Abstract

Using an integral averaging method and generalized Riccati technique, by introducing a parameter 𝛽1, we derive new oscillation criteria for second-order partial differential equations with damping. The results are of high degree of generality and sharper than most known ones.

1. Introduction

Consider the second-order partial delay differential equation𝜕𝜕𝜕𝑡𝑟(𝑡)𝜕𝑡𝑢(𝑥,𝑡)+𝑝(𝑡)𝜕𝑢(𝑥,𝑡)𝜕𝑡=𝑎(𝑡)Δ𝑢(𝑥,𝑡)+𝑠𝑘=1𝑎𝑘(𝑡)Δ𝑢𝑥,𝑡𝜌𝑘(𝑡)𝑞(𝑥,𝑡)𝑓(𝑢(𝑥,𝑡))𝑚𝑗=1𝑞𝑗(𝑥,𝑡)𝑓𝑗𝑢𝑥,𝑡𝜎𝑗,(𝑥,𝑡)Ω×𝑅+𝐺,(1.1) where Δ is the Laplacian in 𝑅𝑁,𝑅+=[0,) and Ω is a bounded domain in 𝑅𝑁 with a piecewise smooth boundary 𝜕Ω.

Throughout this paper, we assume that(H1)𝑟(𝑡)𝐶1(𝑅+,(0,)),𝑝(𝑡)𝐶(𝑅+,𝑅);(H2)𝑞(𝑥,𝑡),𝑞𝑗(𝑥,𝑡)𝐶(𝐺,𝑅+),𝑞(𝑡)=min𝑥𝐺𝑞(𝑥,𝑡),𝑞𝑗(𝑡)=min𝑥𝐺𝑞𝑗(𝑥,𝑡),𝑗𝐼𝑚={1,2,,𝑚};(H3)𝑎(𝑡),𝑎𝑘(𝑡),𝜌𝑘(𝑡)𝐶(𝑅+,𝑅+),lim𝑡(𝑡𝜌𝑘(𝑡))=, and 𝜎𝑗 are nonnegative constants, 𝑗𝐼𝑚, 𝑘𝐼𝑠={1,2,,𝑠};(H4)𝑓(𝑢)𝐶1(𝑅,𝑅),𝑓𝑗(𝑢)𝐶(𝑅,𝑅) are convex in 𝑅+ with 𝑢𝑓𝑗(𝑢)>0,𝑢𝑓(𝑢)>0, and 𝑓(𝑢)𝜇>0, (𝑢0).

We say that a continuous function 𝐻(𝑡,𝑠) belongs to the function class 𝜔, denoted by 𝐻𝜔, if 𝐻𝐶(𝐷,𝑅+), where 𝐷={(𝑡,𝑠)<𝑠𝑡<+}, satisfy𝐻(𝑡,𝑡)=0,𝐻(𝑡,𝑠)>0,<𝑠<𝑡<+.(1.2)

Furthermore, the continuous partial derivative 𝜕𝐻/𝜕𝑆 exists on 𝐷, and there is 𝐿loc(𝐷,𝑅), such that𝜕𝐻𝜕𝑠=(𝑡,𝑠)𝐻(𝑡,𝑠).(1.3)

Various results on the oscillation for the partial functional differential equation have been obtained recently. We refer the reader to [13] for parabolic equations and to [411] for hyperbolic equations.

Recently, Li and Cui [12] studied the equation of the form𝜕𝜕𝜕𝑡𝑝(𝑡)𝜕𝑡𝑢(𝑥,𝑡)+𝑙𝑖=1𝜆𝑖(𝑡)𝑢𝑥,𝑡𝜏𝑖=𝑎(𝑡)Δ𝑢(𝑥,𝑡)+𝑠𝑘=1𝑎𝑘(𝑡)Δ𝑢𝑥,𝑡𝜌𝑘(𝑡)𝑞(𝑡)𝑢(𝑥,𝑡)𝑚𝑗=1𝑞𝑗(𝑥,𝑡)𝑢𝑥,𝑡𝜎𝑗,(𝑥,𝑡)Ω×𝑅+𝐺(1.4) with Robin boundary condition𝜕𝑢(𝑥,𝑡)𝜕𝛾+𝑔(𝑥,𝑡)𝑢(𝑥,𝑡)=0,(𝑥,𝑡)𝜕Ω×𝑅+,(1.5) where 𝛾 is the unit exterior vector to 𝜕Ω and 𝑔(𝑥,𝑡) is a nonnegative continuous function on 𝜕Ω×𝑅+ and obtained the following result.

Theorem A (see [12, Theorem 2.2]). Suppose that 𝐻𝜔, let(C1)0<inf𝑠𝑡0{liminf𝑡(𝐻(𝑡,𝑠)/𝐻(𝑡,𝑡0))}, suppose that there exists some 𝑗0𝐼𝑚 and there exist two functions 𝜙𝐶1[𝑡0,),𝐴𝐶[𝑡0,) satisfying,(C2)limsup𝑡(1/𝐻(𝑡,𝑡0))𝑡𝑡0𝑝(𝑠𝜎𝑗0)𝜙(𝑠)2(𝑡,𝑠)𝑑𝑠<,(C3)𝑡0(𝐴2+(𝑠)/𝑝(𝑠𝜎𝑗0)𝜙(𝑠))𝑑𝑠=, and for every 𝑡1𝑡0,(C4)limsup𝑡(1/𝐻(𝑡,𝑡1))𝑡𝑡1[𝐻(𝑡,𝑠)𝜓(𝑠)(1/4)𝜙(𝑠)𝑝(𝑠𝜎𝑗0)2(𝑡,𝑠)]𝑑𝑠𝐴(𝑡1), where 𝜙(𝑠)=exp{2𝑠𝜙(𝜉)𝑑𝜉},𝐴+(𝑠)=max{𝐴(𝑠),0}, and 𝜓(𝑠)=𝜙(𝑠){𝛼𝑗0𝑞𝑗0(𝑠)[1𝑙𝑖=1𝜆𝑖(𝑠𝜎𝑗0)]+𝑝(𝑠𝜎𝑗0)𝜙2(𝑠)[𝑝(𝑠𝜎𝑗0)𝜙(𝑠)]}. Then every solution 𝑢(𝑥,𝑡) of the problem (1.4), (1.5) is oscillatory in 𝐺.

In 2008, Rogovchenko and Tuncay [13] established new oscillation criteria for second-order nonlinear differential equations with damping term𝑟(𝑡)𝑥(𝑡)+𝑝(𝑡)𝑥(𝑡)+𝑞(𝑡)𝑓(𝑥(𝑡))=0,(1.6) without an assumption that has been required in related results reported in the literature over the last two decades. Motivated by the ideas in [12, 13], by introducing a Parameter 𝛽1, we will further improve Theorems A and derive new interval criteria for oscillation of (1.1). We suggest two different approaches which allow one to remove condition (C2) in Theorem A. A modified integral averaging technique enables one to simplify essentially the proofs of oscillation criteria.

2. Main Results

Theorem 2.1. Suppose that there exists a function 𝑦𝐶1[𝑡0,) such that for some 𝛽1 and for some 𝐻𝜔, lim𝑡1sup𝐻𝑡,𝑡0𝑡𝑡0𝛽𝐻(𝑡,𝑠)𝜓(𝑠)4𝜇𝑣(𝑠)𝑟(𝑠)2(𝑡,𝑠)𝑑𝑠=,𝑡0,(2.1) where 𝑣(𝑡)=exp2𝑡𝜇𝑦(𝑠)𝑝(𝑠),2𝑟(𝑠)𝑑𝑠(2.2)𝜓(𝑡)=𝑣(𝑡)𝑞(𝑡)+𝜇𝑟(𝑡)𝑦2(𝑡)𝑝(𝑡)𝑦(𝑡)(𝑟(𝑡)𝑦(𝑡)),(2.3) then every solution 𝑢(𝑥,𝑡) of the problem (1.1), (1.5) is oscillatory in 𝐺.

Proof. Suppose to the contrary that there is a nonoscillatory solution 𝑢(𝑥,𝑡) of the problem (1.1), (1.5) which has no zero on Ω×[𝑡0,) for some 𝑡0>0. Without loss of generality, we assume that 𝑢(𝑥,𝑡)>0,𝑢(𝑥,𝑡𝜌𝑘(𝑡))>0 and 𝑢(𝑥,𝑡𝜎𝑗)>0 in Ω×[𝑡1,),𝑡1𝑡0,𝑘𝐼𝑠,𝑗𝐼𝑚. Integrating (1.1) with respect to 𝑥 over the domain Ω, we have 𝑑𝑑𝑑𝑡𝑟(𝑡)𝑑𝑡Ω𝑑𝑢(𝑥,𝑡)𝑑𝑥+𝑝(𝑡)𝑑𝑡Ω𝑢(𝑥,𝑡)𝑑𝑥=𝑎(𝑡)ΩΔ𝑢(𝑥,𝑡)𝑑𝑥+𝑠𝑘=1𝑎𝑘(𝑡)ΩΔ𝑢𝑥,𝑡𝜌𝑘(𝑡)𝑑𝑥Ω𝑞(𝑥,𝑡)𝑓(𝑢(𝑥,𝑡))𝑑𝑥𝑚𝑗=1Ω𝑞𝑗(𝑥,𝑡)𝑓𝑗𝑢𝑥,𝑡𝜎𝑗𝑑𝑥,𝑡𝑡1.(2.4) From Green’s formula and the boundary condition (1.5), we have ΩΔ𝑢(𝑥,𝑡)𝑑𝑥=𝜕Ω𝜕𝑢(𝑥,𝑡)𝜕𝛾𝑑𝑠=𝜕Ω𝑔(𝑥,𝑡)𝑢(𝑥,𝑡)𝑑𝑠0,ΩΔ𝑢𝑥,𝑡𝜌𝑘(𝑡)𝑑𝑥=𝜕Ω𝜕𝑢𝑥,𝑡𝜌𝑘(𝑡)𝜕𝛾𝑑𝑠=𝜕Ω𝑔𝑥,𝑡𝜌𝑘𝑢(𝑡)𝑥,𝑡𝜌𝑘(𝑡)𝑑𝑠0,𝑡𝑡1,𝑘𝐼𝑠,(2.5) where 𝑑𝑠 denotes the surface element on 𝜕Ω. Moreover, from (H2), (H4) and Jensen’s inequality, we have Ω𝑞(𝑥,𝑡)𝑓(𝑢(𝑥,𝑡))𝑑𝑥𝑞(𝑡)Ω||Ω||1𝑓(𝑢(𝑥,𝑡))𝑑𝑥𝑞(𝑡)𝑓||Ω||Ω,𝑢(𝑥,𝑡)𝑑𝑥Ω𝑞𝑗(𝑥,𝑡)𝑓𝑗𝑢𝑥,𝑡𝜎𝑗𝑑𝑥𝑞𝑗(𝑡)Ω𝑓𝑗𝑢𝑥,𝑡𝜎𝑗||Ω||𝑞𝑑𝑥𝑗(𝑡)𝑓𝑗1||Ω||Ω𝑢𝑥,𝑡𝜎𝑗𝑑𝑥,(2.6) where |Ω|=Ω𝑑𝑥.
Set 1𝑈(𝑡)=||Ω||Ω𝑢(𝑥,𝑡)𝑑𝑥,𝑡𝑡1.(2.7) In view of (2.5)–(2.7), (2.4) yields that 𝑟(𝑡)𝑈(𝑡)+𝑝(𝑡)𝑈(𝑡)+𝑞(𝑡)𝑓(𝑈(𝑡))+𝑚𝑗=1𝑞𝑗(𝑡)𝑓𝑗𝑈𝑡𝜎𝑗0,𝑡𝑡1.(2.8) Note that (H4), (2.8) yields that (𝑟(𝑡)𝑈(𝑡))+𝑝(𝑡)𝑈(𝑡)+𝑞(𝑡)𝑓(𝑈(𝑡))0,𝑡𝑡1.(2.9) Put 𝑈𝑤(𝑡)=𝑣(𝑡)𝑟(𝑡)(𝑡)𝑓(𝑈(𝑡))+𝑦(𝑡),𝑡𝑡1,(2.10) where 𝑣(𝑡) is given by (2.2), then 𝑤(𝑡)=2𝜇𝑦(𝑡)+𝑝(𝑡)𝑟(𝑡)𝑤(𝑡)+𝑣(𝑡)𝑟(𝑡)𝑈(𝑡)𝑈𝑓(𝑈(𝑡))𝑟(𝑡)𝑓(𝑈(𝑡))(𝑡)2𝑓2(𝑈(𝑡))+(𝑟(𝑡)𝑦(𝑡))𝑝2𝜇𝑦(𝑡)+(𝑡)𝑟(𝑡)𝑤(𝑡)+𝑣(𝑡)𝑟(𝑡)𝑈(𝑡)𝑈𝑓(𝑈(𝑡))𝜇𝑟(𝑡)(𝑡)2𝑓2(𝑈(𝑡))+(𝑟(𝑡)𝑦(𝑡))2𝜇𝑦(𝑡)+𝑝(𝑡)𝑟(𝑡)𝑤(𝑡)𝑣(𝑡)𝑝(𝑡)𝑈(𝑡)𝑈𝑓(𝑈(𝑡))+𝑞(𝑡)+𝜇𝑟(𝑡)(𝑡)𝑓(𝑈(𝑡))2(𝑟(𝑡)𝑦(𝑡))=2𝜇𝑦(𝑡)+𝑝(𝑡)𝑟(𝑡)𝑤(𝑡)𝑣(𝑡)𝑝(𝑡)𝑤(𝑡)𝑣(𝑡)𝑟(𝑡)𝑦(𝑡)+𝑞(𝑡)+𝜇𝑟(𝑡)𝑤(𝑡)𝑣(𝑡)𝑟(𝑡)𝑦(𝑡)2(𝑟(𝑡)𝑦(𝑡))=𝑝2𝜇𝑦(𝑡)+(𝑡)𝑟(𝑡)𝑤(𝑡)𝑣(𝑡)𝑝(𝑡)𝑤𝑣(𝑡)𝑟(𝑡)𝑤(𝑡)𝑝(𝑡)𝑦(𝑡)+𝑞(𝑡)+𝜇𝑟(𝑡)2(𝑡)𝑣2(𝑡)𝑟2(𝑡)2𝜇𝑤(𝑡)𝑦(𝑡)𝑣(𝑡)+𝜇𝑟(𝑡)𝑦2(𝑡)(𝑟(𝑡)𝑦(𝑡))=2𝜇𝑦(𝑡)𝑤(𝑡)+𝑝(𝑡)𝑟(𝑡)𝑤(𝑡)𝑝(𝑡)𝑟(𝑡)𝑤(𝑡)𝑣(𝑡)𝑝(𝑡)𝑦(𝑡)+𝑞(𝑡)+𝜇𝑟(𝑡)𝑦2(𝑡)(𝑟(𝑡)𝑦(𝑡))𝑤+2𝜇𝑦(𝑡)𝑤(𝑡)𝜇2(𝑡)𝑣(𝑡)𝑟(𝑡)=𝑣(𝑡)𝑝(𝑡)𝑦(𝑡)+𝑞(𝑡)+𝜇𝑟(𝑡)𝑦2(𝑡)(𝑟(𝑡)𝑦(𝑡))𝑤𝜇2(𝑡)𝑤𝑣(𝑡)𝑟(𝑡)=𝜓(𝑡)𝜇2(𝑡),𝑣(𝑡)𝑟(𝑡)(2.11) that is, 𝜓(𝑡)𝑤𝑤(𝑡)𝜇2(𝑡)𝑣(𝑡)𝑟(𝑡),(2.12) where 𝜓(𝑡) is defined by (2.3). Multiplying (2.12) by 𝐻(𝑡,𝑠) and integrating from 𝑇 to 𝑡, we have, for some 𝛽1 and for all 𝑡𝑇𝑡1, 𝑡𝑇𝐻(𝑡,𝑠)𝜓(𝑠)𝑑𝑠𝑡𝑇𝐻(𝑡,𝑠)𝑤(𝑠)𝑑𝑠𝑡𝑇𝜇𝐻(𝑡,𝑠)𝑤𝑣(𝑠)𝑟(𝑠)2(𝑠)𝑑𝑠=𝐻(𝑡,𝑇)𝑤(𝑇)𝑡𝑇(𝑡,𝑠)𝐻(𝑡,𝑠)𝑤(𝑠)+𝐻(𝑡,𝑠)𝜇𝑤2(𝑠)𝑣(𝑠)𝑟(𝑠)𝑑𝑠=𝐻(𝑡,𝑇)𝑤(𝑇)𝑡𝑇𝜇𝐻(𝑡,𝑠)𝛽𝑣(𝑠)𝑟(𝑠)𝑤(𝑠)+𝛽𝑣(𝑠)𝑟(𝑠)4𝜇(𝑡,𝑠)2+𝛽𝑑𝑠4𝜇𝑡𝑇𝑣(𝑠)𝑟(𝑠)2(𝑡,𝑠)𝑑𝑠𝑡𝑇(𝛽1)𝜇𝛽𝑣(𝑠)𝑟(𝑠)𝐻(𝑡,𝑠)𝑤2(𝑠)𝑑𝑠.(2.13) Writing the latter inequality in the form 𝑡𝑇𝛽𝐻(𝑡,𝑠)𝜓(𝑠)4𝜇𝑣(𝑠)𝑟(𝑠)2(𝑡,𝑠)𝑑𝑠𝐻(𝑡,𝑇)𝑤(𝑇)𝑡𝑇𝜇𝐻(𝑡,𝑠)𝛽𝑣(𝑠)𝑟(𝑠)𝑤(𝑠)+𝛽𝑣(𝑠)𝑟(𝑠)4𝜇(𝑡,𝑠)2𝑑𝑠𝑡𝑇(𝛽1)𝜇𝛽𝑣(𝑠)𝑟(𝑠)𝐻(𝑡,𝑠)𝑤2(𝑠)𝑑𝑠.(2.14) Using the properties of 𝐻(𝑡,𝑠), we have 𝑡𝑡1𝛽𝐻(𝑡,𝑠)𝜓(𝑠)4𝜇𝑣(𝑠)𝑟(𝑠)2(𝑡,𝑠)𝑑𝑠𝐻𝑡,𝑡1||𝑤𝑡1||𝐻𝑡,𝑡0||𝑤𝑡1||,𝑡𝑡1,(2.15) and for all 𝑡𝑡1𝑡0, 𝑡𝑡0𝛽𝐻(𝑡,𝑠)𝜓(𝑠)4𝜇𝑣(𝑠)𝑟(𝑠)2(𝑡,𝑠)𝑑𝑠𝐻𝑡,𝑡0𝑡1𝑡0||||||𝑤𝑡𝜓(𝑠)𝑑𝑠+1||.(2.16) By (2.16), lim𝑡1sup𝐻𝑡,𝑡0𝑡𝑡0𝛽𝐻(𝑡,𝑠)𝜓(𝑠)4𝜇𝑣(𝑠)𝑟(𝑠)2(𝑡,𝑠)𝑑𝑠𝑡1𝑡0||||||𝑤𝑡𝜓(𝑠)𝑑𝑠+1||<,(2.17) which contradicts (2.1). This proves Theorem 2.1.

Consider a Kamenev-type function 𝐻(𝑡,𝑠) defined by 𝐻(𝑡,𝑠)=(𝑡𝑠)𝑛1,(𝑡,𝑠)𝐷, where 𝑛>2 is an integer. Obviously, 𝐻 belongs to the class 𝜔, and (𝑡,𝑠)=(𝑛1)(𝑡𝑠)(𝑛3)/2,(𝑡,𝑠)𝐷. Then, we can get the following results.

Corollary 2.2. Suppose that there exists a function 𝑦(𝑡)𝐶1([𝑡0,);𝑅) such that for some integer 𝑛>2 and some 𝛽1, lim𝑡1sup𝑡𝑛1𝑡𝑡0(𝑡𝑠)𝑛3(𝑡𝑠)2𝜓(𝑠)𝛽(𝑛1)24𝜇𝑣(𝑠)𝑟(𝑠)𝑑𝑠=,(2.18) where 𝑣(𝑡) and 𝜓(𝑡) are as defined in Theorem 2.1. Then every solution 𝑢(𝑥,𝑡) of the problem (1.1), (1.5) is oscillatory in 𝐺.

Theorem 2.3. Suppose that 0<inf𝑠𝑡0lim𝑡inf𝐻(𝑡,𝑠)𝐻𝑡,𝑡0.(2.19) Assume that there exist functions 𝑓𝐶1([𝑡0,);𝑅) and 𝜙𝐶([𝑡0,);𝑅) such that, for all 𝑡𝑇𝑡0 and for some 𝛽>1, lim𝑡1sup𝐻(𝑡,𝑇)𝑡𝑇𝛽𝐻(𝑡,𝑠)𝜓(𝑠)4𝜇𝑣(𝑠)𝑟(𝑠)2(𝑡,𝑠)𝑑𝑠𝜙(𝑇),(2.20) where 𝑣(𝑡),𝜓(𝑡) are as defined in Theorem 2.1 and suppose further that lim𝑡sup𝑡𝑡0𝜙2+(𝑠)𝑣(𝑠)𝑟(𝑠)=,(2.21) where 𝜙+(𝑡)=max(𝜙(𝑡),0). Then every solution 𝑢(𝑥,𝑡) of the problem (1.1), (1.5) is oscillatory in 𝐺.

Proof. Suppose to the contrary that there is a nonoscillatory solution 𝑢(𝑥,𝑡) of the problem (1.1), (1.5) which has no zero on Ω×[𝑡1,) for some 𝑡1>𝑡0, without loss of generality, we assume that 𝑢(𝑥,𝑡)>0,𝑢(𝑥,𝑡𝜌𝑘(𝑡))>0 and 𝑢(𝑥,𝑡𝜎𝑗)>0 in Ω×[𝑡1,),𝑡𝑡1𝑡0,𝑘𝐼𝑠,𝑗𝐼𝑚.
As in the proof of Theorem 2.1, (2.14) holds for all 𝑡𝑇𝑡1, we have 1𝐻(𝑡,𝑇)𝑡𝑇𝛽𝐻(𝑡,𝑠)𝜓(𝑠)4𝜇𝑣(𝑠)𝑟(𝑠)2(1𝑡,𝑠)𝑑𝑠𝑤(𝑇)𝐻(𝑡,𝑇)𝑡𝑇𝜇𝐻(𝑡,𝑠)𝛽𝑣(𝑠)𝑟(𝑠)𝑤(𝑠)+𝛽𝑣(𝑠)𝑟(𝑠)4𝜇(𝑡,𝑠)21𝑑𝑠𝐻(𝑡,𝑇)𝑡𝑇(𝛽1)𝜇𝛽𝑣(𝑠)𝑟(𝑠)𝐻(𝑡,𝑠)𝑤21(𝑠)𝑑𝑠𝑤(𝑇)𝐻(𝑡,𝑇)𝑡𝑇(𝛽1)𝜇𝛽𝑣(𝑠)𝑟(𝑠)𝐻(𝑡,𝑠)𝑤2(𝑠)𝑑𝑠.(2.22) Therefore, for 𝑡>𝑇𝑇0, lim𝑡1sup𝐻(𝑡,𝑇)𝑡𝑇𝛽𝐻(𝑡,𝑠)𝜓(𝑠)4𝜇𝑣(𝑠)𝑟(𝑠)2(𝑡,𝑠)𝑑𝑠𝑤(𝑇)lim𝑡1inf𝐻(𝑡,𝑇)𝑡𝑇(𝛽1)𝜇𝛽𝑣(𝑠)𝑟(𝑠)𝐻(𝑡,𝑠)𝑤2(𝑠)𝑑𝑠.(2.23) It follows from (2.20) that 𝑤(𝑇)𝜙(𝑇)+lim𝑡1inf𝐻(𝑡,𝑇)𝑡𝑇(𝛽1)𝜇𝛽𝑣(𝑠)𝑟(𝑠)𝐻(𝑡,𝑠)𝑤2(𝑠)𝑑𝑠(2.24) for all 𝑇𝑡1 and for any 𝛽>1. Then, for all 𝑇𝑡1, 𝑤(𝑇)𝜙(𝑇),(2.25)lim𝑡1inf𝐻𝑡,𝑡1𝑡𝑡1𝐻(𝑡,𝑠)𝑤𝑣(𝑠)𝑟(𝑠)2𝛽(𝑠)𝑑𝑠𝑤𝑡𝜇(𝛽1)1𝑡𝜙1.(2.26) Now, we claim that 𝑡1𝑤2(𝑠)𝑣(𝑠)𝑟(𝑠)𝑑𝑠<.(2.27) Suppose the contrary, that is, 𝑡1𝑤2(𝑠)𝑣(𝑠)𝑟(𝑠)𝑑𝑠=.(2.28) By (2.19), there is a positive constant 𝑀1, satisfying inf𝑠𝑡0lim𝑡inf𝐻(𝑡,𝑠)𝐻𝑡,𝑡0>𝑀1>0.(2.29) Let 𝑀 be any arbitrary positive number, then from (2.28) we get that there exists a 𝑇1>𝑡1 such that, for all 𝑡𝑇1, 𝑡𝑡1𝑤2(𝑠)𝑀𝑣(𝑠)𝑟(𝑠)𝑑𝑠𝑀1.(2.30) Using integration by parts, for all 𝑡𝑇1, we get 1𝐻𝑡,𝑡1𝑡𝑡1𝑤𝐻(𝑡,𝑠)2(𝑠)1𝑣(𝑠)𝑟(𝑠)𝑑𝑠=𝐻𝑡,𝑡1𝑡𝑡1𝜕𝐻(𝑡,𝑠)𝜕𝑠𝑠𝑡1𝑤2(𝜏)1𝑣(𝜏)𝑟(𝜏)𝑑𝜏𝑑𝑠𝐻𝑡,𝑡1𝑡𝑇1𝜕𝐻(𝑡,𝑠)𝜕𝑠𝑠𝑡1𝑤2(𝜏)𝑀𝑣(𝜏)𝑟(𝜏)𝑑𝜏𝑑𝑠𝑀11𝐻𝑡,𝑡1𝑡𝑇1𝜕𝐻(𝑡,𝑠)=𝑀𝜕𝑠𝑑𝑠𝑀1𝐻𝑡,𝑇1𝐻𝑡,𝑡1.(2.31) By (2.29), there exists a 𝑇2>𝑇1 such that, for all 𝑡𝑇2, 𝐻𝑡,𝑇1𝐻𝑡,𝑡1𝑀1.(2.32) It follows from (2.31) that for all 𝑡𝑇2, 1𝐻𝑡,𝑡1𝑡𝑡1𝑤𝐻(𝑡,𝑠)2(𝑠)𝑣(𝑠)𝑟(𝑠)𝑑𝑠𝑀.(2.33) Since 𝑀 is an arbitrary positive constant, lim𝑡1inf𝐻𝑡,𝑡1𝑡𝑡1𝑤𝐻(𝑡,𝑠)2(𝑠)𝑣(𝑠)𝑟(𝑠)𝑑𝑠=,(2.34) which contradicts (2.26). Consequently, (2.27) holds. And from (2.25), we obtain 𝑡1𝜙2+(𝑠)𝑣(𝑠)𝑟(𝑠)𝑑𝑠𝑡1𝑤2(𝑠)𝑣(𝑠)𝑟(𝑠)𝑑𝑠<,(2.35) which contradicts (2.21). This completes the proof of Theorem 2.3.

Choosing 𝐻 as in Corollary 2.2, by Theorem 2.3, we can obtain the following corollary.

Corollary 2.4. Let 𝑣(𝑡) and 𝜓(𝑡) be as in Theorem 2.1, assume further that there exist functions 𝑓𝐶1([𝑡0,);𝑅) and 𝜙𝐶([𝑡0,);𝑅) such that, for all 𝑇𝑡0, for some integer 𝑛>2, and for some 𝛽>1, lim𝑡1sup𝑡𝑛1𝑡𝑇(𝑡𝑠)𝑛3(𝑡𝑠)2𝜓(𝑠)𝛽(𝑛1)24𝜇𝑣(𝑠)𝑟(𝑠)𝑑𝑠𝜙(𝑇)(2.36) and (2.21) hold. Then every solution 𝑢(𝑥,𝑡) of the problem (1.1), (1.5) is oscillatory in 𝐺.

Theorem 2.5. Suppose that there exists a function 𝑓𝐶1([𝑡0,);𝑅) such that for some 𝛽1 and for some 𝐻𝜔, lim𝑡1sup𝐻𝑡,𝑡0𝑡𝑡0𝐻(𝑡,𝑠)𝑝𝜓(𝑠)2(𝑠)𝑣(𝑠)2𝜇𝑟(𝑠)𝜇𝛽2𝑣(𝑠)𝑟(𝑠)2(𝑡,𝑠)𝑑𝑠=,(2.37) where 𝑣(𝑡)=exp2𝜇𝑡,𝑦(𝑠)𝑑𝑠𝜓(𝑡)=𝑣(𝑡)𝑞(𝑡)+𝜇𝑟(𝑡)𝑦2(𝑡)𝑝(𝑡)𝑦(𝑡)(𝑟(𝑡)𝑦(𝑡)).(2.38) Then every solution 𝑢(𝑥,𝑡) of the problem (1.1), (1.5) is oscillatory in 𝐺.

Proof. As in Theorem 2.1, without loss of generality, we assume that a nonoscillatory solution 𝑢(𝑥,𝑡) of the problem (1.1), (1.5) satisfies 𝑢(𝑥,𝑡)>0,𝑢(𝑥,𝑡𝜌𝑘(𝑡))>0 and 𝑢(𝑥,𝑡𝜎𝑗)>0 in Ω×[𝑡1,), 𝑡1𝑡0, 𝑘𝐼𝑠,𝑗𝐼𝑚. Define a generalized Riccati transformation 𝑤(𝑡)=𝑈𝑣(𝑡)𝑟(𝑡)(𝑡)𝑓(𝑈(𝑡))+𝑦(𝑡),𝑡𝑡1,(2.39) where 𝑣(𝑡) is given by (2.38). Then 𝑤(𝑡)2𝜇𝑦(𝑡)𝑤(𝑡)+𝑣(𝑡)𝑞(𝑡)+(𝑟(𝑡)𝑦(𝑡))𝑝(𝑡)𝑤(𝑡)𝑣(𝑡)𝑟(𝑡)𝑦(𝑡)𝜇𝑟(𝑡)𝑤(𝑡)𝑣(𝑡)𝑟(𝑡)𝑦(𝑡)2=𝜓(𝑡)𝑝(𝑡)𝑟(𝑡)1𝑤(𝑡)𝜇𝑟(𝑡)𝑣(𝑡)𝑤2(𝑡),𝑡𝑡1.(2.40) Using an elementary inequality 𝑎𝑥2𝑎+𝑏𝑥2𝑥2+𝑏22𝑎,(2.41) for all 𝑎>0 and for all 𝑏,𝑥𝑅, we conclude from (2.40) that 𝑝𝜓(𝑡)2(𝑡)𝑣(𝑡)2𝜇𝑟(𝑡)𝑤𝜇(𝑡)2𝑣(𝑡)𝑟(𝑡)𝑤2(𝑡),𝑡𝑡1.(2.42) Multiplying (2.42) by 𝐻(𝑡,𝑠) and integrating from 𝑇<𝑡, we obtain, for some 𝛽1 and for all 𝑡𝑇𝑡1, 𝑡𝑇𝐻(𝑡,𝑠)𝑝𝜓(𝑠)2(𝑠)𝑣(𝑠)2𝜇𝑟(𝑠)𝑑𝑠𝐻(𝑡,𝑇)𝑤(𝑇)𝑡𝑇(𝑡,𝑠)𝐻(𝑡,𝑠)𝑤(𝑠)𝑑𝑠𝑡𝑇𝜇𝑤2(𝑠)2𝑣(𝑠)𝑟(𝑠)𝑑𝑠𝐻(𝑡,𝑇)𝑤(𝑇)+𝜇𝛽2𝑡𝑇𝑣(𝑠)𝑟(𝑠)2(𝑡,𝑠)𝑑𝑠𝜇𝑡𝑇(𝛽1)𝐻(𝑡,𝑠)2𝛽𝑣(𝑠)𝑟(𝑠)𝑤2𝜇(𝑠)𝑑𝑠2𝑡𝑇𝐻(𝑡,𝑠)𝛽𝑣(𝑠)𝑟(𝑠)𝑤(𝑠)+𝛽𝑣(𝑠)𝑟(𝑠)(𝑡,𝑠)2𝑑𝑠.(2.43) Therefore, for all 𝑡𝑇𝑡1, we have 𝑡𝑇𝐻(𝑡,𝑠)𝑝𝜓(𝑠)𝐻(𝑡,𝑠)2(𝑠)𝑣(𝑠)2𝜇𝑟(𝑠)𝜇𝛽2𝑣(𝑠)𝑟(𝑠)2(𝑡,𝑠)𝑑𝑠𝐻(𝑡,𝑇)𝑤(𝑇)𝜇𝑡𝑇(𝛽1)𝐻(𝑡,𝑠)2𝛽𝑣(𝑠)𝑟(𝑠)𝑤2(𝜇𝑠)𝑑𝑠2𝑡𝑇𝐻(𝑡,𝑠)𝛽𝑣(𝑠)𝑟(𝑠)𝑤(𝑠)+𝛽𝑣(𝑠)𝑟(𝑠)(𝑡,𝑠)2𝑑𝑠.(2.44) Following the same lines as in the proof of Theorem 2.1, we have lim𝑡1sup𝐻𝑡,𝑡0𝑡𝑡0𝐻(𝑡,𝑠)𝑝𝜓(𝑠)𝐻(𝑡,𝑠)2(𝑠)𝑣(𝑠)2𝜇𝑟(𝑠)𝜇𝛽2𝑣(𝑠)𝑟(𝑠)2(𝑡,𝑠)𝑑𝑠𝑡1𝑡0||||||𝜓(𝑠)𝑑𝑠+𝑤𝑡1||<(2.45) which contradicts the assumption (2.19).
This completes the proof.

Theorem 2.6. Let (2.19) holds. Assume that there exist functions 𝑓𝐶1([𝑡0,);𝑅) and 𝜙𝐶([𝑡0,),𝑅) such that, for all 𝑡𝑡0, any 𝑇𝑡0, and for some 𝛽>1, lim𝑡1sup𝐻(𝑡,𝑇)𝑡𝑇𝐻(𝑡,𝑠)𝑝𝜓(𝑠)2(𝑠)𝑣(𝑠)2𝜇𝑟(𝑠)𝜇𝛽2𝑣(𝑠)𝑟(𝑠)2(𝑡,𝑠)𝑑𝑠𝜙(𝑇)(2.46) and (2.21) holds, where 𝜓(𝑡),𝑣(𝑡) are defined as in Theorem 2.6 and 𝜙+(𝑡)=max(𝜙(𝑡),0), then every solution 𝑢(𝑥,𝑡) of the problem (1.1), (1.5) is oscillatory in 𝐺.

Theorem 2.7. Let all assumptions of Theorem 2.6 be satisfied except that condition (2.46) be replaced by lim𝑡1inf𝐻(𝑡,𝑇)𝑡𝑇𝐻(𝑡,𝑠)𝑝𝜓(𝑠)2(𝑠)𝑣(𝑠)2𝜇𝑟(𝑠)𝜇𝛽2𝑣(𝑠)𝑟(𝑠)2(𝑡,𝑠)𝑑𝑠𝜙(𝑇).(2.47) Then every solution 𝑢(𝑥,𝑡) of the problem (1.1), (1.5) is oscillatory in 𝐺.

Remark 2.8. By introducing the parameter 𝛽 in Theorem 2.3, we derive new oscillation criteria of the problem (1.1), (1.5) which are simpler than that in Theorem A; furthermore, modifications of the proofs through the refinement of the standard integral averaging method allowed us to shorten significantly the proofs of Theorem 2.3. We can also derive a number of oscillation criteria with the appropriate choice of the function 𝐻 and 𝜌, here, we omit the details.

3. Examples

Now, we consider these following examples.

Example 3.1. Consider the partial differential equation 𝜕1𝜕𝑡𝑡𝜕1𝜕𝑡𝑢(𝑥,𝑡)+2𝑢(𝑥,𝑡𝜋)+2cos𝑡𝜕𝑢(𝑥,𝑡)1𝜕𝑡=Δ𝑢(𝑥,𝑡)+𝑡23Δ𝑢𝑥,𝑡2𝜋2𝑡3+𝑡cos21𝑡+sin𝑡𝑓(𝑢(𝑥,𝑡))𝑡2𝑓1(𝑢(𝑥,𝑡𝜋)),(𝑥,𝑡)(0,𝜋)×(0,),(3.1) with the boundary condition 𝑢𝑥(0,𝑡)=𝑢𝑥(𝜋,𝑡)=0,𝑡>0,(3.2) where 𝑓(𝑢)=𝑢3+𝑢,𝑓1(𝑢)=𝑢𝑒𝑢+𝑢.
Here, 𝑁=1,𝑙=1,𝑠=1,𝑚=1,𝜇=1, 𝑟(𝑡)=1/𝑡, 𝑝(𝑡)=2cos𝑡, 𝑞(𝑥,𝑡)=𝑞(𝑡)=(2/𝑡3+𝑡cos2𝑡+sin𝑡), 𝑞1(𝑥,𝑡)=1/𝑡2, 𝑓(𝑢)=𝑓𝑗(𝑢)=𝑢,𝑎(𝑡)=1,𝑎1(𝑡)=1/𝑡2, 𝜌1(𝑡)=(3/2)𝜋,𝜎1=𝜋,𝜏1=𝜋.
Let 1𝑦(𝑡)=𝑡+𝑡cos𝑡,(3.3) then 𝑣(𝑡)=𝑡2,𝜓(𝑡)=𝑡1.(3.4) Let 𝑛=3, for any 𝛽1, lim𝑡1sup𝑡2𝑡1(𝑡𝑠)2𝑠1𝛽𝑠21𝑠𝑑𝑠=lim𝑡1sup𝑡2𝑡1(𝑡𝑠)2𝑠1𝛽𝑠𝑑𝑠=.(3.5) Therefore, Corollary 2.2 holds, then every solution 𝑢(𝑥,𝑡) of the problem (3.1), (3.2) oscillates in (0,𝜋)×(0,).

Example 3.2. Consider the partial differential equation 𝜕1𝜕𝑡1+2𝑡3(2+sin𝑡)𝜕𝑢(𝑥,𝑡)+3𝜕𝑡𝑡11+2𝑡3(2+sin𝑡)𝜕𝑢(𝑥,𝑡)3𝜕𝑡=3Δ𝑢(𝑥,𝑡)+(2cos𝑡)Δ𝑢𝑥,𝑡2𝜋𝑡31𝑡3+2𝑡26𝑡sin𝑡+12𝑡𝑓(𝑢(𝑥,𝑡))(2𝑡+sin𝑡)𝑓1(𝑢(𝑥,𝑡𝜋))2𝑓2𝑢𝜋𝑥,𝑡2,(𝑥,𝑡)(0,𝜋)×(0,)(3.6) with the boundary condition (3.2), where 𝑓(𝑢)=𝑢5+𝑢,𝑓1(𝑢)=𝑢sin2𝑢,𝑓2(𝑢)=𝑢3cos2𝑢.
Here 𝑁=1,𝑠=1,𝑚=2,𝜇=1, 𝑟(𝑡)=(1+1/2𝑡3)(2+sin𝑡), 𝑝(𝑡)=(3/𝑡)(1+1/2𝑡3)(2+sin𝑡), 𝑞(𝑡)=𝑡3[(1𝑡3+2𝑡26𝑡)sin𝑡+12𝑡], 𝑎(𝑡)=3,𝑎1(𝑡)=2cos𝑡,𝑞1(𝑥,𝑡)=2+sin𝑡,𝑞2(𝑥,𝑡)=2, 𝜌1(𝑡)=(3/2)𝜋, 𝜎1=𝜋,𝜎2=𝜋/2.
Let 𝑦(𝑡)=0, then 𝑣(𝑡)=𝑡3 and 𝜓(𝑡)=𝑣(𝑡)𝑞(𝑡)=(1𝑡3+2𝑡26𝑡)sin𝑡+12𝑡.
Choose 𝛽=2, 𝑛=3, a straightforward computation yields limsup𝑡1𝑡2𝑡𝑇(𝑡𝑠)21𝑠3+2𝑠26𝑠sin𝑠+12𝑠2𝑠3(+12+sin𝑠)𝑑𝑠=16𝑇3cos𝑇+𝑇2(2cos𝑇6+3sin𝑇)4𝑇sin𝑇3cos𝑇=𝜙(𝑇).(3.7) Let 𝜙+(𝑡)=max(𝜙(𝑡),0). It is not difficult to see that limsup𝑡𝑡1𝜙2+(𝑠)𝑠3+(1/2)(2+sin𝑠)𝑑𝑠limsup𝑡𝑡1𝜙2+(𝑠)3𝑠3+(1/2)𝑑𝑠=.(3.8) By Corollary 2.4, we obtain that every solution of problem (3.6), (3.2) oscillates in (0,𝜋)×(0,).
Note that in this example, limsup𝑡1𝑡2𝑡14𝑠3+12+(2+sin𝑠)𝑑𝑠=,(3.9) so the condition (C2) would not have been satisfied with the same choices of 𝑣(𝑡).

Acknowledgments

This research was supported by National Science Foundation of China (11171178), the fund of subject for doctor of ministry of education (20103705110003), and the Natural Science Foundations of Shandong Province of China (ZR2009AM011 and ZR2009AL015).