ ๎‚ ๎‚„ ๐’ฅ ๐‘ ๐œ† ๎‚ ( 3 . 2 1 ) = ๐‘ โˆ— ๎‚€ ( ๐œ† ) ๐’ฅ ๐‘ ๐œ† ๎‚ ( 3 . 2 0 ) โ„‹ ๎‚ ๐’ข = 0 , ( 5 . 9 ) โˆ— โˆ’ ๐’ข โ„‹ โˆ— = ๎‚ ๐‘ โˆ— ๎‚ƒ ๎‚ ( ๐œ† ) ๐’ฅ ๐‘ ( ๐œ† ) ๐‘ โˆ— ๎‚€ ๐œ† ๎‚ ๎‚ ๐‘ โˆ’ ๐‘ ( ๐œ† ) โˆ— ๎‚€ ๐œ† ๐’ฅ ๎‚ ๐‘ ๎‚€ ๎‚ ๎‚„ ๐œ† ๎‚ ( 3 . 2 1 ) = ๎‚ ๐‘ โˆ— ๎‚ ๐‘ ๎‚€ ( ๐œ† ) ๐’ฅ ๐œ† ๎‚ ( 3 . 2 0 ) ๐’ข ๎‚ ๎‚ ๎‚ ๐‘ = 0 , ( 5 . 1 0 ) ๐’ข โˆ’ โ„‹ โ„ฑ = โˆ— ๎‚ƒ ๎‚ ๐‘ ( ๐œ† ) ๐’ฅ ๐‘ ( ๐œ† ) โˆ— ๎‚€ ๐œ† ๎‚ โˆ’ ๎‚ ๐‘ ( ๐œ† ) ๐‘ โˆ— ๎‚€ ๐œ† ๎‚€ ๎‚ ๎‚„ ๐’ฅ ๐‘ ๐œ† ๎‚ ( 3 . 2 1 ) ๎‚ ๐‘ = โˆ’ โˆ— ๎‚€ ( ๐œ† ) ๐’ฅ ๐‘ ๐œ† ๎‚ ( 3 . 2 0 ) ๐’ข = ๐ผ , ( 5 . 1 1 ) โˆ— ๎‚ ๐’ข โˆ— ๎‚‹ โˆ’ โ„ฑ โ„‹ = ๐‘ โˆ— ( ๎‚ƒ ๎‚ ๐œ† ) ๐’ฅ ๐‘ ( ๐œ† ) ๐‘ โˆ— ๎‚€ ๐œ† ๎‚ ๎‚ ๐‘ โˆ’ ๐‘ ( ๐œ† ) โˆ— ๎‚€ ๐œ† ๐’ฅ ๎‚ ๐‘ ๎‚€ ๎‚ ๎‚„ ๐œ† ๎‚ ( 3 . 2 1 ) = ๐‘ โˆ— ( ๎‚ ๐‘ ๎‚€ ๐œ† ) ๐’ฅ ๐œ† ๎‚ ( 3 . 2 0 ) = ๐ผ . ( 5 . 1 2 ) Hence, by using that ๎‚‹ โ„‹ is Hermitian, we see that ๎‚‹ โ„‹ โˆ’ 1 ( 5 . 1 2 ) = ๐’ข โˆ— ๎‚ ๐’ข โˆ— ๎‚‹ โ„‹ โˆ’ 1 โˆ’ โ„ฑ = ๐’ข โˆ— ๎‚ ๐’ข โˆ— ๎‚‹ โ„‹ โˆ— โˆ’ 1 โˆ’ โ„ฑ ( 5 . 1 0 ) = ๐’ข โˆ— โ„‹ โˆ’ 1 ๐’ข โˆ’ โ„ฑ . ( 5 . 1 3 ) Identity (5.7) is now proven.

Corollary 5.5. Let ๐›ผ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ . Under Hypothesis 5.2, the matrix โ„‹ ( ๐‘ , ๐œ† , ๐›ผ ) is invertible for every ๐‘ โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ , and for these values of ๐‘ we have ๐’ข โˆ— ( ๐‘ , ๐œ† , ๐›ผ ) โ„‹ โˆ’ 1 ( ๐‘ , ๐œ† , ๐›ผ ) ๐’ข ( ๐‘ , ๐œ† , ๐›ผ ) โˆ’ โ„ฑ ( ๐‘ , ๐œ† , ๐›ผ ) > 0 . ( 5 . 1 4 )

Proof. Since ๐‘ โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ , then identity (5.5) yields that โ„‹ ( ๐‘ , ๐œ† , ๐›ผ ) > 0 and โ„‹ ( ๐‘ , ๐œ† , ๐›ผ ) > 0 . Consequently, inequality (5.14) follows from (5.7) of Lemma 5.4.

In the next result we justify the terminology for the sets ๐ท ( ๐œ† , ๐‘ ) and ๐ถ ( ๐œ† , ๐‘ ) in Definition 4.9 to be called a โ€œdiskโ€ and a โ€œcircle.โ€ It is a generalization of [14, Theoremโ€‰โ€‰3.1], [2, Theoremโ€‰โ€‰5.4], [5, Theoremโ€‰โ€‰3.3(iii)]; see also [66, Theoremโ€‰โ€‰3.5], [26, pagesโ€‰โ€‰70-71], [8, pageโ€‰โ€‰3485], [14, Propositionโ€‰โ€‰3.3], [1, Theoremโ€‰โ€‰3.3], [3, Theoremโ€‰โ€‰4.8]. Consider the sets ๐’ฑ and ๐’ฐ of contractive and unitary matrices in โ„‚ ๐‘› ร— ๐‘› , respectively, that is, ๎€ฝ ๐’ฑ โˆถ = ๐‘‰ โˆˆ โ„‚ ๐‘› ร— ๐‘› , ๐‘‰ โˆ— ๎€พ ๎€ฝ ๐‘‰ โ‰ค ๐ผ , ๐’ฐ โˆถ = ๐œ• ๐’ฑ = ๐‘ˆ โˆˆ โ„‚ ๐‘› ร— ๐‘› , ๐‘ˆ โˆ— ๎€พ ๐‘ˆ = ๐ผ . ( 5 . 1 5 ) The set ๐’ฑ is known to be closed (in fact compact, since ๐’ฑ is bounded) and convex.

Theorem 5.6. Let ๐›ผ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ . Under Hypothesis 5.2, for every ๐‘ โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ , the Weyl disk and Weyl circle have the representations ๎‚† ๎‚€ ๐ท ( ๐œ† , ๐‘ ) = ๐‘ƒ ( ๐œ† , ๐‘ ) + ๐‘… ( ๐œ† , ๐‘ ) ๐‘‰ ๐‘… ๎‚ ๎‚‡ ๎‚† ๎‚€ ๐œ† , ๐‘ , ๐‘‰ โˆˆ ๐’ฑ , ( 5 . 1 6 ) ๐ถ ( ๐œ† , ๐‘ ) = ๐‘ƒ ( ๐œ† , ๐‘ ) + ๐‘… ( ๐œ† , ๐‘ ) ๐‘ˆ ๐‘… ๎‚ ๎‚‡ ๐œ† , ๐‘ , ๐‘ˆ โˆˆ ๐’ฐ , ( 5 . 1 7 ) where, with the notation (5.4), ๐‘ƒ ( ๐œ† , ๐‘ ) โˆถ = โˆ’ โ„‹ โˆ’ 1 ( ๐œ† , ๐‘ , ๐›ผ ) ๐’ข ( ๐œ† , ๐‘ , ๐›ผ ) , ๐‘… ( ๐œ† , ๐‘ ) โˆถ = โ„‹ โˆ’ 1 / 2 ( ๐œ† , ๐‘ , ๐›ผ ) . ( 5 . 1 8 ) Consequently, for every ๐‘ โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ , the sets ๐ท ( ๐œ† , ๐‘ ) are closed and convex.

The representations of ๐ท ( ๐œ† , ๐‘ ) and ๐ถ ( ๐œ† , ๐‘ ) in (5.16) and (5.17) can be written as ๐ท ( ๐œ† , ๐‘ ) = ๐‘ƒ ( ๐œ† , ๐‘ ) + ๐‘… ( ๐œ† , ๐‘ ) ๐’ฑ ๐‘… ( ๐œ† , ๐‘ ) and ๐ถ ( ๐œ† , ๐‘ ) = ๐‘ƒ ( ๐œ† , ๐‘ ) + ๐‘… ( ๐œ† , ๐‘ ) ๐’ฐ ๐‘… ( ๐œ† , ๐‘ ) . The importance of the matrices ๐‘ƒ ( ๐œ† , ๐‘ ) and ๐‘… ( ๐œ† , ๐‘ ) is justified in the following.

Definition 5.7. For ๐›ผ โˆˆ ฮ“ , ๐œ† โˆˆ โ„‚ โงต โ„ , and ๐‘ โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ such that โ„‹ ( ๐œ† , ๐‘ , ๐›ผ ) and โ„‹ ( ๐œ† , ๐‘ , ๐›ผ ) are positive definite, the matrix ๐‘ƒ ( ๐œ† , ๐‘ ) is called the center of the Weyl disk or the Weyl circle. The matrices ๐‘… ( ๐œ† , ๐‘ ) and ๐‘… ( ๐œ† , ๐‘ ) are called the matrix radii of the Weyl disk or the Weyl circle.

Proof of Theorem 5.6. By (5.5) and for any ๐‘ โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ , the matrices โ„‹ โˆถ = โ„‹ ( ๐œ† , ๐‘ , ๐›ผ ) and ๎‚‹ โ„‹ โˆถ = โ„‹ ( ๐œ† , ๐‘ , ๐›ผ ) are positive definite, so that the matrices ๐‘ƒ โˆถ = ๐‘ƒ ( ๐œ† , ๐‘ ) , ๐‘… ( ๐œ† ) โˆถ = ๐‘… ( ๐œ† , ๐‘ ) , and ๐‘… ( ๐œ† ) โˆถ = ๐‘… ( ๐œ† , ๐‘ ) are well defined. By Definition 4.9, for ๐‘€ โˆˆ ๐ท ( ๐œ† , ๐‘ ) , we have โ„ฐ ( ๐‘€ , ๐‘ ) โ‰ค 0 , which in turn with notation (5.8) implies by Lemmas 5.3 and 5.4 that โˆ’ ๐‘… 2 ๎‚€ ๐œ† ๎‚ + ๎€ท ๐‘€ โˆ— โˆ’ ๐‘ƒ โˆ— ๎€ธ ๐‘… โˆ’ 2 ( ๐œ† ) ( ๐‘€ โˆ’ ๐‘ƒ ) ( 5 . 7 ) = โ„ฑ โˆ’ ๐’ข โˆ— โ„‹ โˆ’ 1 ๎€ท โ„‹ ๐’ข + โˆ’ 1 ๎€ธ ๐’ข + ๐‘€ โˆ— โ„‹ ๎€ท โ„‹ โˆ’ 1 ๎€ธ ๐’ข + ๐‘€ = โ„ฐ ( ๐‘€ , ๐‘ ) โ‰ค 0 . ( 5 . 1 9 ) Therefore, the matrix ๐‘‰ โˆถ = ๐‘… โˆ’ 1 ( ๐œ† ) ( ๐‘€ โˆ’ ๐‘ƒ ) ๐‘… โˆ’ 1 ๎‚€ ๐œ† ๎‚ , ( 5 . 2 0 ) satisfies ๐‘‰ โˆ— ๐‘‰ โ‰ค ๐ผ . This relation between the matrices ๐‘€ โˆˆ ๐ท ( ๐œ† , ๐‘ ) and ๐‘‰ โˆˆ ๐’ฑ is bijective (more precisely, it is a homeomorphism), and the inverse to (5.20) is given by ๐‘€ = ๐‘ƒ + ๐‘… ( ๐œ† ) ๐‘‰ ๐‘… ( ๐œ† ) . The latter formula proves that the Weyl disk ๐ท ( ๐œ† , ๐‘ ) has the representation in (5.16). Moreover, since by the definition ๐‘€ โˆˆ ๐ถ ( ๐œ† , ๐‘ ) means that โ„ฐ ( ๐‘€ , ๐‘ ) = 0 , it follows that the elements of the Weyl circle ๐ถ ( ๐œ† , ๐‘ ) are in one-to-one correspondence with the matrices ๐‘‰ defined in (5.20) which, similarly as in (5.19), now satisfy ๐‘‰ โˆ— ๐‘‰ = ๐ผ . Hence, the representation of ๐ถ ( ๐œ† , ๐‘ ) in (5.17) follows. The fact that for ๐‘ โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ the sets ๐ท ( ๐œ† , ๐‘ ) are closed and convex follows from the same properties of the set ๐’ฑ , being homeomorphic to ๐ท ( ๐œ† , ๐‘ ) .

6. Limiting Weyl Disk and Weyl Circle

In this section we study the limiting properties of the Weyl disk and Weyl circle and their center and matrix radii. Since under Hypothesis 5.2 the matrix function โ„‹ ( โ‹… , ๐œ† , ๐›ผ ) is monotone nondecreasing as ๐‘ โ†’ โˆž , it follows from the definition of ๐‘… ( ๐œ† , ๐‘ ) and ๐‘… ( ๐œ† , ๐‘ ) in (5.18) that the two matrix functions ๐‘… ( ๐œ† , โ‹… ) and ๐‘… ( ๐œ† , โ‹… ) are monotone nonincreasing for ๐‘ โ†’ โˆž . Furthermore, since ๐‘… ( ๐œ† , ๐‘ ) and ๐‘… ( ๐œ† , ๐‘ ) are Hermitian and positive definite for ๐‘ โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ , the limits ๐‘… + ( ๐œ† ) โˆถ = l i m ๐‘ โ†’ โˆž ๐‘… ( ๐œ† , ๐‘ ) , ๐‘… + ๎‚€ ๐œ† ๎‚ โˆถ = l i m ๐‘ โ†’ โˆž ๐‘… ๎‚€ ๎‚ ๐œ† , ๐‘ , ( 6 . 1 ) exist and satisfy ๐‘… + ( ๐œ† ) โ‰ฅ 0 and ๐‘… + ( ๐œ† ) โ‰ฅ 0 . The index โ€œ + โ€ in the above notation as well as in Definition 6.2 refers to the limiting disk at + โˆž . In the following result we will see that the center ๐‘ƒ ( ๐œ† , ๐‘ ) also converges to a limiting matrix when ๐‘ โ†’ โˆž . This is a generalization of [11, Theoremโ€‰โ€‰4.7], [1, Theoremโ€‰โ€‰3.5], [14, Propositionโ€‰โ€‰3.5], [2, Theoremโ€‰โ€‰4.5], and [3, Theoremโ€‰โ€‰4.10].

Theorem 6.1. Let ๐›ผ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ . Under Hypothesis 5.2, the center ๐‘ƒ ( ๐œ† , ๐‘ ) converges as ๐‘ โ†’ โˆž to a limiting matrix ๐‘ƒ + ( ๐œ† ) โˆˆ โ„‚ ๐‘› ร— ๐‘› , that is, ๐‘ƒ + ( ๐œ† ) โˆถ = l i m ๐‘ โ†’ โˆž ๐‘ƒ ( ๐œ† , ๐‘ ) . ( 6 . 2 )

Proof. We prove that the matrix function ๐‘ƒ ( ๐œ† , โ‹… ) satisfies the Cauchy convergence criterion. Let ๐‘ 1 , ๐‘ 2 โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ be given with ๐‘ 1 < ๐‘ 2 . By Theorem 5.1, we have that ๐ท ( ๐œ† , ๐‘ 2 ) โŠ† ๐ท ( ๐œ† , ๐‘ 1 ) . Therefore, by (5.16) of Theorem 5.6, for a matrix ๐‘€ โˆˆ ๐ท ( ๐œ† , ๐‘ 2 ) , there are (unique) matrices ๐‘‰ 1 , ๐‘‰ 2 โˆˆ ๐’ฑ such that ๎€ท ๐‘€ = ๐‘ƒ ๐œ† , ๐‘ ๐‘— ๎€ธ ๎€ท + ๐‘… ๐œ† , ๐‘ ๐‘— ๎€ธ ๐‘‰ ๐‘— ๐‘… ๎‚€ ๐œ† , ๐‘ ๐‘— ๎‚ , ๐‘— โˆˆ { 1 , 2 } . ( 6 . 3 ) Upon subtracting the two equations in (6.3), we get ๐‘ƒ ๎€ท ๐œ† , ๐‘ 2 ๎€ธ ๎€ท โˆ’ ๐‘ƒ ๐œ† , ๐‘ 1 ๎€ธ ๎€ท + ๐‘… ๐œ† , ๐‘ 2 ๎€ธ ๐‘‰ 2 ๐‘… ๎‚€ ๐œ† , ๐‘ 2 ๎‚ ๎€ท = ๐‘… ๐œ† , ๐‘ 1 ๎€ธ ๐‘‰ 1 ๐‘… ๎‚€ ๐œ† , ๐‘ 1 ๎‚ . ( 6 . 4 ) This equation, when solved for ๐‘‰ 1 in terms of ๐‘‰ 2 , has the form ๐‘‰ 1 = ๐‘… โˆ’ 1 ๎€ท ๐œ† , ๐‘ 1 ๎€ธ ๎‚ƒ ๐‘ƒ ๎€ท ๐œ† , ๐‘ 2 ๎€ธ ๎€ท โˆ’ ๐‘ƒ ๐œ† , ๐‘ 1 ๎€ธ ๎€ท + ๐‘… ๐œ† , ๐‘ 2 ๎€ธ ๐‘‰ 2 ๐‘… ๎‚€ ๐œ† , ๐‘ 2 ๐‘… ๎‚ ๎‚„ โˆ’ 1 ๎‚€ ๐œ† , ๐‘ 1 ๎‚ ๎€ท ๐‘‰ = โˆถ ๐‘‡ 2 ๎€ธ , ( 6 . 5 ) which defines a continuous mapping ๐‘‡ โˆถ ๐’ฑ โ†’ ๐’ฑ , ๐‘‡ ( ๐‘‰ 2 ) = ๐‘‰ 1 . Since ๐’ฑ is compact, it follows that the mapping ๐‘‡ has a fixed point in ๐’ฑ , that is, ๐‘‡ ( ๐‘‰ ) = ๐‘‰ for some matrix ๐‘‰ โˆˆ ๐’ฑ . Equation ๐‘‡ ( ๐‘‰ ) = ๐‘‰ implies that ๐‘ƒ ๎€ท ๐œ† , ๐‘ 2 ๎€ธ ๎€ท โˆ’ ๐‘ƒ ๐œ† , ๐‘ 1 ๎€ธ ๎€ท = ๐‘… ๐œ† , ๐‘ 1 ๎€ธ ๎‚€ ๐‘‰ ๐‘… ๐œ† , ๐‘ 1 ๎‚ ๎€ท โˆ’ ๐‘… ๐œ† , ๐‘ 2 ๎€ธ ๎‚€ ๐‘‰ ๐‘… ๐œ† , ๐‘ 2 ๎‚ = ๎€บ ๐‘… ๎€ท ๐œ† , ๐‘ 1 ๎€ธ ๎€ท โˆ’ ๐‘… ๐œ† , ๐‘ 2 ๎‚€ ๎€ธ ๎€ป ๐‘‰ ๐‘… ๐œ† , ๐‘ 1 ๎‚ ๎€ท โˆ’ ๐‘… ๐œ† , ๐‘ 2 ๎€ธ ๐‘‰ ๎‚ƒ ๐‘… ๎‚€ ๐œ† , ๐‘ 1 ๎‚ ๎‚€ โˆ’ ๐‘… ๐œ† , ๐‘ 2 . ๎‚ ๎‚„ ( 6 . 6 ) Hence, by โ€– ๐‘‰ โ€– โ‰ค 1 , we have โ€– โ€– ๐‘ƒ ๎€ท ๐œ† , ๐‘ 2 ๎€ธ ๎€ท โˆ’ ๐‘ƒ ๐œ† , ๐‘ 1 ๎€ธ โ€– โ€– โ‰ค โ€– โ€– ๐‘… ๎€ท ๐œ† , ๐‘ 1 ๎€ธ ๎€ท โˆ’ ๐‘… ๐œ† , ๐‘ 2 ๎€ธ โ€– โ€– โ€– โ€– ๐‘… ๎‚€ ๐œ† , ๐‘ 1 ๎‚ โ€– โ€– + โ€– โ€– ๐‘… ๎€ท ๐œ† , ๐‘ 2 ๎€ธ โ€– โ€– โ€– โ€– ๐‘… ๎‚€ ๐œ† , ๐‘ 1 ๎‚ ๎‚€ โˆ’ ๐‘… ๐œ† , ๐‘ 2 ๎‚ โ€– โ€– . ( 6 . 7 ) Since the functions ๐‘… ( ๐œ† , โ‹… ) and ๐‘… ( ๐œ† , โ‹… ) are monotone nonincreasing, they are bounded; that is, for some ๐พ > 0 , we have โ€– ๐‘… ( ๐œ† , ๐‘ ) โ€– โ‰ค ๐พ and โ€– ๐‘… ( ๐œ† , ๐‘ ) โ€– โ‰ค ๐พ for all ๐‘ โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ .
Let ๐œ€ > 0 be arbitrary. The convergence of ๐‘… ( ๐œ† , ๐‘ ) and ๐‘… ( ๐œ† , ๐‘ ) as ๐‘ โ†’ โˆž yields the existence of ๐‘ 3 โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ such that for every ๐‘ 1 , ๐‘ 2 โˆˆ [ ๐‘ 3 , โˆž ) ๐•‹ with ๐‘ 1 < ๐‘ 2 we have โ€– โ€– ๐‘… ๎€ท ๐œˆ , ๐‘ 1 ๎€ธ ๎€ท โˆ’ ๐‘… ๐œˆ , ๐‘ 2 ๎€ธ โ€– โ€– โ‰ค ๐œ€ ๎‚† ( 2 ๐พ ) , ๐œˆ โˆˆ ๐œ† , ๐œ† ๎‚‡ . ( 6 . 8 ) Using estimate (6.8) in inequality (6.7) we obtain for ๐‘ 2 > ๐‘ 1 โ‰ฅ ๐‘ 3 โ€– โ€– ๐‘ƒ ๎€ท ๐œ† , ๐‘ 2 ๎€ธ ๎€ท โˆ’ ๐‘ƒ ๐œ† , ๐‘ 1 ๎€ธ โ€– โ€– < ๐œ€ ๐œ€ ( 2 ๐พ ) โ‹… ๐พ + ( 2 ๐พ ) โ‹… ๐พ = ๐œ€ . ( 6 . 9 ) This means that the limit ๐‘ƒ + ( ๐œ† ) โˆˆ โ„‚ ๐‘› ร— ๐‘› in (6.2) exists, which completes the proof.

By Theorems 5.1 and 5.6 we know that the Weyl disks ๐ท ( ๐œ† , ๐‘ ) are closed, convex, and nested as ๐‘ โ†’ โˆž . Thereore the limit of ๐ท ( ๐œ† , ๐‘ ) as ๐‘ โ†’ โˆž is a closed, convex, and nonempty set. This motivates the following definition, which can be found in the special cases of system ( ๐’ฎ ๐œ† ) in [26, Theoremโ€‰โ€‰3.3], [1, Theoremโ€‰โ€‰3.6], [2, Definitionโ€‰โ€‰4.7], and [3, Theoremโ€‰โ€‰4.12].

Definition 6.2 (limiting Weyl disk). Let ๐›ผ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ . Then the set ๐ท + ๎™ ( ๐œ† ) โˆถ = [ ๐‘ โˆˆ ๐‘Ž , โˆž ) ๐•‹ ๐ท ( ๐œ† , ๐‘ ) , ( 6 . 1 0 ) is called the limiting Weyl disk. The matrix ๐‘ƒ + ( ๐œ† ) from Theorem 6.1 is called the center of ๐ท + ( ๐œ† ) and the matrices ๐‘… + ( ๐œ† ) and ๐‘… + ( ๐œ† ) from (6.1) its matrix radii.

As a consequence of Theorem 5.6, we obtain the following characterization of the limiting Weyl disk.

Corollary 6.3. Let ๐›ผ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ . Under Hypothesis 5.2, we have ๐ท + ( ๐œ† ) = ๐‘ƒ + ( ๐œ† ) + ๐‘… + ( ๐œ† ) ๐’ฑ ๐‘… + ๎‚€ ๐œ† ๎‚ , ( 6 . 1 1 ) where ๐’ฑ is the set of all contractive matrices defined in (5.15).

From now on we assume that Hypothesis 5.2 holds, so that the limiting center ๐‘ƒ + ( ๐œ† ) and the limiting matrix radii ๐‘… + ( ๐œ† ) and ๐‘… + ( ๐œ† ) of ๐ท + ( ๐œ† ) are well defined.

Remark 6.4. By means of the nesting property of the disks (Theorem 5.1) and Theorems 4.10 and 4.12, it follows that the elements of the limiting Weyl disk ๐ท + ( ๐œ† ) are of the form ๐‘€ + ( ๐œ† ) โˆˆ ๐ท + ( ๐œ† ) , ๐‘€ + ( ๐œ† ) = l i m ๐‘ โ†’ โˆž ๐‘€ ( ๐œ† , ๐‘ , ๐›ผ , ๐›ฝ ( ๐‘ ) ) , ( 6 . 1 2 ) where ๐›ฝ ( ๐‘ ) โˆˆ โ„‚ ๐‘› ร— 2 ๐‘› satisfies ๐›ฝ ( ๐‘ ) ๐›ฝ โˆ— ( ๐‘ ) = ๐ผ and ๐‘– ๐›ฟ ( ๐œ† ) ๐›ฝ ( ๐‘ ) ๐’ฅ ๐›ฝ โˆ— ( ๐‘ ) โ‰ฅ 0 for all ๐‘ โˆˆ [ ๐‘Ž , โˆž ) . Moreover, from Lemma 4.6, we conclude that ๐‘€ โˆ— + ( ๐œ† ) = ๐‘€ + ๎‚€ ๐œ† ๎‚ . ( 6 . 1 3 ) A matrix ๐‘€ + ( ๐œ† ) from (6.12) is called a half-line Weyl-Titchmarsh ๐‘€ ( ๐œ† ) -function. Also, as noted in [2, Sectionโ€‰โ€‰4], see also [8, Theoremโ€‰โ€‰2.18], the function ๐‘€ + ( ๐œ† ) is a Herglotz function with rank ๐‘› and has a certain integral representation (which will not be needed in this paper).

Our next result shows another characterization of the elements of ๐ท + ( ๐œ† ) in terms of the Weyl solution ๐’ณ ( โ‹… , ๐›ผ , ๐œ† , ๐‘€ ) defined in (4.16). This is a generalization of [11, pageโ€‰โ€‰671], [26, equationโ€‰โ€‰(3.2)], [1, Theoremโ€‰โ€‰3.8(i)], [2, Theoremโ€‰โ€‰4.8], and [3, Theoremโ€‰โ€‰4.15].

Theorem 6.5. Let ๐›ผ โˆˆ ฮ“ , ๐œ† โˆˆ โ„‚ โงต โ„ , and ๐‘€ โˆˆ โ„‚ ๐‘› ร— ๐‘› . The matrix ๐‘€ belongs to the limiting Weyl disk ๐ท + ( ๐œ† ) if and only if ๎€œ โˆž ๐‘Ž ๐’ณ ๐œŽ โˆ— ๎‚‹ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฒ ( ๐‘ก ) ๐’ณ ๐œŽ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ฮ” ๐‘ก โ‰ค I m ( ๐‘€ ) I m ( ๐œ† ) . ( 6 . 1 4 )

Proof. By Definition 6.2, we have ๐‘€ โˆˆ ๐ท + ( ๐œ† ) if and only if ๐‘€ โˆˆ ๐ท ( ๐œ† , ๐‘ ) , that is, โ„ฐ ( ๐‘€ , ๐‘ ) โ‰ค 0 , for all ๐‘ โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ . Therefore, by formula (4.18), we get ๎€œ ๐‘ ๐‘Ž ๐’ณ ๐œŽ โˆ— ๎‚‹ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฒ ( ๐‘ก ) ๐’ณ ๐œŽ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ฮ” ๐‘ก = โ„ฐ ( ๐‘€ , ๐‘ ) 2 | | | | + I m ( ๐œ† ) ๐›ฟ ( ๐œ† ) I m ( ๐‘€ ) | | | | โ‰ค I m ( ๐œ† ) I m ( ๐‘€ ) I m ( ๐œ† ) , ( 6 . 1 5 ) for every ๐‘ โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ , which is equivalent to inequality (6.14).

Remark 6.6. In [1, Definitionโ€‰โ€‰3.4], the notion of a boundary of the limiting Weyl disk ๐ท + ( ๐œ† ) is discussed. This would be a โ€œlimiting Weyl circleโ€ according to Definitions 4.9 and 6.2. The description of matrices ๐‘€ โˆˆ โ„‚ ๐‘› ร— ๐‘› laying on this boundary follows from Theorems 6.5 and 4.10, giving for such matrices ๐‘€ the equality ๎€œ โˆž ๐‘Ž ๐’ณ ๐œŽ โˆ— ๎‚‹ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฒ ( ๐‘ก ) ๐’ณ ๐œŽ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ฮ” ๐‘ก = I m ( ๐‘€ ) I m ( ๐œ† ) . ( 6 . 1 6 ) Condition (6.16) is also equivalent to l i m ๐‘ก โ†’ โˆž ๐’ณ โˆ— ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฅ ๐’ณ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) = 0 . ( 6 . 1 7 ) This is because, by (4.19) and the Lagrange identity (Corollary 3.6), ๐’ณ โˆ— ๎‚ธ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฅ ๐’ณ ( ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ ) = 2 ๐‘– I m ( ๐œ† ) I m ( ๐‘€ ) โˆ’ ๎€œ I m ( ๐œ† ) ๐‘ก ๐‘Ž ๐’ณ ๐œŽ โˆ— ๎‚‹ ( ๐‘  , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฒ ( ๐‘  ) ๐’ณ ๐œŽ ๎‚น , ( ๐‘  , ๐œ† , ๐›ผ , ๐‘€ ) ฮ” ๐‘  ( 6 . 1 8 ) for every ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ . From this we can see that the integral on the right-hand side above converges for ๐‘ก โ†’ โˆž and (6.16) holds if and only if condition (6.17) is satisfied. Characterizations (6.16) and (6.17) of the matrices ๐‘€ on the boundary of the limiting Weyl disk ๐ท + ( ๐œ† ) generalize the corresponding results in [1, Theoremsโ€‰โ€‰3.8(ii) andโ€‰โ€‰3.9]; see also [14, Theoremโ€‰โ€‰6.3].

Consider the linear space of square integrable C 1 p r d functions ๐ฟ 2 ๐’ฒ = ๐ฟ 2 ๐’ฒ [ ๐‘Ž , โˆž ) ๐•‹ ๎‚† [ โˆถ = ๐‘ง โˆถ ๐‘Ž , โˆž ) ๐•‹ โŸถ โ„‚ 2 ๐‘› , ๐‘ง โˆˆ C 1 p r d , โ€– ๐‘ง ( โ‹… ) โ€– ๐’ฒ ๎‚‡ < โˆž , ( 6 . 1 9 ) where we define โ€– ๐‘ง ( โ‹… ) โ€– ๐’ฒ โˆš โˆถ = โŸจ ๐‘ง ( โ‹… ) , ๐‘ง ( โ‹… ) โŸฉ ๐’ฒ , โŸจ ๐‘ง ( โ‹… ) , ฬƒ ๐‘ง ( โ‹… ) โŸฉ ๐’ฒ ๎€œ โˆถ = โˆž ๐‘Ž ๐‘ง ๐œŽ โˆ— ๎‚‹ ( ๐‘ก ) ๐’ฒ ( ๐‘ก ) ฬƒ ๐‘ง ๐œŽ ( ๐‘ก ) ฮ” ๐‘ก . ( 6 . 2 0 ) In the following result we prove that the space ๐ฟ 2 ๐’ฒ contains the columns of the Weyl solution ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ) when ๐‘€ belongs to the limiting Weyl disk ๐ท + ( ๐œ† ) . This implies that there are at least ๐‘› linearly independent solutions of system ( ๐’ฎ ๐œ† ) in ๐ฟ 2 ๐’ฒ . This is a generalization of [11, Theoremโ€‰โ€‰5.1], [14, Theoremโ€‰โ€‰4.1], [2, Theoremโ€‰โ€‰4.10], and [5, pageโ€‰โ€‰716].

Theorem 6.7. Let ๐›ผ โˆˆ ฮ“ , ๐œ† โˆˆ โ„‚ โงต โ„ , and ๐‘€ โˆˆ ๐ท + ( ๐œ† ) . The columns of ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ) form a linearly independent system of solutions of system ( ๐’ฎ ๐œ† ), each of which belongs to ๐ฟ 2 ๐’ฒ .

Proof. Let ๐‘ง ๐‘— ( โ‹… ) โˆถ = ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ) ๐‘’ ๐‘— for ๐‘— โˆˆ { 1 , โ€ฆ , ๐‘› } be the columns of the Weyl solution ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ) , where ๐‘’ ๐‘— is the ๐‘— th unit vector. We prove that the functions ๐‘ง 1 ( โ‹… ) , โ€ฆ , ๐‘ง ๐‘› ( โ‹… ) are linearly independent. Assume that โˆ‘ ๐‘› ๐‘— = 1 ๐‘ ๐‘— ๐‘ง ๐‘— ( โ‹… ) = 0 on [ ๐‘Ž , โˆž ) ๐•‹ for some ๐‘ 1 , โ€ฆ , ๐‘ ๐‘› โˆˆ โ„‚ . Then ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ) ๐‘ = 0 , where ๐‘ โˆถ = ( ๐‘ โˆ— 1 , โ€ฆ , ๐‘ โˆ— ๐‘› ) โˆ— โˆˆ โ„‚ ๐‘› . It follows by (4.19) that 2 ๐‘– ๐‘ โˆ— I m ( ๐‘€ ) ๐‘ = ๐‘ โˆ— ๐’ณ โˆ— ( ๐‘Ž , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฅ ๐’ณ ( ๐‘Ž , ๐œ† , ๐›ผ , ๐‘€ ) ๐‘ = 0 , ( 6 . 2 1 ) which implies the equality ๐‘ โˆ— ๐›ฟ ( ๐œ† ) I m ( ๐‘€ ) ๐‘ = 0 . Using that ๐‘€ โˆˆ ๐ท + ( ๐œ† ) โŠ† ๐ท ( ๐œ† , ๐‘ ) for some ๐‘ โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ , we obtain from Theorem 4.13 that the matrix ๐›ฟ ( ๐œ† ) I m ( ๐‘€ ) is positive definite. Hence, ๐‘ = 0 so that the functions ๐‘ง 1 ( โ‹… ) , โ€ฆ , ๐‘ง ๐‘› ( โ‹… ) are linearly independent. Finally, for every ๐‘— โˆˆ { 1 , โ€ฆ , ๐‘› } we get from Theorem 6.5 the inequality โ€– โ€– ๐‘ง ๐‘— โ€– โ€– ( โ‹… ) 2 ๐’ฒ = ๎€œ โˆž ๐‘Ž ๐‘ง ๐‘— ๐œŽ โˆ— ๎‚‹ ( ๐‘ก ) ๐’ฒ ( ๐‘ก ) ๐‘ง ๐œŽ ๐‘— ( ๐‘ก ) ฮ” ๐‘ก ( 6 . 1 4 ) โ‰ค ๐‘’ โˆ— ๐‘— I m ( ๐‘€ ) ๐‘’ I m ( ๐œ† ) ๐‘— โ‰ค โ€– โ€– ๐›ฟ ( ๐œ† ) I m ( ๐‘€ ) | | | | I m ( ๐œ† ) < โˆž . ( 6 . 2 2 ) Thus, ๐‘ง ๐‘— ( โ‹… ) โˆˆ ๐ฟ 2 ๐’ฒ for every ๐‘— โˆˆ { 1 , โ€ฆ , ๐‘› } , and the proof is complete.

Denote by ๐’ฉ ( ๐œ† ) the linear space of all square integrable solutions of system ( ๐’ฎ ๐œ† ), that is, ๎€ฝ ๐’ฉ ( ๐œ† ) โˆถ = ๐‘ง ( โ‹… ) โˆˆ ๐ฟ 2 ๐’ฒ ๎€ท ๐’ฎ , ๐‘ง ( โ‹… ) s o l v e s ๐œ† ๎€ธ ๎€พ . ( 6 . 2 3 ) Then as a consequence of Theorem 6.7 we obtain the estimate d i m ๐’ฉ ( ๐œ† ) โ‰ฅ ๐‘› , f o r e a c h ๐œ† โˆˆ โ„‚ โงต โ„ . ( 6 . 2 4 ) Next we discuss the situation when d i m ๐’ฉ ( ๐œ† ) = ๐‘› for some ๐œ† โˆˆ โ„‚ โงต โ„ .

Lemma 6.8. Let ๐›ผ โˆˆ ฮ“ , ๐œ† โˆˆ โ„‚ โงต โ„ , and d i m ๐’ฉ ( ๐œ† ) = ๐‘› . Then the matrix radii of the limiting Weyl disk ๐ท + ( ๐œ† ) satisfy ๐‘… + ( ๐œ† ) = 0 = ๐‘… + ( ๐œ† ) . Consequently, the set ๐ท + ( ๐œ† ) consists of the single matrix ๐‘€ = ๐‘ƒ + ( ๐œ† ) , that is, the center of ๐ท + ( ๐œ† ) , which is given by formula (6.2) of Theorem 6.1.

Proof. With the matrix radii ๐‘… + ( ๐œ† ) and ๐‘… + ( ๐œ† ) of ๐ท + ( ๐œ† ) defined in (6.1) and with the Weyl solution ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ) given by a matrix ๐‘€ โˆˆ ๐ท + ( ๐œ† ) , we observe that the columns of ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ) form a basis of the space ๐’ฉ ( ๐œ† ) . Since the columns of the fundamental matrix ๎‚ ฮจ ( โ‹… , ๐œ† , ๐›ผ ) = ( ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) ) span all solutions of system ( ๐’ฎ ๐œ† ), the definition of ๎‚ ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ) = ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) + ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) ๐‘€ yields that the columns of ๎‚ ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) together with the columns of ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ) form a basis of all solutions of system ( ๐’ฎ ๐œ† ). Hence, from d i m ๐’ฉ ( ๐œ† ) = ๐‘› and Theorem 6.7, we get that the columns of ๎‚ ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) do not belong to ๐ฟ 2 ๐’ฒ . Consequently, by formula (5.5), the Hermitian matrix functions โ„‹ ( โ‹… , ๐œ† , ๐›ผ ) and โ„‹ ( โ‹… , ๐œ† , ๐›ผ ) defined in (5.4) are monotone nondecreasing on [ ๐‘Ž , โˆž ) ๐•‹ without any upper bound; that is, their eigenvaluesโ€”being realโ€”tend to โˆž . Therefore, the functions ๐‘… ( ๐œ† , โ‹… ) and ๐‘… ( ๐œ† , โ‹… ) as defined in (5.18) have limits at โˆž equal to zero; that is, ๐‘… + ( ๐œ† ) = 0 and ๐‘… + ( ๐œ† ) = 0 . The fact that the set ๐ท + ( ๐œ† ) = { ๐‘ƒ + ( ๐œ† ) } then follows from the characterization of ๐ท + ( ๐œ† ) in Corollary 6.3.

In the final result of this section, we establish another characterization of the matrices ๐‘€ from the limiting Weyl disk ๐ท + ( ๐œ† ) . In comparison with Theorem 6.5, we now use a similar condition to the one in Theorem 4.12 for the regular spectral problem. However, a stronger assumption than Hypothesis 5.2 is now required for this result to hold; compare with [9, Lemmaโ€‰โ€‰2.21] and [2, Theoremโ€‰โ€‰4.16].

Hypothesis 6.9. For every ๐‘Ž 0 , ๐‘ 0 โˆˆ ( ๐‘Ž , โˆž ) ๐•‹ with ๐‘Ž 0 < ๐‘ 0 and for every ๐œ† โˆˆ โ„‚ , we have ๎€œ ๐‘ 0 ๐‘Ž 0 ฮจ ๐œŽ โˆ— ๎‚‹ ( ๐‘ก , ๐œ† , ๐›ผ ) ๐’ฒ ( ๐‘ก ) ฮจ ๐œŽ ( ๐‘ก , ๐œ† , ๐›ผ ) ฮ” ๐‘ก > 0 . ( 6 . 2 5 )

Under Hypothesis 6.9, the Weyl disks ๐ท ( ๐œ† , ๐‘ ) converge to the limiting disk โ€œmonotonicallyโ€ as ๐‘ โ†’ โˆž ; that is, the limiting Weyl disk ๐ท + ( ๐œ† ) is โ€œopenโ€ in the sense that all of its elements lie inside ๐ท + ( ๐œ† ) . This can be interpreted in view of Theorem 4.12 as โ„ฐ ( ๐‘€ , ๐‘ก ) < 0 for all ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ .

Theorem 6.10. Let ๐›ผ โˆˆ ฮ“ , ๐œ† โˆˆ โ„‚ โงต โ„ , and ๐‘€ โˆˆ โ„‚ ๐‘› ร— ๐‘› . Under Hypothesis 6.9, the matrix ๐‘€ โˆˆ ๐ท + ( ๐œ† ) if and only if [ โ„ฐ ( ๐‘€ , ๐‘ก ) < 0 , โˆ€ ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ . ( 6 . 2 6 )

Proof. If condition (6.26) holds, then ๐‘€ โˆˆ ๐ท + ( ๐œ† ) follows from the definition of ๐ท + ( ๐œ† ) . Conversely, suppose that ๐‘€ โˆˆ ๐ท + ( ๐œ† ) , and let ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ be given. Then for any ๐‘ โˆˆ ( ๐‘ก , โˆž ) ๐•‹ we have by formula (4.18) that | | | | ๎€œ โ„ฐ ( ๐‘€ , ๐‘ก ) = โˆ’ 2 ๐›ฟ ( ๐œ† ) I m ( ๐‘€ ) + 2 I m ( ๐œ† ) ๐‘ก ๐‘Ž ๐’ณ ๐œŽ โˆ— ( ๎‚‹ ๐‘  , ๐œ† , ๐›ผ , ๐‘€ ) ๐’ฒ ( ๐‘  ) ๐’ณ ๐œŽ ( | | | | ๎€œ ๐‘  , ๐œ† , ๐›ผ , ๐‘€ ) ฮ” ๐‘  = โ„ฐ ( ๐‘€ , ๐‘ ) โˆ’ 2 I m ( ๐œ† ) ๐‘ ๐‘ก ๐’ณ ๐œŽ โˆ— ๎‚‹ ๐’ฒ ( ๐‘  , ๐œ† , ๐›ผ , ๐‘€ ) ( ๐‘  ) ๐’ณ ๐œŽ ( ๐‘  , ๐œ† , ๐›ผ , ๐‘€ ) ฮ” ๐‘  , ( 6 . 2 7 ) where we used the property โˆซ ๐‘ก ๐‘Ž โˆซ ๐‘“ ( ๐‘  ) ฮ” ๐‘  = ๐‘ ๐‘Ž โˆซ ๐‘“ ( ๐‘  ) ฮ” ๐‘  โˆ’ ๐‘ ๐‘ก ๐‘“ ( ๐‘  ) ฮ” ๐‘  . Since ๐‘€ โˆˆ ๐ท + ( ๐œ† ) is assumed, we have ๐‘€ โˆˆ ๐ท ( ๐œ† , ๐‘ ) , that is, โ„ฐ ( ๐‘€ , ๐‘ ) โ‰ค 0 , while Hypothesis 6.9 implies the positivity of the integral over [ ๐‘ก , ๐‘ ] ๐•‹ in (6.27). Consequently, (6.27) yields that โ„ฐ ( ๐‘€ , ๐‘ก ) < 0 .

Remark 6.11. If we partition the Weyl solution ๐’ณ ( โ‹… , ๐œ† ) โˆถ = ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ ) into two ๐‘› ร— ๐‘› blocks ๐’ณ 1 ( โ‹… , ๐œ† ) and ๐’ณ 2 ( โ‹… , ๐œ† ) as in (4.28), then condition (6.26) can be written as ๐›ฟ ๎€ท ๐’ณ ( ๐œ† ) I m โˆ— 1 ( ๐‘ก , ๐œ† ) ๐’ณ 2 ๎€ธ [ ) ( ๐‘ก , ๐œ† ) > 0 , โˆ€ ๐‘ก โˆˆ ๐‘Ž , โˆž ๐•‹ . ( 6 . 2 8 ) Therefore, by Remark 2.2, the matrices ๐’ณ 1 ( ๐‘ก , ๐œ† ) and ๐’ณ 2 ( ๐‘ก , ๐œ† ) are invertible for all ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ . A standard argument then yields that the quotient ๐‘„ ( โ‹… , ๐œ† ) โˆถ = ๐’ณ 2 ( โ‹… , ๐œ† ) ๐’ณ 1 โˆ’ 1 ( โ‹… , ๐œ† ) satisfies the Riccati matrix equation (suppressing the argument ๐‘ก in the coefficients) ๐‘„ ฮ” โˆ’ ( ๐’ž + ๐’Ÿ ๐‘„ ) + ๐‘„ ๐œŽ [ ] [ ) ( ๐’œ + โ„ฌ ๐‘„ ) + ๐œ† ๐’ฒ ๐ผ + ๐œ‡ ( ๐’œ + โ„ฌ ๐‘„ ) = 0 , ๐‘ก โˆˆ ๐‘Ž , โˆž ๐•‹ , ( 6 . 2 9 ) see [57, Theoremโ€‰โ€‰3], [48, Sectionโ€‰โ€‰6], and [49].

7. Limit Point and Limit Circle Criteria

Throughout this section we assume that Hypothesis 5.2 is satisfied. The results from Theorem 6.7 and Lemma 6.8 motivate the following terminology; compare with [4, pageโ€‰โ€‰75], [43, Definitionโ€‰โ€‰1.2] in the time scales scalar case ๐‘› = 1 , with [8, pageโ€‰โ€‰3486], [36, pageโ€‰โ€‰1668], [30, pageโ€‰โ€‰274], [38, Definitionโ€‰โ€‰3.1], [37, Definitionโ€‰โ€‰1], [67, pageโ€‰โ€‰2826] in the continuous case, and with [14, Definitionโ€‰โ€‰5.1], [2, Definitionโ€‰โ€‰4.12] in the discrete case.

Definition 7.1 (limit point and limit circle case for system ( ๐’ฎ ๐œ† ) ). The system ( ๐’ฎ ๐œ† ) is said to be in the limit point case at โˆž (or of the limit point type) if d i m ๐’ฉ ( ๐œ† ) = ๐‘› , โˆ€ ๐œ† โˆˆ โ„‚ โงต โ„ . ( 7 . 1 ) The system ( ๐’ฎ ๐œ† ) is said to be in the limit circle case at โˆž (or of the limit circle type) if d i m ๐’ฉ ( ๐œ† ) = 2 ๐‘› , โˆ€ ๐œ† โˆˆ โ„‚ โงต โ„ . ( 7 . 2 )

Remark 7.2. According to Remark 6.4 (in which ๐›ฝ ( ๐‘ ) โ‰ก ๐›ฝ ), the center ๐‘ƒ + ( ๐œ† ) of the limiting Weyl disk ๐ท + ( ๐œ† ) can be expressed in the limit point case as ๐‘ƒ + ( ๐œ† ) = ๐‘€ + ( ๐œ† ) = l i m ๐‘ โ†’ โˆž ๐‘€ ( ๐œ† , ๐‘ , ๐›ผ , ๐›ฝ ) , ( 7 . 3 ) where ๐›ฝ โˆˆ ฮ“ is arbitrary but fixed.

Next we establish the first main result of this section. Its continuous time version can be found in [30, Theoremโ€‰โ€‰2.1], [11, Theoremโ€‰โ€‰8.5] and the discrete time version in [9, Lemmaโ€‰โ€‰3.2], [2, Theoremโ€‰โ€‰4.13].

Theorem 7.3. Let the system ( ๐’ฎ ๐œ† ) be in the limit point or limit circle case, fix ๐›ผ โˆˆ ฮ“ , and let ๐œ† , ๐œˆ โˆˆ โ„‚ โงต โ„ . Then l i m ๐‘ก โ†’ โˆž ๐’ณ โˆ— + ๎€ท ๐‘ก , ๐œ† , ๐›ผ , ๐‘€ + ๎€ธ ( ๐œ† ) ๐’ฅ ๐’ณ + ๎€ท ๐‘ก , ๐œˆ , ๐›ผ , ๐‘€ + ๎€ธ ( ๐œˆ ) = 0 , ( 7 . 4 ) where ๐’ณ + ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ + ( ๐œ† ) ) and ๐’ณ + ( โ‹… , ๐œˆ , ๐›ผ , ๐‘€ + ( ๐œˆ ) ) are the Weyl solutions of ( ๐’ฎ ๐œ† ) and ( ๐’ฎ ๐œˆ ), respectively, defined by (4.16) through the matrices ๐‘€ + ( ๐œ† ) and ๐‘€ + ( ๐œˆ ) , which are determined by the limit in (6.12).

Proof. For every ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ and matrices ๐›ฝ ( ๐‘ก ) โˆˆ โ„‚ ๐‘› ร— 2 ๐‘› such that ๐›ฝ ( ๐‘ก ) ๐›ฝ โˆ— ( ๐‘ก ) = ๐ผ and ๐‘– ๐›ฟ ( ๐œ† ) ๐›ฝ ( ๐‘ก ) ๐’ฅ ๐›ฝ โˆ— ( ๐‘ก ) โ‰ฅ 0 and for ๐œ… โˆˆ { ๐œ† , ๐œˆ } , we define the matrix (compare with Definition 4.5) ๎‚ƒ ๎‚ ๎‚„ ๐‘€ ( ๐œ… , ๐‘ก , ๐›ผ , ๐›ฝ ( ๐‘ก ) ) โˆถ = โˆ’ ๐›ฝ ( ๐‘ก ) ๐‘ ( ๐‘ก , ๐œ… , ๐›ผ ) โˆ’ 1 ๐›ฝ ( ๐‘ก ) ๐‘ ( ๐‘ก , ๐œ… , ๐›ผ ) . ( 7 . 5 ) Then, by Theorems 4.10 and 4.12, we have ๐‘€ ( ๐œ… , ๐‘ก , ๐›ผ , ๐›ฝ ( ๐‘ก ) ) โˆˆ ๐ท ( ๐œ… , ๐‘ก ) . Following the notation in (4.16), we consider the Weyl solutions ๐’ณ ( โ‹… , ๐œ… ) โˆถ = ๐’ณ ( โ‹… , ๐œ… , ๐›ผ , ๐‘€ ( ๐œ… , ๐‘ก , ๐›ผ , ๐›ฝ ( โ‹… ) ) ) . Similarly, let ๐’ณ + ( โ‹… , ๐œ… ) โˆถ = ๐’ณ ( โ‹… , ๐œ… , ๐›ผ , ๐‘€ + ( ๐œ… ) ) be the Weyl solutions corresponding to the matrices ๐‘€ + ( ๐œ… ) โˆˆ ๐ท + ( ๐œ… ) from the statement of this theorem.
First assume that the system ( ๐’ฎ ๐œ† ) is of the limit point type. In this case, by Remark 7.2, we may take ๐›ฝ ( ๐‘ก ) โˆˆ ฮ“ for all ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ . Hence, from Theorem 4.10, we get that ๐›ฝ ( โ‹… ) ๐’ณ ( โ‹… , ๐œ… ) = 0 on [ ๐‘Ž , โˆž ) ๐•‹ . By (4.3), for each ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ and ๐œ… โˆˆ { ๐œ† , ๐œˆ } , there is a matrix ๐‘„ ๐œ… ( ๐‘ก ) โˆˆ โ„‚ ๐‘› ร— ๐‘› such that ๐’ณ ( โ‹… , ๐œ… ) = ๐’ฅ ๐›ฝ โˆ— ( โ‹… ) ๐‘„ ๐œ… ( โ‹… ) on [ ๐‘Ž , โˆž ) ๐•‹ . Hence, we have on [ ๐‘Ž , โˆž ) ๐•‹ ๐’ณ โˆ— + ( ๐‘ก , ๐œ† ) ๐’ฅ ๐’ณ + ( ๐‘ก , ๐œˆ ) + ๐น ( ๐‘ก , ๐œ† , ๐œˆ , ๐›ฝ ( ๐‘ก ) ) + ๐บ ( ๐‘ก , ๐œ† , ๐œˆ , ๐›ฝ ( ๐‘ก ) ) = ๐’ณ โˆ— ( ๐‘ก , ๐œ† ) ๐’ฅ ๐’ณ ( ๐‘ก , ๐œˆ ) = ๐‘„ โˆ— ๐œ† ( ๐‘ก ) ๐›ฝ ( ๐‘ก ) ๐’ฅ ๐›ฝ โˆ— ( ๐‘ก ) ๐‘„ ๐œˆ ( ๐‘ก ) = 0 , ( 7 . 6 ) where we define ๐น ( ๐‘ก , ๐œ† , ๐œˆ , ๐›ฝ ( ๐‘ก ) ) โˆถ = ๐’ณ โˆ— + ๎‚ ๐‘ ๎€บ ๐‘€ ( ๐‘ก , ๐œ† ) ๐’ฅ ( ๐‘ก , ๐œˆ , ๐›ผ ) ( ๐œˆ , ๐‘ก , ๐›ผ , ๐›ฝ ( ๐‘ก ) ) โˆ’ ๐‘€ + ๎€ป , ๎€บ ๐‘€ ( ๐œˆ ) ๐บ ( ๐‘ก , ๐œ† , ๐œˆ , ๐›ฝ ( ๐‘ก ) ) โˆถ = โˆ— ( ๐œ† , ๐‘ก , ๐›ผ , ๐›ฝ ( ๐‘ก ) ) โˆ’ ๐‘€ โˆ— + ( ๎€ป ๎‚ ๐‘ ๐œ† ) โˆ— ( ๐‘ก , ๐œ† , ๐›ผ ) ๐’ฅ ๐’ณ ( ๐‘ก , ๐œˆ ) . ( 7 . 7 ) If we show that l i m ๐‘ก โ†’ โˆž ๐น ( ๐‘ก , ๐œ† , ๐œˆ , ๐›ฝ ( ๐‘ก ) ) = 0 , l i m ๐‘ก โ†’ โˆž ๐บ ( ๐‘ก , ๐œ† , ๐œˆ , ๐›ฝ ( ๐‘ก ) ) = 0 , ( 7 . 8 ) then (7.6) implies the result claimed in (7.4). First we prove the second limit in (7.8). Pick any ๐‘ก โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ . By Theorem 5.6, Corollary 6.3, and ๐ท + ( ๐œ† ) โŠ† ๐ท ( ๐œ† , ๐‘ก ) , we have ๎‚€ ๐‘€ ( ๐œ† , ๐‘ก , ๐›ผ , ๐›ฝ ( ๐‘ก ) ) = ๐‘ƒ ( ๐œ† , ๐‘ก ) + ๐‘… ( ๐œ† , ๐‘ก ) ๐‘ˆ ( ๐‘ก ) ๐‘… ๎‚ ๐œ† , ๐‘ก , ๐‘€ + ๎‚€ ( ๐œ† ) = ๐‘ƒ ( ๐œ† , ๐‘ก ) + ๐‘… ( ๐œ† , ๐‘ก ) ๐‘‰ ( ๐‘ก ) ๐‘… ๎‚ ๐œ† , ๐‘ก , ( 7 . 9 ) where ๐‘ˆ ( ๐‘ก ) โˆˆ ๐’ฐ and ๐‘‰ ( ๐‘ก ) โˆˆ ๐’ฑ . Therefore, ๐‘€ ( ๐œ† , ๐‘ก , ๐›ผ , ๐›ฝ ( ๐‘ก ) ) โˆ’ ๐‘€ + [ ] ๐‘… ๎‚€ ( ๐œ† ) = ๐‘… ( ๐œ† , ๐‘ก ) ๐‘ˆ ( ๐‘ก ) โˆ’ ๐‘‰ ( ๐‘ก ) ๎‚ ๐œ† , ๐‘ก . ( 7 . 1 0 ) Since ๎‚ ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) and ๐’ณ ( โ‹… , ๐œˆ ) are, respectively, solutions of systems ( ๐’ฎ ๐œ† ) and ( ๐’ฎ ๐œˆ ) which satisfy ๎‚ ๐‘ โˆ— ( ๐‘Ž , ๐œ† , ๐›ผ ) ๐’ฅ ๐’ณ ( ๐‘Ž , ๐œˆ ) = โˆ’ ๐ผ , it follows from Corollary 3.6 that ๎‚ ๐‘ โˆ— ( ๎‚€ ๐‘ก , ๐œ† , ๐›ผ ) ๐’ฅ ๐’ณ ( ๐‘ก , ๐œˆ ) = โˆ’ ๐ผ + ๎‚ ๎€œ ๐œ† โˆ’ ๐œˆ ๐‘ก ๐‘Ž ๎‚ ๐‘ ๐œŽ โˆ— ( ๎‚‹ ๐‘  , ๐œ† , ๐›ผ ) ๐’ฒ ( ๐‘  ) ๐’ณ ๐œŽ ( ๐‘  , ๐œˆ ) ฮ” ๐‘  . ( 7 . 1 1 ) Hence, we can write ๎‚€ ๐บ ( ๐‘ก , ๐œ† , ๐œˆ , ๐›ฝ ( ๐‘ก ) ) = ๐‘… ๎‚ ๎€บ ๐‘ˆ ๐œ† , ๐‘ก โˆ— ( ๐‘ก ) โˆ’ ๐‘‰ โˆ— ( ๎€ป ๎‚ธ ๎‚€ ๐‘ก ) ๐‘… ( ๐œ† , ๐‘ก ) ๎‚ ๎€œ ๐œ† โˆ’ ๐œˆ ๐‘ก ๐‘Ž ๎‚ ๐‘ ๐œŽ โˆ— ( ๎‚‹ ๐‘  , ๐œ† , ๐›ผ ) ๐’ฒ ( ๐‘  ) ๐’ณ ๐œŽ ( ๎‚น , ๐‘  , ๐œˆ ) ฮ” ๐‘  โˆ’ ๐ผ ( 7 . 1 2 ) where we used the Hermitian property of ๐‘… ( ๐œ† , ๐‘ก ) and ๐‘… ( ๐œ† , ๐‘ก ) . Since we now assume that system ( ๐’ฎ ๐œ† ) is in the limit point case, we know from Lemma 6.8 that l i m ๐‘ก โ†’ โˆž ๐‘… ( ๐œ† , ๐‘ก ) = 0 and l i m ๐‘ก โ†’ โˆž ๐‘… ( ๐œ† , ๐‘ก ) = 0 . Therefore, in order to establish (7.8)(ii), it is sufficient to show that ๎€œ ๐‘… ( ๐œ† , ๐‘ก ) ๐‘ก ๐‘Ž ๎‚ ๐‘ ๐œŽ โˆ— ( ๎‚‹ ๐‘  , ๐œ† , ๐›ผ ) ๐’ฒ ( ๐‘  ) ๐’ณ ๐œŽ ( ๐‘  , ๐œˆ ) ฮ” ๐‘  , ( 7 . 1 3 ) is bounded for ๐‘ก โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ . Let ๐œ‚ โˆˆ โ„‚ ๐‘› be a unit vector, and denote by ๐’ณ ๐‘— ( โ‹… , ๐œˆ ) โˆถ = ๐’ณ ( โ‹… , ๐œˆ ) ๐‘’ ๐‘— the ๐‘— th column of ๐’ณ ( โ‹… , ๐œˆ ) for ๐‘— โˆˆ { 1 , โ€ฆ , ๐‘› } . With the definition of ๐‘… ( ๐œ† , โ‹… ) in (5.18) we have | | | | ๎€œ ๐‘ก ๐‘Ž ๐œ‚ โˆ— ๐‘… ๎‚ ๐‘ ( ๐œ† , ๐‘  ) ๐œŽ โˆ— ๎‚‹ ( ๐‘  , ๐œ† , ๐›ผ ) ๐’ฒ ( ๐‘  ) ๐’ณ ๐œŽ ๐‘— | | | | โ‰ค ๎€œ ( ๐‘  , ๐œˆ ) ฮ” ๐‘  ๐‘ก ๐‘Ž | | | ๎‚‹ ๐’ฒ 1 / 2 ๎‚ ๐‘ ( ๐‘  ) ๐œŽ โˆ— | | | | | | ๎‚‹ ๐’ฒ ( ๐‘  , ๐œ† , ๐›ผ ) ๐‘… ( ๐œ† , ๐‘  ) ๐œ‚ 1 / 2 ( ๐‘  ) ๐’ณ ๐œŽ ๐‘— | | | ( ๐‘  , ๐œˆ ) ฮ” ๐‘  C - S โ‰ค ๎‚ต ๎€œ ๐‘ก ๐‘Ž ๐œ‚ โˆ— ๎‚ ๐‘ ๐‘… ( ๐œ† , ๐‘  ) ๐œŽ โˆ— ๎‚‹ ๎‚ ๐‘ ( ๐‘  , ๐œ† , ๐›ผ ) ๐’ฒ ( ๐‘  ) ๐œŽ ๎‚ถ ( ๐‘  , ๐œ† , ๐›ผ ) ๐‘… ( ๐œ† , ๐‘  ) ๐œ‚ ฮ” ๐‘  1 / 2 ร— ๎‚ต ๎€œ ๐‘ก ๐‘Ž ๐’ณ ๐‘— ๐œŽ โˆ— ๎‚‹ ๐’ฒ ( ๐‘  , ๐œˆ ) ( ๐‘  ) ๐’ณ ๐œŽ ๐‘— ๎‚ถ ( ๐‘  , ๐œˆ ) ฮ” ๐‘  1 / 2 , ( 7 . 1 4 ) where the last step follows from the Cauchy-Schwarz inequality (C-S) on time scales. From (5.5) we obtain โ„‹ โˆ’ 1 / 2 ( ๎€œ ๐‘ก , ๐œ† , ๐›ผ ) ๐‘ก ๐‘Ž ๎‚ ๐‘ ๐œŽ โˆ— ( ๎‚‹ ๎‚ ๐‘ ๐‘  , ๐œ† , ๐›ผ ) ๐’ฒ ( ๐‘  ) ๐œŽ ( ๐‘  , ๐œ† , ๐›ผ ) ฮ” ๐‘  โ„‹ โˆ’ 1 / 2 ( 1 ๐‘ก , ๐œ† , ๐›ผ ) = 2 | | | | I m ( ๐œ† ) ๐ผ , ( 7 . 1 5 ) so that the first term in the product in (7.14) is bounded by โˆš 1 / 2 | I m ( ๐œ† ) | . Moreover, from formula (4.18) we get that the second term in the product in (7.14) is bounded by the number [ ๐‘’ โˆ— ๐‘— I m ( ๐‘€ ( ๐œˆ , ๐‘ก , ๐›ผ , ๐›ฝ ( ๐‘ก ) ) ) ๐‘’ ๐‘— ] / I m ( ๐œˆ ) . Hence, upon recalling the limit in (6.12), we conclude that the product in (7.14) is bounded by 1 2 | | | | โ‹… ๐‘’ I m ( ๐œ† ) โˆ— ๐‘— ๎€ท ๐‘€ I m + ๎€ธ ๐‘’ ( ๐œˆ ) ๐‘— I m ( ๐œˆ ) , ( 7 . 1 6 ) which is independent of ๐‘ก . Consequently, the second limit in (7.8) is established. The first limit in (7.8) is then proven in a similar manner. The proof for the limit point case is finished.
If the system ( ๐’ฎ ๐œ† ) is in the limit circle case, then for ๐œ… โˆˆ { ๐œ† , ๐œˆ } the columns of ๎‚ ๐‘ ( โ‹… , ๐œ… , ๐›ผ ) and ๐’ณ + ( โ‹… , ๐œ… ) belong to ๐ฟ 2 ๐’ฒ ; hence, they are bounded in the ๐ฟ 2 ๐’ฒ norm. In this case the limits in (7.8) easily follow from the limit (6.12) for ๐‘€ + ( ๐œ… ) , ๐œ… โˆˆ { ๐œ† , ๐œˆ } .

In the next result we provide a characterization of the system ( ๐’ฎ ๐œ† ) being of the limit point type. Special cases of this statement can be found, for example, in [14, Theoremโ€‰โ€‰6.12] and [2, Theoremโ€‰โ€‰4.14].

Theorem 7.4. Let ๐›ผ โˆˆ ฮ“ . The system ( ๐’ฎ ๐œ† ) is in the limit point case if and only if, for every ๐œ† โˆˆ โ„‚ โงต โ„ and every square integrable solutions ๐‘ง 1 ( โ‹… , ๐œ† ) and ๐‘ง 2 ( โ‹… , ๐œ† ) of ( ๐’ฎ ๐œ† ) and ( ๐’ฎ ๐œ† ), respectively, we have ๐‘ง โˆ— 1 ( ๐‘ก , ๐œ† ) ๐’ฅ ๐‘ง 2 ๎‚€ ๐‘ก , ๐œ† ๎‚ ๎€บ ๐‘ = 0 , โˆ€ ๐‘ก โˆˆ 0 ๎€ธ , โˆž ๐•‹ . ( 7 . 1 7 )

Proof. Let ( ๐’ฎ ๐œ† ) be in the limit point case. Fix any ๐œ† โˆˆ โ„‚ โงต โ„ , and suppose that ๐‘ง 1 ( โ‹… , ๐œ† ) and ๐‘ง 2 ( โ‹… , ๐œ† ) are solutions of ( ๐’ฎ ๐œ† ) and ( ๐’ฎ ๐œ† ), respectively. Then, by Theorem 6.7 and Remark 6.4, there are vectors ๐œ‰ 1 , ๐œ‰ 2 โˆˆ โ„‚ ๐‘› such that ๐‘ง 1 ( โ‹… , ๐œ† ) = ๐’ณ + ( โ‹… , ๐œ† ) ๐œ‰ 1 and ๐‘ง 2 ( โ‹… , ๐œ† ) = ๐’ณ + ( โ‹… , ๐œ† ) ๐œ‰ 2 on [ ๐‘Ž , โˆž ) ๐•‹ , where ๐’ณ + ( โ‹… , ๐œ… ) โˆถ = ๐’ณ + ( โ‹… , ๐œ… , ๐›ผ , ๐‘€ + ( ๐œ… ) ) are the Weyl solutions corresponding to some matrices ๐‘€ + ( ๐œ… ) โˆˆ ๐ท + ( ๐œ… ) for ๐œ… โˆˆ { ๐œ† , ๐œ† } . In fact, by Lemma 6.8, the matrix ๐‘€ + ( ๐œ… ) is equal to the center of the disk ๐ท + ( ๐œ… ) . It follows that for any ๐‘ก โˆˆ [ ๐‘ 0 , โˆž ) ๐•‹ equality ๐’ณ โˆ— + ( ๐‘ก , ๐œ† ) ๐’ฅ ๐’ณ + ๎‚€ ๐‘ก , ๐œ† ๎‚ ( 4 . 1 6 ) = ๎€ท ๐ผ ๐‘€ โˆ— + ๎€ธ ฮจ ( ๐œ† ) โˆ— ๎‚€ ( ๐‘ก , ๐œ† , ๐›ผ ) ๐’ฅ ฮจ ๐‘ก , ๎‚ ๎€ท ๐œ† , ๐›ผ ๐ผ ๐‘€ โˆ— + ( ๎€ธ ๐œ† ) โˆ— ( 3 . 1 9 ) ( i ) = ๐‘€ โˆ— + ๎‚€ ๐œ† ๎‚ โˆ’ ๐‘€ โˆ— + ( ๐œ† ) ( 6 . 1 3 ) = 0 , ( 7 . 1 8 ) holds, so that (7.17) is established. Conversely, let ๐œˆ โˆˆ โ„‚ โงต โ„ be arbitrary but fixed, set ๐œ† โˆถ = ๐œˆ , and suppose that, for every square integrable solutions ๐‘ง 1 ( โ‹… , ๐œ† ) and ๐‘ง 2 ( โ‹… , ๐œˆ ) of ( ๐’ฎ ๐œ† ) and ( ๐’ฎ ๐œˆ ), condition (7.17) is satisfied. From Theorem 6.7 we know that for ๐‘€ + ( ๐œ… ) โˆˆ ๐ท + ( ๐œ… ) the columns ๐’ณ + [ ๐‘— ] ( โ‹… , ๐œ… ) , ๐‘— โˆˆ { 1 , โ€ฆ , ๐‘› } , of the Weyl solution ๐’ณ + ( โ‹… , ๐œ… ) are linearly independent square integrable solutions of ( ๐’ฎ ๐œ… ), ๐œ… โˆˆ { ๐œ† , ๐œˆ } . Therefore, d i m ๐’ฉ ( ๐œ† ) โ‰ฅ ๐‘› , and d i m ๐’ฉ ( ๐œˆ ) โ‰ฅ ๐‘› . Moreover, by identity (3.19)(i), we have ๐’ณ โˆ— + ( ๐‘ก , ๐œ† ) ๐’ฅ ๐’ณ + [ ๐‘— ] ๎€บ ๐‘ ( ๐‘ก , ๐œˆ ) = 0 , โˆ€ ๐‘ก โˆˆ 0 ๎€ธ , โˆž ๐•‹ , ๐‘— โˆˆ { 1 , โ€ฆ , ๐‘› } . ( 7 . 1 9 ) Let ๐‘ง ( โ‹… , ๐œˆ ) be any square integrable solution of system ( ๐’ฎ ๐œˆ ). Then, by our assumption (7.17), ๐’ณ โˆ— + ๎€บ ๐‘ ( ๐‘ก , ๐œ† ) ๐’ฅ ๐‘ง ( ๐‘ก , ๐œˆ ) = 0 , โˆ€ ๐‘ก โˆˆ 0 ๎€ธ , โˆž ๐•‹ . ( 7 . 2 0 ) From (7.19) and (7.20) it follows that the vectors ๐’ณ + [ ๐‘— ] ( ๐‘Ž , ๐œˆ ) , ๐‘— โˆˆ { 1 , โ€ฆ , ๐‘› } , and ๐‘ง ( ๐‘Ž , ๐œˆ ) are solutions of the linear homogeneous system ๐’ณ โˆ— + ( ๐‘Ž , ๐œ† ) ๐’ฅ ๐œ‚ = 0 . ( 7 . 2 1 ) Since, by Theorem 6.7, the vectors ๐’ณ + [ ๐‘— ] ( ๐‘Ž , ๐œˆ ) for ๐‘— โˆˆ { 1 , โ€ฆ , ๐‘› } represent a basis of the solution space of system (7.21), there exists a vector ๐œ‰ โˆˆ โ„‚ ๐‘› such that ๐‘ง ( ๐‘Ž , ๐œˆ ) = ๐’ณ + ( ๐‘Ž , ๐œˆ ) ๐œ‰ . By the uniqueness of solutions of system ( ๐’ฎ ๐œˆ ) we then get ๐‘ง ( โ‹… , ๐œˆ ) = ๐’ณ + ( โ‹… , ๐œˆ ) ๐œ‰ on [ ๐‘Ž , โˆž ) ๐•‹ . Hence, the solution ๐‘ง ( โ‹… , ๐œˆ ) is square integrable and d i m ๐’ฉ ( ๐œˆ ) = ๐‘› . Since ๐œˆ โˆˆ โ„‚ โงต โ„ was arbitrary, it follows that the system ( ๐’ฎ ๐œ† ) is in the limit point case.

As a consequence of the above result, we obtain a characterization of the limit point case in terms of a condition similar to (7.17), but using a limit. This statement is a generalization of [30, Corollaryโ€‰โ€‰2.3], [9, Corollaryโ€‰โ€‰3.3], [14, Theoremโ€‰โ€‰6.14], [2, Corollaryโ€‰โ€‰4.15], [1, Theoremโ€‰โ€‰3.9], [3, Theoremโ€‰โ€‰4.16].

Corollary 7.5. Let ๐›ผ โˆˆ ฮ“ . The system ( ๐’ฎ ๐œ† ) is in the limit point case if and only if, for every ๐œ† , ๐œˆ โˆˆ โ„‚ โงต โ„ and every square integrable solutions ๐‘ง 1 ( โ‹… , ๐œ† ) and ๐‘ง 2 ( โ‹… , ๐œˆ ) of ( ๐’ฎ ๐œ† ) and ( ๐’ฎ ๐œˆ ), respectively, we have l i m ๐‘ก โ†’ โˆž ๐‘ง โˆ— 1 ( ๐‘ก , ๐œ† ) ๐’ฅ ๐‘ง 2 ( ๐‘ก , ๐œˆ ) = 0 . ( 7 . 2 2 )

Proof. The necessity follows directly from Theorem 7.3. Conversely, assume that condition (7.22) holds for every ๐œ† , ๐œˆ โˆˆ โ„‚ โงต โ„ and every square integrable solutions ๐‘ง 1 ( โ‹… , ๐œ† ) and ๐‘ง 2 ( โ‹… , ๐œˆ ) of ( ๐’ฎ ๐œ† ) and ( ๐’ฎ ๐œˆ ). Fix ๐œ† โˆˆ โ„‚ โงต โ„ , and set ๐œˆ โˆถ = ๐œ† . By Corollary 3.7 we know that ๐‘ง โˆ— 1 ( โ‹… , ๐œ† ) ๐’ฅ ๐‘ง 2 ( โ‹… , ๐œˆ ) is constant on [ ๐‘Ž , โˆž ) ๐•‹ . Therefore, by using condition (7.22), we can see that identity (7.17) must be satisfied, which yields by Theorem 7.4 that the system ( ๐’ฎ ๐œ† ) is of the limit point type.

8. Nonhomogeneous Time Scale Symplectic Systems

In this section we consider the nonhomogeneous time scale symplectic system ๐‘ง ฮ” ๎‚‹ ๐’ฒ ( ๐‘ก , ๐œ† ) = ๐’ฎ ( ๐‘ก , ๐œ† ) ๐‘ง ( ๐‘ก , ๐œ† ) โˆ’ ๐’ฅ ( ๐‘ก ) ๐‘“ ๐œŽ [ ) ( ๐‘ก ) , ๐‘ก โˆˆ ๐‘Ž , โˆž ๐•‹ , ( 8 . 1 ) where the matrix function ๐’ฎ ( โ‹… , ๐œ† ) and ๎‚‹ ๐’ฒ ( โ‹… ) are defined in (3.3) and (3.1), ๐‘“ โˆˆ ๐ฟ 2 ๐’ฒ , and where the associated homogeneous system ( ๐’ฎ ๐œ† ) is either of the limit point or limit circle type at โˆž . Together with system (8.1) we consider a second system of the same form but with a different spectral parameter and a different nonhomogeneous term ๐‘ฆ ฮ” ๎‚‹ ๐’ฒ ( ๐‘ก , ๐œˆ ) = ๐’ฎ ( ๐‘ก , ๐œˆ ) ๐‘ฆ ( ๐‘ก , ๐œˆ ) โˆ’ ๐’ฅ ( ๐‘ก ) ๐‘” ๐œŽ [ ) ( ๐‘ก ) , ๐‘ก โˆˆ ๐‘Ž , โˆž ๐•‹ , ( 8 . 2 ) with ๐‘” โˆˆ ๐ฟ 2 ๐’ฒ . The following is a generalization of Theorem 3.5 to nonhomogeneous systems.

Theorem 8.1 (Lagrange identity). Let ๐œ† , ๐œˆ โˆˆ โ„‚ and ๐‘š โˆˆ โ„• be given. If ๐‘ง ( โ‹… , ๐œ† ) and ๐‘ฆ ( โ‹… , ๐œˆ ) are 2 ๐‘› ร— ๐‘š solutions of systems (8.1) and (8.2), respectively, then ๎€บ ๐‘ง โˆ— ๎€ป ( ๐‘ก , ๐œ† ) ๐’ฅ ๐‘ฆ ( ๐‘ก , ๐œˆ ) ฮ” = ๎‚€ ๎‚ ๐‘ง ๐œ† โˆ’ ๐œˆ ๐œŽ โˆ— ๎‚‹ ( ๐‘ก , ๐œ† ) ๐’ฒ ( ๐‘ก ) ๐‘ฆ ๐œŽ ( ๐‘ก , ๐œˆ ) โˆ’ ๐‘“ ๐œŽ โˆ— ๎‚‹ ( ๐‘ก ) ๐’ฒ ( ๐‘ก ) ๐‘ฆ ๐œŽ ( ๐‘ก , ๐œˆ ) + ๐‘ง ๐œŽ โˆ— ๎‚‹ ( ๐‘ก , ๐œ† ) ๐’ฒ ( ๐‘ก ) ๐‘” ๐œŽ [ ( ๐‘ก ) , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ . ( 8 . 3 )

Proof. Formula (8.3) follows by the product rule (2.1) with the aid of the relation ๐‘ง ๐œŽ [ ] ๐‘ง ๎‚‹ ๐’ฒ ( ๐‘ก , ๐œ† ) = ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) ( ๐‘ก , ๐œ† ) + ๐œ‡ ( ๐‘ก ) ( ๐‘ก ) ๐‘“ ๐œŽ ( ๐‘ก ) , ( 8 . 4 ) and identity (3.6).

For ๐›ผ โˆˆ ฮ“ , ๐œ† โˆˆ โ„‚ โงต โ„ , and ๐‘ก , ๐‘  โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ , we define the function โŽง โŽช โŽจ โŽช โŽฉ ๎‚ ๐บ ( ๐‘ก , ๐‘  , ๐œ† , ๐›ผ ) โˆถ = ๐‘ ( ๐‘ก , ๐œ† , ๐›ผ ) ๐’ณ โˆ— + ๎‚€ ๐‘  , ๎‚ [ ๐œ† , ๐›ผ , f o r ๐‘ก โˆˆ ๐‘Ž , ๐‘  ) ๐•‹ , ๐’ณ + ๎‚ ๐‘ ( ๐‘ก , ๐œ† , ๐›ผ ) โˆ— ๎‚€ ๐‘  , ๎‚ [ ๐œ† , ๐›ผ , f o r ๐‘ก โˆˆ ๐‘  , โˆž ) ๐•‹ , ( 8 . 5 ) where ๎‚ ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) is the solution of system ( ๐’ฎ ๐œ† ) given in (4.10), that is, ๎‚ ๐‘ ( ๐‘Ž , ๐œ† , ๐›ผ ) = โˆ’ ๐’ฅ ๐›ผ โˆ— , and ๐’ณ + ( โ‹… , ๐œ† , ๐›ผ ) โˆถ = ๐’ณ ( โ‹… , ๐œ† , ๐›ผ , ๐‘€ + ( ๐œ† ) ) is the Weyl solution of ( ๐’ฎ ๐œ† ) as in (4.16) determined by a matrix ๐‘€ + ( ๐œ† ) โˆˆ ๐ท + ( ๐œ† ) . This matrix ๐‘€ + ( ๐œ† ) โˆˆ ๐ท + ( ๐œ† ) is arbitrary but fixed throughout this section. By interchanging the order of the arguments ๐‘ก and ๐‘  , we have โŽง โŽช โŽจ โŽช โŽฉ ๐’ณ ๐บ ( ๐‘ก , ๐‘  , ๐œ† , ๐›ผ ) = + ๎‚ ๐‘ ( ๐‘ก , ๐œ† , ๐›ผ ) โˆ— ๎‚€ ๐‘  , ๎‚ [ ] ๐œ† , ๐›ผ , f o r ๐‘  โˆˆ ๐‘Ž , ๐‘ก ๐•‹ , ๎‚ ๐‘ ( ๐‘ก , ๐œ† , ๐›ผ ) ๐’ณ โˆ— + ๎‚€ ๐‘  , ๎‚ ๐œ† , ๐›ผ , f o r ๐‘  โˆˆ ( ๐‘ก , โˆž ) ๐•‹ . ( 8 . 6 ) In the literature the function ๐บ ( โ‹… , โ‹… , ๐œ† , ๐›ผ ) is called a resolvent kernel, compare with [30, pageโ€‰โ€‰283], [32, pageโ€‰โ€‰15], [2, equationโ€‰โ€‰(5.4)], and in this section it will play a role of the Green function.

Lemma 8.2. Let ๐›ผ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ . Then ๐’ณ + ๎‚ ๐‘ ( ๐‘ก , ๐œ† , ๐›ผ ) โˆ— ๎‚€ ๐‘ก , ๎‚ โˆ’ ๎‚ ๐œ† , ๐›ผ ๐‘ ( ๐‘ก , ๐œ† , ๐›ผ ) ๐’ณ โˆ— + ๎‚€ ๐‘ก , ๎‚ [ ๐œ† , ๐›ผ = ๐’ฅ , โˆ€ ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ . ( 8 . 7 )

Proof. Identity (8.7) follows by a direct calculation from the definition of ๐’ณ + ( โ‹… , ๐œ† , ๐›ผ ) via (4.16) with a matrix ๐‘€ + ( ๐œ† ) โˆˆ ๐ท + ( ๐œ† ) by using formulas (3.21) and (6.13).

In the next lemma we summarize the properties of the function ๐บ ( โ‹… , โ‹… , ๐œ† , ๐›ผ ) , which together with Proposition 8.4 and Theorem 8.5 justifies the terminology โ€œGreen functionโ€ of the system (8.1); compare with [68, Sectionโ€‰โ€‰4]. A discrete version of the following result can be found in [2, Lemmaโ€‰โ€‰5.1].

Lemma 8.3. Let ๐›ผ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ . The function ๐บ ( โ‹… , โ‹… , ๐œ† , ๐›ผ ) has the following properties: (i) ๐บ โˆ— ( ๐‘ก , ๐‘  , ๐œ† , ๐›ผ ) = ๐บ ( ๐‘  , ๐‘ก , ๐œ† , ๐›ผ ) for every ๐‘ก , ๐‘  โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ , ๐‘ก โ‰  ๐‘  , (ii) ๐บ โˆ— ( ๐‘ก , ๐‘ก , ๐œ† , ๐›ผ ) = ๐บ ( ๐‘ก , ๐‘ก , ๐œ† , ๐›ผ ) โˆ’ ๐’ฅ for every ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ , (iii) ๐บ ( ๐œŽ ( ๐‘ก ) , ๐œŽ ( ๐‘ก ) , ๐œ† , ๐›ผ ) = [ ๐ผ + ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) ] ๐บ ( ๐‘ก , ๐œŽ ( ๐‘ก ) , ๐œ† , ๐›ผ ) + ๐’ฅ for every right-scattered point ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ , (iv)for every ๐‘ก , ๐‘  โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ such that ๐‘ก โˆ‰ ๐’ฏ ( ๐‘  ) , the function ๐บ ( โ‹… , ๐‘  , ๐œ† , ๐›ผ ) solves the homogeneous system ( ๐’ฎ ๐œ† ) on the set ๐’ฏ ( ๐‘  ) , where ๐’ฏ ๎€ฝ [ ) ( ๐‘  ) โˆถ = ๐œ โˆˆ ๐‘Ž , โˆž ๐•‹ ๎€พ , ๐œ โ‰  ๐œŒ ( ๐‘  ) i f ๐‘  i s l e f t - s c a t t e r e d , ( 8 . 8 ) (v)the columns of ๐บ ( โ‹… , ๐‘  , ๐œ† , ๐›ผ ) belong to ๐ฟ 2 ๐’ฒ for every ๐‘  โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ , and the columns of ๐บ ( ๐‘ก , โ‹… , ๐œ† , ๐›ผ ) belong to ๐ฟ 2 ๐’ฒ for every ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ .

Proof. Condition (i) follows from the definition of ๐บ ( โ‹… , ๐‘  , ๐œ† , ๐›ผ ) in (8.5). Condition (ii) is a consequence of Lemma 8.2. Condition (iii) is proven from the definition of ๐บ ( ๐œŽ ( ๐‘ก ) , ๐œŽ ( ๐‘ก ) , ๐œ† , ๐›ผ ) in (8.5) by using Lemma 8.2 and ๎‚ ๎‚ ๐‘ ๐‘ ( ๐‘ก , ๐œ† , ๐›ผ ) = ๐œŽ ๎‚ ( ๐‘ก , ๐œ† , ๐›ผ ) โˆ’ ๐œ‡ ( ๐‘ก ) ๐’ฎ ( ๐‘ก , ๐œ† ) ๐‘ ( ๐‘ก , ๐œ† , ๐›ผ ) . Concerning condition (iv), the function ๐บ ( โ‹… , ๐‘  , ๐œ† , ๐›ผ ) solves the system ( ๐’ฎ ๐œ† ) on [ ๐‘  , โˆž ) ๐•‹ because ๐’ณ + ( โ‹… , ๐œ† , ๐›ผ ) solves this system on [ ๐‘  , โˆž ) ๐•‹ . If ๐‘  โˆˆ ( ๐‘Ž , โˆž ) ๐•‹ is left-dense, then ๐บ ( โ‹… , ๐‘  , ๐œ† , ๐›ผ ) solves ( ๐’ฎ ๐œ† ) on [ ๐‘Ž , ๐‘  ) ๐•‹ , since ๎‚ ๐‘ ( โ‹… , ๐œ† , ๐›ผ ) solves this system on [ ๐‘Ž , ๐‘  ) ๐•‹ . For the same reason ๐บ ( โ‹… , ๐‘  , ๐œ† , ๐›ผ ) solves ( ๐’ฎ ๐œ† ) on [ ๐‘Ž , ๐œŒ ( ๐‘  ) ) ๐•‹ if ๐‘  โˆˆ ( ๐‘Ž , โˆž ) ๐•‹ is left-scattered. Condition (v) follows from the definition of ๐บ ( โ‹… , ๐‘  , ๐œ† , ๐›ผ ) in (8.5) used with ๐‘ก โ‰ฅ ๐‘  and from the fact that the columns of ๐’ณ + ( โ‹… , ๐œ† , ๐›ผ ) belong to ๐ฟ 2 ๐’ฒ , by Theorem 6.7. The columns of ๐บ ( ๐‘ก , โ‹… , ๐œ† , ๐›ผ ) then belong to ๐ฟ 2 ๐’ฒ by part (i) of this lemma.

Since by Lemma 8.3(v) the columns of ๐บ ( ๐‘ก , โ‹… , ๐œ† , ๐›ผ ) belong to ๐ฟ 2 ๐’ฒ , the function ๎€œ ฬ‚ ๐‘ง ( ๐‘ก , ๐œ† , ๐›ผ ) โˆถ = โˆ’ โˆž ๐‘Ž ๎‚‹ ๐บ ( ๐‘ก , ๐œŽ ( ๐‘  ) , ๐œ† , ๐›ผ ) ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ [ ( ๐‘  ) ฮ” ๐‘  , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ , ( 8 . 9 ) is well defined whenever ๐‘“ โˆˆ ๐ฟ 2 ๐’ฒ . Moreover, by using (8.6), we can write ฬ‚ ๐‘ง ( ๐‘ก , ๐œ† , ๐›ผ ) as ฬ‚ ๐‘ง ( ๐‘ก , ๐œ† , ๐›ผ ) = โˆ’ ๐’ณ + ( ๎€œ ๐‘ก , ๐œ† , ๐›ผ ) ๐‘ก ๐‘Ž ๎‚ ๐‘ ๐œŽ โˆ— ๎‚€ ๐‘  , ๎‚ ๎‚‹ ๐œ† , ๐›ผ ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ( โˆ’ ๎‚ ๎€œ ๐‘  ) ฮ” ๐‘  ๐‘ ( ๐‘ก , ๐œ† , ๐›ผ ) โˆž ๐‘ก ๐’ณ + ๐œŽ โˆ— ๎‚€ ๐‘  , ๎‚ ๎‚‹ ๐œ† , ๐›ผ ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ [ ( ๐‘  ) ฮ” ๐‘  , ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ . ( 8 . 1 0 )

Proposition 8.4. For ๐›ผ โˆˆ ฮ“ , ๐œ† โˆˆ โ„‚ โงต โ„ , and ๐‘“ โˆˆ ๐ฟ 2 ๐’ฒ , the function ฬ‚ ๐‘ง ( โ‹… , ๐œ† , ๐›ผ ) defined in (8.9) solves the nonhomogeneous system (8.1) with the initial condition ๐›ผ ฬ‚ ๐‘ง ( ๐‘Ž , ๐œ† , ๐›ผ ) = 0 .

Proof. By the time scales product rule (2.1) when we ฮ” -differentiate expression (8.10), we have for every ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ (suppressing the dependence on ๐›ผ in the the following calculation) ฬ‚ ๐‘ง ฮ” ( ๐‘ก , ๐œ† ) = โˆ’ ๐’ณ ฮ” + ( ๎€œ ๐‘ก , ๐œ† ) ๐‘ก ๐‘Ž ๎‚ ๐‘ ๐œŽ โˆ— ๎‚€ ๐‘  , ๐œ† ๎‚ ๎‚‹ ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ( ๐‘  ) ฮ” ๐‘  โˆ’ ๐’ณ ๐œŽ + ( ๎‚ ๐‘ ๐‘ก , ๐œ† ) ๐œŽ โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ ๎‚‹ ๐’ฒ ( ๐‘ก ) ๐‘“ ๐œŽ ( โˆ’ ๎‚ ๐‘ ๐‘ก ) ฮ” ๎€œ ( ๐‘ก , ๐œ† ) โˆž ๐‘ก ๐’ณ + ๐œŽ โˆ— ๎‚€ ๐‘  , ๐œ† ๎‚ ๎‚‹ ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ๎‚ ๐‘ ( ๐‘  ) ฮ” ๐‘  + ๐œŽ ( ๐‘ก , ๐œ† ) ๐’ณ + ๐œŽ โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ ๎‚‹ ๐’ฒ ( ๐‘ก ) ๐‘“ ๐œŽ ๎‚ƒ ๐’ณ ( ๐‘ก ) = ๐’ฎ ( ๐‘ก , ๐œ† ) ฬ‚ ๐‘ง ( ๐‘ก , ๐œ† ) โˆ’ ๐œŽ + ๎‚ ๐‘ ( ๐‘ก , ๐œ† ) ๐œŽ โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚ โˆ’ ๎‚ ๐‘ ๐œŽ ( ๐‘ก , ๐œ† ) ๐’ณ + ๐œŽ โˆ— ๎‚€ ๐‘ก , ๐œ† ๎‚‹ ๎‚ ๎‚„ ๐’ฒ ( ๐‘ก ) ๐‘“ ๐œŽ ( ๐‘ก ) ( 8 . 7 ) ๎‚‹ = ๐’ฎ ( ๐‘ก , ๐œ† ) ฬ‚ ๐‘ง ( ๐‘ก , ๐œ† ) โˆ’ ๐’ฅ ๐’ฒ ( ๐‘ก ) ๐‘“ ๐œŽ ( ๐‘ก ) . ( 8 . 1 1 ) This shows that ฬ‚ ๐‘ง ( โ‹… , ๐œ† , ๐›ผ ) is a solution of system (8.1). From (8.10) with ๐‘ก = ๐‘Ž , we get ๎‚ ๎€œ ๐›ผ ฬ‚ ๐‘ง ( ๐‘Ž , ๐œ† , ๐›ผ ) = โˆ’ ๐›ผ ๐‘ ( ๐‘Ž , ๐œ† , ๐›ผ ) โˆž ๐‘Ž ๐’ณ + ๐œŽ โˆ— ๎‚€ ๐‘  , ๎‚ ๎‚‹ ๐œ† , ๐›ผ ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ( ๐‘  ) ฮ” ๐‘  = 0 , ( 8 . 1 2 ) where we used the initial condition ๎‚ ๐‘ ( ๐‘Ž , ๐œ† , ๐›ผ ) = โˆ’ ๐’ฅ ๐›ผ โˆ— and ๐›ผ ๐’ฅ ๐›ผ โˆ— = 0 coming from ๐›ผ โˆˆ ฮ“ .

The following theorem provides further properties of the solution ฬ‚ ๐‘ง ( โ‹… , ๐œ† , ๐›ผ ) of system (8.1). It is a generalization of [10, Lemmaโ€‰โ€‰4.2], [11, Theoremโ€‰โ€‰7.5], [2, Theoremโ€‰โ€‰5.2] to time scales.

Theorem 8.5. Let ๐›ผ โˆˆ ฮ“ , ๐œ† โˆˆ โ„‚ โงต โ„ , and ๐‘“ โˆˆ ๐ฟ 2 ๐’ฒ . Suppose that system ( ๐’ฎ ๐œ† ) is in the limit point or limit circle case. Then the solution ฬ‚ ๐‘ง ( โ‹… , ๐œ† , ๐›ผ ) of system (8.1) defined in (8.9) belongs to ๐ฟ 2 ๐’ฒ and satisfies โ€– โ€– ฬ‚ ๐‘ง ( โ‹… , ๐œ† , ๐›ผ ) ๐’ฒ โ‰ค 1 | | | | I m ( ๐œ† ) โ€– ๐‘“ โ€– ๐’ฒ , ( 8 . 1 3 ) l i m ๐‘ก โ†’ โˆž ๐’ณ โˆ— + ( ๐‘ก , ๐œˆ , ๐›ผ ) ๐’ฅ ฬ‚ ๐‘ง ( ๐‘ก , ๐œ† , ๐›ผ ) = 0 , f o r e v e r y ๐œˆ โˆˆ โ„‚ โงต โ„ . ( 8 . 1 4 )

Proof. To shorten the notation we suppress the dependence on ๐›ผ in all quantities appearing in this proof. Assume first that system ( ๐’ฎ ๐œ† ) is in the limit point case. For every ๐‘Ÿ โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ we define the function ๐‘“ ๐‘Ÿ ( โ‹… ) โˆถ = ๐‘“ ( โ‹… ) on [ ๐‘Ž , ๐‘Ÿ ] ๐•‹ and ๐‘“ ๐‘Ÿ ( โ‹… ) โˆถ = 0 on ( ๐‘Ÿ , โˆž ) ๐•‹ and the function ฬ‚ ๐‘ง ๐‘Ÿ ๎€œ ( ๐‘ก , ๐œ† ) โˆถ = โˆ’ โˆž ๐‘Ž ๎‚‹ ๐บ ( ๐‘ก , ๐œŽ ( ๐‘  ) , ๐œ† ) ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ๐‘Ÿ ๎€œ ( ๐‘  ) ฮ” ๐‘  = โˆ’ ๐‘Ÿ ๐‘Ž ๎‚‹ ๐บ ( ๐‘ก , ๐œŽ ( ๐‘  ) , ๐œ† ) ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ( ๐‘  ) ฮ” ๐‘  . ( 8 . 1 5 ) For every ๐‘ก โˆˆ [ ๐‘Ÿ , โˆž ) ๐•‹ we have as in (8.10) that ฬ‚ ๐‘ง ๐‘Ÿ ( ๐‘ก , ๐œ† ) = โˆ’ ๐’ณ + ๎€œ ( ๐‘ก , ๐œ† ) ๐‘” ( ๐‘Ÿ , ๐œ† ) , ๐‘” ( ๐‘Ÿ , ๐œ† ) โˆถ = ๐‘Ÿ ๐‘Ž ๎‚ ๐‘ ๐œŽ โˆ— ๎‚€ ๐‘  , ๐œ† ๎‚ ๎‚‹ ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ( ๐‘  ) ฮ” ๐‘  . ( 8 . 1 6 ) Since by Theorem 6.7 the solution ๐’ณ + ( โ‹… , ๐œ† ) โˆˆ ๐ฟ 2 ๐’ฒ , (8.16) shows that ฬ‚ ๐‘ง ๐‘Ÿ ( โ‹… , ๐œ† ) , being a multiple of ๐’ณ + ( โ‹… , ๐œ† ) , also belongs to ๐ฟ 2 ๐’ฒ . Moreover, by Theorem 7.3, l i m ๐‘ก โ†’ โˆž ฬ‚ ๐‘ง โˆ— ๐‘Ÿ ( ๐‘ก , ๐œ† ) ๐’ฅ ฬ‚ ๐‘ง ๐‘Ÿ ( ๐‘ก , ๐œ† ) ( 8 . 1 6 ) = ๐‘” โˆ— ( ๐‘Ÿ , ๐œ† ) l i m ๐‘ก โ†’ โˆž ๐’ณ โˆ— + ( ๐‘ก , ๐œ† ) ๐’ฅ ๐’ณ + ( ๐‘ก , ๐œ† ) ๐‘” ( ๐‘Ÿ , ๐œ† ) ( 7 . 4 ) = 0 . ( 8 . 1 7 ) On the other hand, ฬ‚ ๐‘ง โˆ— ๐‘Ÿ ( ๐‘Ž , ๐œ† ) ๐’ฅ ฬ‚ ๐‘ง ๐‘Ÿ ( ๐‘Ž , ๐œ† ) = 0 , and for any ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ identity (8.3) implies ฬ‚ ๐‘ง โˆ— ๐‘Ÿ ( ๐‘ก , ๐œ† ) ๐’ฅ ฬ‚ ๐‘ง ๐‘Ÿ ๎€œ ( ๐‘ก , ๐œ† ) = โˆ’ 2 ๐‘– I m ( ๐œ† ) ๐‘ก ๐‘Ž ฬ‚ ๐‘ง ๐‘Ÿ ๐œŽ โˆ— ๎‚‹ ๐’ฒ ( ๐‘  , ๐œ† ) ( ๐‘  ) ฬ‚ ๐‘ง ๐œŽ ๐‘Ÿ ๎‚ต ๎€œ ( ๐‘  , ๐œ† ) ฮ” ๐‘  + 2 ๐‘– I m ๐‘ก ๐‘Ž ฬ‚ ๐‘ง ๐‘Ÿ ๐œŽ โˆ— ๎‚‹ ๐’ฒ ( ๐‘  , ๐œ† ) ( ๐‘  ) ๐‘“ ๐œŽ ๐‘Ÿ ๎‚ถ . ( ๐‘  ) ฮ” ๐‘  ( 8 . 1 8 ) Combining (8.18), where ๐‘ก โ†’ โˆž , formula (8.17), and the definition on ๐‘“ ๐‘Ÿ ( โ‹… ) yields โ€– โ€– ฬ‚ ๐‘ง ๐‘Ÿ โ€– โ€– ( โ‹… , ๐œ† ) 2 ๐’ฒ = ๎€œ โˆž ๐‘Ž ฬ‚ ๐‘ง ๐‘Ÿ ๐œŽ โˆ— ๎‚‹ ( ๐‘  , ๐œ† ) ๐’ฒ ( ๐‘  ) ฬ‚ ๐‘ง ๐œŽ ๐‘Ÿ 1 ( ๐‘  , ๐œ† ) ฮ” ๐‘  = ๎‚ต ๎€œ I m ( ๐œ† ) I m ๐‘Ÿ ๐‘Ž ฬ‚ ๐‘ง ๐‘Ÿ ๐œŽ โˆ— ๎‚‹ ( ๐‘  , ๐œ† ) ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ๎‚ถ ( ๐‘  ) ฮ” ๐‘  . ( 8 . 1 9 ) By using the Cauchy-Schwarz inequality (C-S) on time scales and ๎‚‹ ๐’ฒ ( โ‹… ) โ‰ฅ 0 , we then have โ€– โ€– ฬ‚ ๐‘ง ๐‘Ÿ โ€– โ€– ( โ‹… , ๐œ† ) 2 ๐’ฒ = 1 ๎‚ธ ๎€œ 2 ๐‘– I m ( ๐œ† ) ๐‘Ÿ ๐‘Ž ฬ‚ ๐‘ง ๐‘Ÿ ๐œŽ โˆ— ๎‚‹ ( ๐‘  , ๐œ† ) ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ๎€œ ( ๐‘  ) ฮ” ๐‘  โˆ’ ๐‘Ÿ ๐‘Ž ๐‘“ ๐œŽ โˆ— ๎‚‹ ( ๐‘  ) ๐’ฒ ( ๐‘  ) ฬ‚ ๐‘ง ๐œŽ ๐‘Ÿ ๎‚น โ‰ค 1 ( ๐‘  , ๐œ† ) ฮ” ๐‘  | | | | | | | | ๎€œ I m ( ๐œ† ) ๐‘Ÿ ๐‘Ž ฬ‚ ๐‘ง ๐‘Ÿ ๐œŽ โˆ— ๎‚‹ ( ๐‘  , ๐œ† ) ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ | | | | ( ๐‘  ) ฮ” ๐‘  C - S โ‰ค 1 | | | | ๎‚ต ๎€œ I m ( ๐œ† ) ๐‘Ÿ ๐‘Ž ฬ‚ ๐‘ง ๐‘Ÿ ๐œŽ โˆ— ๎‚‹ ( ๐‘  , ๐œ† ) ๐’ฒ ( ๐‘  ) ฬ‚ ๐‘ง ๐œŽ ๐‘Ÿ ๎‚ถ ( ๐‘  , ๐œ† ) ฮ” ๐‘  1 / 2 ๎‚ต ๎€œ ๐‘Ÿ ๐‘Ž ๐‘“ ๐œŽ โˆ— ๎‚‹ ( ๐‘  ) ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ๎‚ถ ( ๐‘  ) ฮ” ๐‘  1 / 2 โ‰ค 1 | | | | โ€– โ€– I m ( ๐œ† ) ฬ‚ ๐‘ง ๐‘Ÿ โ€– โ€– ( โ‹… , ๐œ† ) ๐’ฒ โ€– ๐‘“ โ€– ๐’ฒ . ( 8 . 2 0 ) Since โ€– ฬ‚ ๐‘ง ๐‘Ÿ ( โ‹… , ๐œ† ) โ€– ๐’ฒ is finite by ฬ‚ ๐‘ง ๐‘Ÿ ( โ‹… , ๐œ† ) โˆˆ ๐ฟ 2 ๐’ฒ , we get from the above calculation that โ€– โ€– ฬ‚ ๐‘ง ๐‘Ÿ โ€– โ€– ( โ‹… , ๐œ† ) ๐’ฒ โ‰ค 1 | | | | I m ( ๐œ† ) โ€– ๐‘“ โ€– ๐’ฒ . ( 8 . 2 1 ) We will prove that (8.21) implies estimate (8.13) by the convergence argument. For any ๐‘ก , ๐‘Ÿ โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ we observe that ฬ‚ ๐‘ง ( ๐‘ก , ๐œ† ) โˆ’ ฬ‚ ๐‘ง ๐‘Ÿ ๎€œ ( ๐‘ก , ๐œ† ) = โˆ’ โˆž ๐‘Ÿ ๎‚‹ ๐บ ( ๐‘ก , ๐œŽ ( ๐‘  ) , ๐œ† ) ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ( ๐‘  ) ฮ” ๐‘  . ( 8 . 2 2 ) Now we fix ๐‘ž โˆˆ [ ๐‘Ž , ๐‘Ÿ ) ๐•‹ . By the definition of ๐บ ( โ‹… , โ‹… , ๐œ† ) in (8.5) we have for every ๐‘ก โˆˆ [ ๐‘Ž , ๐‘ž ] ๐•‹ ฬ‚ ๐‘ง ( ๐‘ก , ๐œ† ) โˆ’ ฬ‚ ๐‘ง ๐‘Ÿ ๎‚ ๎€œ ( ๐‘ก , ๐œ† ) = โˆ’ ๐‘ ( ๐‘ก , ๐œ† ) โˆž ๐‘Ÿ ๐’ณ โˆ— + ๎‚€ ๐œŽ ( ๐‘  ) , ๐œ† ๎‚ ๎‚‹ ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ( ๐‘  ) ฮ” ๐‘  . ( 8 . 2 3 ) Since the functions ๐’ณ + ( โ‹… , ๐œ† ) and ๐‘“ ( โ‹… ) belong to ๐ฟ 2 ๐’ฒ , it follows that the right-hand side of (8.23) converges to zero as ๐‘Ÿ โ†’ โˆž for every ๐‘ก โˆˆ [ ๐‘Ž , ๐‘ž ] ๐•‹ . Hence, ฬ‚ ๐‘ง ๐‘Ÿ ( โ‹… , ๐œ† ) converges to the function ฬ‚ ๐‘ง ( โ‹… , ๐œ† ) uniformly on [ ๐‘Ž , ๐‘ž ] ๐•‹ . Since ฬ‚ ๐‘ง ( โ‹… , ๐œ† ) = ฬ‚ ๐‘ง ๐‘Ÿ ( โ‹… , ๐œ† ) on [ ๐‘Ž , ๐‘ž ] ๐•‹ , we have by ๎‚‹ ๐’ฒ ( โ‹… ) โ‰ฅ 0 and (8.21) that ๎€œ ๐‘ž ๐‘Ž ฬ‚ ๐‘ง ๐œŽ โˆ— ๎‚‹ ( ๐‘  , ๐œ† ) ๐’ฒ ( ๐‘  ) ฬ‚ ๐‘ง ๐œŽ โ€– โ€– ( ๐‘  , ๐œ† ) ฮ” ๐‘  โ‰ค ฬ‚ ๐‘ง ๐‘Ÿ โ€– โ€– ( โ‹… , ๐œ† ) 2 ๐’ฒ ( 8 . 2 1 ) โ‰ค 1 | | | | I m ( ๐œ† ) 2 โ€– ๐‘“ โ€– 2 ๐’ฒ . ( 8 . 2 4 ) Since ๐‘ž โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ was arbitrary, inequality (8.24) implies the result in (8.13). In the limit circle case inequality (8.13) follows by the same argument by using the fact that all solutions of system ( ๐’ฎ ๐œ† ) belong to ๐ฟ 2 ๐’ฒ .
Now we prove the existence of the limit (8.14). Assume that the system ( ๐’ฎ ๐œ† ) is in the limit point case, and let ๐œˆ โˆˆ โ„‚ โงต โ„ be arbitrary. Following the argument in the proof of [30, Lemmaโ€‰โ€‰4.1] and [2, Theoremโ€‰โ€‰5.2], we have from identity (8.3) that for any ๐‘Ÿ , ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ ๐’ณ โˆ— + ( ๐‘ก , ๐œˆ ) ๐’ฅ ฬ‚ ๐‘ง ๐‘Ÿ ( ๐‘ก , ๐œ† ) = ๐’ณ โˆ— + ( ๐‘Ž , ๐œˆ ) ๐’ฅ ฬ‚ ๐‘ง ๐‘Ÿ ( ๎€ท ๐‘Ž , ๐œ† ) + ๎€ธ ๎€œ ๐œˆ โˆ’ ๐œ† ๐‘ก ๐‘Ž ๐’ณ + ๐œŽ โˆ— ( ๎‚‹ ๐‘  , ๐œˆ ) ๐’ฒ ( ๐‘  ) ฬ‚ ๐‘ง ๐œŽ ๐‘Ÿ ( + ๎€œ ๐‘  , ๐œ† ) ฮ” ๐‘  ๐‘ก ๐‘Ž ๐’ณ + ๐œŽ โˆ— ๎‚‹ ( ๐‘  , ๐œˆ ) ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ๐‘Ÿ ( ๐‘  ) ฮ” ๐‘  . ( 8 . 2 5 ) Since for ๐‘ก โˆˆ [ ๐‘Ÿ , โˆž ) ๐•‹ equality (8.16) holds, it follows that l i m ๐‘ก โ†’ โˆž ๐’ณ โˆ— + ( ๐‘ก , ๐œˆ ) ๐’ฅ ฬ‚ ๐‘ง ๐‘Ÿ ( ๐‘ก , ๐œ† ) = โˆ’ l i m ๐‘ก โ†’ โˆž ๐’ณ โˆ— + ( ๐‘ก , ๐œˆ ) ๐’ฅ ๐’ณ + ( ๐‘ก , ๐œ† ) ๐‘” ( ๐‘Ÿ , ๐œ† ) ( 7 . 4 ) = 0 . ( 8 . 2 6 ) Hence, by (8.25), ๐’ณ โˆ— + ( ๐‘Ž , ๐œˆ ) ๐’ฅ ฬ‚ ๐‘ง ๐‘Ÿ ๎€ท ( ๐‘Ž , ๐œ† ) = ๐œ† โˆ’ ๐œˆ ๎€ธ ๎€œ โˆž ๐‘Ž ๐’ณ + ๐œŽ โˆ— ๎‚‹ ( ๐‘  , ๐œˆ ) ๐’ฒ ( ๐‘  ) ฬ‚ ๐‘ง ๐œŽ ๐‘Ÿ ๎€œ ( ๐‘  , ๐œ† ) ฮ” ๐‘  โˆ’ ๐‘Ÿ ๐‘Ž ๐’ณ + ๐œŽ โˆ— ๎‚‹ ( ๐‘  , ๐œˆ ) ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ( ๐‘  ) ฮ” ๐‘  . ( 8 . 2 7 ) By the uniform convergence of ฬ‚ ๐‘ง ๐‘Ÿ ( โ‹… , ๐œ† ) to ฬ‚ ๐‘ง ( โ‹… , ๐œ† ) on compact intervals, we get from (8.27) with ๐‘Ÿ โ†’ โˆž the equality ๐’ณ โˆ— + ๎€ท ( ๐‘Ž , ๐œˆ ) ๐’ฅ ฬ‚ ๐‘ง ( ๐‘Ž , ๐œ† ) = ๐œ† โˆ’ ๐œˆ ๎€ธ ๎€œ โˆž ๐‘Ž ๐’ณ + ๐œŽ โˆ— ๎‚‹ ( ๐‘  , ๐œˆ ) ๐’ฒ ( ๐‘  ) ฬ‚ ๐‘ง ๐œŽ ๎€œ ( ๐‘  , ๐œ† ) ฮ” ๐‘  โˆ’ โˆž ๐‘Ž ๐’ณ + ๐œŽ โˆ— ๎‚‹ ( ๐‘  , ๐œˆ ) ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ( ๐‘  ) ฮ” ๐‘  . ( 8 . 2 8 ) On the other hand, by (8.3), we obtain for every ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ ๐’ณ โˆ— + ( ๐‘ก , ๐œˆ ) ๐’ฅ ฬ‚ ๐‘ง ( ๐‘ก , ๐œ† ) = ๐’ณ โˆ— + ( ๎€ท ๐‘Ž , ๐œˆ ) ๐’ฅ ฬ‚ ๐‘ง ( ๐‘Ž , ๐œ† ) + ๎€ธ ๎€œ ๐œˆ โˆ’ ๐œ† ๐‘ก ๐‘Ž ๐’ณ + ๐œŽ โˆ— ( ๎‚‹ ๐‘  , ๐œˆ ) ๐’ฒ ( ๐‘  ) ฬ‚ ๐‘ง ๐œŽ ( + ๎€œ ๐‘  , ๐œ† ) ฮ” ๐‘  ๐‘ก ๐‘Ž ๐’ณ + ๐œŽ โˆ— ๎‚‹ ( ๐‘  , ๐œˆ ) ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ( ๐‘  ) ฮ” ๐‘  . ( 8 . 2 9 ) Upon taking the limit in (8.29) as ๐‘ก โ†’ โˆž and using equality (8.28), we conclude that the limit in (8.14) holds true.
In the limit circle case, the limit in (8.14) can be proved similarly as above, because all the solutions of system ( ๐’ฎ ๐œ† ) now belong to ๐ฟ 2 ๐’ฒ . However, in this case, we can apply a direct argument to show that (8.14) holds. By formula (8.10) we get for every ๐‘ก โˆˆ [ ๐‘Ž , โˆž ) ๐•‹ ๐’ณ โˆ— + ( ๐‘ก , ๐œˆ ) ๐’ฅ ฬ‚ ๐‘ง ( ๐‘ก , ๐œ† ) = โˆ’ ๐’ณ โˆ— + ( ๐‘ก , ๐œˆ ) ๐’ฅ ๐’ณ + ( ๎€œ ๐‘ก , ๐œ† ) ๐‘ก ๐‘Ž ๎‚ ๐‘ ๐œŽ โˆ— ๎‚€ ๐‘  , ๐œ† ๎‚ ๎‚‹ ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ( ๐‘  ) ฮ” ๐‘  โˆ’ ๐’ณ โˆ— + ๎‚ ๎€œ ( ๐‘ก , ๐œˆ ) ๐’ฅ ๐‘ ( ๐‘ก , ๐œ† ) โˆž ๐‘ก ๐’ณ + ๐œŽ โˆ— ๎‚€ ๐‘  , ๐œ† ๎‚ ๎‚‹ ๐’ฒ ( ๐‘  ) ๐‘“ ๐œŽ ( ๐‘  ) ฮ” ๐‘  . ( 8 . 3 0 ) The limit of the first term in (8.30) is zero because ๐’ณ โˆ— + ( ๐‘ก , ๐œˆ ) ๐’ฅ ๐’ณ + ( ๐‘ก , ๐œ† ) tends to zero for ๐‘ก โ†’ โˆž by (7.4), and it is multiplied by a convergent integral as ๐‘ก โ†’ โˆž . Since the columns of ๎‚ ๐‘ ( โ‹… , ๐œ† ) belong to ๐ฟ 2 ๐’ฒ , the function ๐’ณ โˆ— + ๎‚ ( โ‹… , ๐œˆ ) ๐’ฅ ๐‘ ( โ‹… , ๐œ† ) is bounded on [ ๐‘Ž , โˆž ) ๐•‹ , and it is multiplied by an integral converging to zero as ๐‘ก โ†’ โˆž . Therefore, formula (8.14) follows.

In the last result of this paper we construct another solution of the nonhomogeneous system (8.1) satisfying condition (8.14) and such that it starts with a possibly nonzero initial condition at ๐‘ก = ๐‘Ž . It can be considered as an extension of Theorem 8.5.

Corollary 8.6. Let ๐›ผ โˆˆ ฮ“ and ๐œ† โˆˆ โ„‚ โงต โ„ . Assume that ( ๐’ฎ ๐œ† ) is in the limit point or limit circle case. For ๐‘“ โˆˆ ๐ฟ 2 ๐’ฒ and ๐‘ฃ โˆˆ โ„‚ ๐‘› we define ฬƒ ๐‘ง ( ๐‘ก , ๐œ† , ๐›ผ ) โˆถ = ๐’ณ + [ ( ๐‘ก , ๐œ† , ๐›ผ ) ๐‘ฃ + ฬ‚ ๐‘ง ( ๐‘ก , ๐œ† , ๐›ผ ) , โˆ€ ๐‘ก โˆˆ ๐‘Ž , โˆž ) ๐•‹ , ( 8 . 3 1 ) where ฬ‚ ๐‘ง ( โ‹… , ๐œ† , ๐›ผ ) is given in (8.9). Then ฬƒ ๐‘ง ( โ‹… , ๐œ† , ๐›ผ ) solves the system (8.1) with ๐›ผ ฬƒ ๐‘ง ( ๐‘Ž , ๐œ† , ๐›ผ ) = ๐‘ฃ , โ€– ฬƒ ๐‘ง ( โ‹… , ๐œ† , ๐›ผ ) โ€– ๐’ฒ โ‰ค 1 | | | | I m ( ๐œ† ) โ€– ๐‘“ โ€– ๐’ฒ + โ€– โ€– ๐’ณ + โ€– โ€– ( โ‹… , ๐œ† , ๐›ผ ) ๐‘ฃ ๐’ฒ , ( 8 . 3 2 ) l i m ๐‘ก โ†’ โˆž ๐’ณ โˆ— + ( ๐‘ก , ๐œˆ , ๐›ผ ) ๐’ฅ ฬƒ ๐‘ง ( ๐‘ก , ๐œ† , ๐›ผ ) = 0 , f o r e v e r y ๐œˆ โˆˆ โ„‚ โงต โ„ . ( 8 . 3 3 ) In addition, if the system ( ๐’ฎ ๐œ† ) is in the limit point case, then ฬƒ ๐‘ง ( โ‹… , ๐œ† , ๐›ผ ) is the only ๐ฟ 2 ๐’ฒ solution of (8.1) satisfying ๐›ผ ฬƒ ๐‘ง ( ๐‘Ž , ๐œ† , ๐›ผ ) = ๐‘ฃ .

Proof. As in the previous proof we suppress the dependence on ๐›ผ . Since the function ๐’ณ + ( โ‹… , ๐œ† ) ๐‘ฃ solves ( ๐’ฎ ๐œ† ), it follows from Proposition 8.4 that ฬƒ ๐‘ง ( โ‹… , ๐œ† , ๐›ผ ) solves the system (8.1) and ๐›ผ ฬƒ ๐‘ง ( ๐‘Ž , ๐œ† ) = ๐›ผ ๐’ณ + ( ๐‘Ž , ๐œ† ) ๐‘ฃ = ๐‘ฃ . Next, ฬƒ ๐‘ง ( โ‹… , ๐œ† ) โˆˆ ๐ฟ 2 ๐’ฒ as a sum of two ๐ฟ 2 ๐’ฒ functions. The limit in (8.33) follows from the limit (8.14) of Theorem 8.5 and from identity (7.4), because l i m ๐‘ก โ†’ โˆž ๐’ณ โˆ— + ( ๐‘ก , ๐œˆ ) ๐’ฅ ฬƒ ๐‘ง ( ๐‘ก , ๐œ† ) = l i m ๐‘ก โ†’ โˆž ๎€ฝ ๐’ณ โˆ— + ( ๐‘ก , ๐œˆ ) ๐’ฅ ๐’ณ + ( ๐‘ก , ๐œ† ) ๐‘ฃ + ๐’ณ โˆ— + ๎€พ ( ๐‘ก , ๐œˆ ) ๐’ฅ ฬ‚ ๐‘ง ( ๐‘ก , ๐œ† ) = 0 . ( 8 . 3 4 ) Inequality (8.32) is obtained from estimate (8.13) by the triangle inequality.
Now we prove the uniqueness of ฬƒ ๐‘ง ( โ‹… , ๐œ† ) in the case of ( ๐’ฎ ๐œ† ) being of the limit point type. If ๐‘ง 1 ( โ‹… , ๐œ† ) and ๐‘ง 2 ( โ‹… , ๐œ† ) are two ๐ฟ 2 ๐’ฒ solutions of (8.1) satisfying ๐›ผ ๐‘ง 1 ( ๐‘Ž , ๐œ† ) = ๐‘ฃ = ๐›ผ ๐‘ง 2 ( ๐‘Ž , ๐œ† ) , then their difference ๐‘ง ( โ‹… , ๐œ† ) โˆถ = ๐‘ง 1 ( โ‹… , ๐œ† ) โˆ’ ๐‘ง 2 ( โ‹… , ๐œ† ) also belongs to ๐ฟ 2 ๐’ฒ and solves system ( ๐’ฎ ๐œ† ) with ๐›ผ ๐‘ง ( โ‹… , ๐œ† ) = 0 . Since ๐‘ง ( โ‹… , ๐œ† ) = ฮจ ( โ‹… , ๐œ† ) ๐‘ for some ๐‘ โˆˆ โ„‚ 2 ๐‘› , the initial condition ๐›ผ ๐‘ง ( โ‹… , ๐œ† ) = 0 implies through (4.7) that ๎‚ ๐‘ง ( โ‹… , ๐œ† ) = ๐‘ ( โ‹… , ๐œ† ) ๐‘‘ for some ๐‘‘ โˆˆ โ„‚ ๐‘› . If ๐‘‘ โ‰  0 , then ๐‘ง ( โ‹… , ๐œ† ) โˆ‰ ๐ฟ 2 ๐’ฒ , because in the limit point case the columns of ๎‚ ๐‘ ( โ‹… , ๐œ† ) do not belong to ๐ฟ 2 ๐’ฒ , which is a contradiction. Therefore, ๐‘‘ = 0 and the uniqueness of ฬƒ ๐‘ง ( โ‹… , ๐œ† ) is established.

Acknowledgments

The research was supported by the Czech Science Foundation under Grant 201/09/J009, by the research project MSM 0021622409 of the Ministry of Education, Youth, and Sports of the Czech Republic, and by the Grant MUNI/A/0964/2009 of Masaryk University.