Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2012, Article ID 360631, 16 pages
http://dx.doi.org/10.1155/2012/360631
Research Article

Numerical Solutions for the Three-Point Boundary Value Problem of Nonlinear Fractional Differential Equations

1Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
2School of Mathematics and Sciences, Harbin Normal University, Harbin 150025, China

Received 22 February 2012; Accepted 30 March 2012

Academic Editor: Svatoslav Staněk

Copyright © 2012 C. P. Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, UK, 2008.
  2. B. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Springer, New York, NY, USA, 2003.
  3. M. M. Meerschaert and H. P. Scheffler, “Semistable Lévy motion,” Fractional Calculus & Applied Analysis, vol. 5, no. 1, pp. 27–54, 2002. View at Google Scholar
  4. M. M. Meerschaert, D. Benson, and B. Baeumer, “Operator Levy motion and multiscaling anomalous diffusion,” Physical Review E, vol. 63, no. 2, Article ID 021112, 6 pages, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. R. L. Magin, “Fractional calculus in bioengineering,” Critical Reviews in Biomedical Engineering, vol. 32, no. 1, pp. 1112–1117, 2004. View at Google Scholar · View at Scopus
  6. R. L. Magin, “Fractional calculus in bioengineering, part 2,” Critical Reviews in Biomedical Engineering, vol. 32, no. 2, pp. 105–193, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. R. L. Magin, “Fractional calculus in bioengineering, part 3,” Critical Reviews in Biomedical Engineering, vol. 32, no. 3-4, pp. 195–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Liu, V. Anh, I. Turner, and P. Zhuang, “Time fractional advection-dispersion equation,” Journal of Applied Mathematics & Computing, vol. 13, no. 1-2, pp. 233–245, 2003. View at Publisher · View at Google Scholar
  9. F. Liu, V. Anh, and I. Turner, “Numerical solution of the space fractional Fokker-Planck equation,” Journal of Computational and Applied Mathematics, vol. 166, no. 1, pp. 209–219, 2004. View at Publisher · View at Google Scholar
  10. R. Schumer, D. A. Benson, M. M. Meerschaert, and B. Baeumer, “Multiscaling fractional advection-dispersion equations and their solutions,” Water Resources Research, vol. 39, pp. 1022–1032, 2003. View at Google Scholar
  11. Y. A. Rossikhin and M. V. Shitikova, “Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids,” Applied Mechanics Reviews, vol. 50, no. 1, pp. 15–67, 1997. View at Google Scholar · View at Scopus
  12. T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, “Chaos in a fractional order Chua's system,” IEEE Transactions on Circuits and Systems I, vol. 42, no. 8, pp. 485–490, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Petráš, “Chaos in the fractional-order Volta's system: modeling and simulation,” Nonlinear Dynamics, vol. 57, no. 1-2, pp. 157–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. S. Tavazoei and M. Haeri, “Chaotic attractors in incommensurate fractional order systems,” Physica D, vol. 237, no. 20, pp. 2628–2637, 2008. View at Publisher · View at Google Scholar
  15. J. T. Machado, “Discrete-time fractional-order controllers,” Fractional Calculus & Applied Analysis, vol. 4, no. 1, pp. 47–66, 2001. View at Google Scholar
  16. W. Wyss, “The fractional Black-Scholes equation,” Fractional Calculus and Applied Analysis, vol. 3, no. 1, pp. 51–61, 2000. View at Google Scholar
  17. E. Scalas, R. Gorenflo, and F. Mainardi, “Fractional calculus and continuous-time finance,” Physica A, vol. 284, no. 1–4, pp. 376–384, 2000. View at Publisher · View at Google Scholar
  18. M. Raberto, E. Scalas, and F. Mainardi, “Waiting-times and returns in high-frequency financial data: an empirical study,” Physica A, vol. 314, no. 1–4, pp. 749–755, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Podlubny, Fractional Differential Equations, Academic Press, New York, NY, USA, 1999.
  20. V. Daftardar-Gejji and S. Bhalekar, “Solving multi-term linear and non-linear diffusion-wave equations of fractional order by Adomian decomposition method,” Applied Mathematics and Computation, vol. 202, no. 1, pp. 113–120, 2008. View at Publisher · View at Google Scholar
  21. N. H. Sweilam, M. M. Khader, and R. F. Al-Bar, “Numerical studies for a multi-order fractional differential equation,” Physics Letters A, vol. 371, no. 1-2, pp. 26–33, 2007. View at Publisher · View at Google Scholar
  22. I. Hashim, O. Abdulaziz, and S. Momani, “Homotopy analysis method for fractional IVPs,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 3, pp. 674–684, 2009. View at Publisher · View at Google Scholar
  23. F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, “Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation,” Applied Mathematics and Computation, vol. 191, no. 1, pp. 12–20, 2007. View at Publisher · View at Google Scholar
  24. E. A. Rawashdeh, “Numerical solution of fractional integro-differential equations by collocation method,” Applied Mathematics and Computation, vol. 176, no. 1, pp. 1–6, 2006. View at Publisher · View at Google Scholar
  25. S. Momani and Z. Odibat, “Analytical approach to linear fractional partial differential equations arising in fluid mechanics,” Physics Letters A, vol. 355, no. 4-5, pp. 271–279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Momani and Z. Odibat, “Numerical comparison of methods for solving linear differential equations of fractional order,” Chaos, Solitons & Fractals, vol. 31, no. 5, pp. 1248–1255, 2007. View at Publisher · View at Google Scholar
  27. Z. Odibat and S. Momani, “Application of variational iteration method to nonlinear differential equations of fractional order,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 1, pp. 27–34, 2006. View at Google Scholar · View at Scopus
  28. W. Jiang and Y. Z. Lin, “Approximate solution of the fractional advection-dispersion equation,” Computer Physics Communications, vol. 181, no. 3, pp. 557–561, 2010. View at Publisher · View at Google Scholar
  29. R. Pandey, O. P. Singh, and V. Baranwal, “An analytic algorithm for the space-time fractional advection-dispersion equation,” Computer Physics Communications, vol. 182, no. 5, pp. 1134–1144, 2011. View at Publisher · View at Google Scholar
  30. S. Badraoui, “Approximate controllability of a reaction-diffusion system with a cross-diffusion matrix and fractional derivatives on bounded domains,” Boundary Value Problems, vol. 2010, pp. 1–14, 2010. View at Google Scholar
  31. O. Zaid and S. Momani, “The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics,” Computers & Mathematics with Applications, vol. 58, no. 11-12, pp. 2199–2208, 2009. View at Publisher · View at Google Scholar
  32. G. J. Fix and J. P. Roop, “Least squares finite-element solution of a fractional order two-point boundary value problem,” Computers & Mathematics with Applications, vol. 48, no. 7-8, pp. 1017–1033, 2004. View at Publisher · View at Google Scholar
  33. B. Ahmad and G. Wang, “A study of an impulsive four-point nonlocal boundary value problem of nonlinear fractional differential equations,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1341–1349, 2011. View at Publisher · View at Google Scholar
  34. M. Rehman and R. Khan, “Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations,” Applied Mathematics Letters, vol. 23, no. 9, pp. 1038–1044, 2010. View at Publisher · View at Google Scholar
  35. S. Liang and J. Zhang, “Existence and uniqueness of strictly nondecreasing and positive solution for a fractional three-point boundary value problem,” Computers & Mathematics with Applications, vol. 62, no. 3, p. 1333–-1340, 2011. View at Publisher · View at Google Scholar
  36. Z. Chen and Y. Z. Lin, “The exact solution of a linear integral equation with weakly singular kernel,” Journal of Mathematical Analysis and Applications, vol. 344, no. 2, pp. 726–734, 2008. View at Publisher · View at Google Scholar
  37. Y. Z. Lin, J. Niu, and M. G. Cui, “A numerical solution to nonlinear second order three-point boundary value problems in the reproducing kernel space,” Applied Mathematics and Computation, vol. 218, no. 14, pp. 7362–7368, 2012. View at Publisher · View at Google Scholar
  38. J. Niu, Y. Z. Lin, and C. P. Zhang, “Approximate solution of nonlinear multi-point boundary value problem on the half-line,” Mathematical Modelling and Analysis, vol. 17, no. 2, pp. 190–202, 2012. View at Publisher · View at Google Scholar
  39. K. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993.
  40. M. G. Cui and Y. Z. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science, New York, NY, USA, 2009.
  41. S. Momani and M. Noor, “Numerical methods for fourth-order fractional integro-differential equations,” Applied Mathematics and Computation, vol. 182, no. 1, pp. 754–760, 2006. View at Publisher · View at Google Scholar