Abstract

We investigate the generalized Drazin inverse of π΄βˆ’πΆπ΅ over Banach spaces stemmed from the Drazin inverse of a modified matrix and present its expressions under some conditions.

1. Introduction

Let 𝒳 and 𝒴 be Banach spaces. We denote the set of all bounded linear operators from 𝒳 to 𝒴 by ℬ(𝒳,𝒴). In particular, we write ℬ(𝒳) instead of ℬ(𝒳,𝒳).

For any π΄βˆˆβ„¬(𝒳,𝒴), β„›(𝐴) and 𝒩(𝐴) represent its range and null space, respectively. If π΄βˆˆβ„¬(𝒳), the symbols 𝜎(𝐴) and acc(𝜎(𝐴)) stand for its spectrum and the set of all accumulation points of 𝜎(𝐴), respectively.

Recall the concept of the generalized Drazin inverse introduced by Koliha [1] that the element π‘‡π‘‘βˆˆβ„¬(𝒳) is called the generalized Drazin inverse of π‘‡βˆˆβ„¬(𝒳) provided it satisfies𝑇𝑇𝑑=𝑇𝑑𝑇,𝑇𝑑𝑇𝑇𝑑=𝑇𝑑,π‘‡βˆ’π‘‡2𝑇𝑑isquasinilpotent.(1.1) If it exists then it is unique. The Drazin index Ind(𝑇) of 𝑇 is the least positive integer π‘˜ if (π‘‡βˆ’π‘‡2𝑇𝑑)π‘˜=0, and otherwise Ind(𝑇)=+∞.

From the definition of the generalized Drazin inverse, it is easy to see that if 𝑇 is a quasinilpotent operator, then 𝑇𝑑 exists and 𝑇𝑑=0. It is well known that the generalized Drazin inverse of π‘‡βˆˆβ„¬(𝒳) exists if and only if 0βˆ‰acc(𝜎(𝑇)) (see [1,Theorem  4.2]). If 𝑇 is generalized Drazin invertible, then the spectral idempotent π‘‡πœ‹ of 𝑇 corresponding to 0 is given by π‘‡πœ‹=πΌβˆ’π‘‡π‘‡π‘‘.

The generalized Drazin inverse is widely investigated because of its applications in singular differential difference equations, Markor chains, (semi-) iterative method numerical analysis (see, for example, [1–5, 7], and references therein).

In this paper, we aim to discuss the generalized Drazin inverse of π΄βˆ’πΆπ΅ over Banach spaces. This question stems from the Drazin inverse of a modified matrix (see, e.g., [6]). In [3], Deng studied the generalized Drazin inverse of π΄βˆ’πΆπ΅. Here we research the problem under more general conditions than those in [3]. Our results extend the relative results in [3, 4].

In this section, we will list some lemmas. In next section, we will present the expressions of the generalized Drazin inverse of π΄βˆ’πΆπ΅. In final section, we illustrate a simple example.

Lemma 1.1 (see [4, Theorem  2.3]). Let 𝐴,π΅βˆˆβ„¬(𝒳) be the generalized Drazin invertible. If 𝐴𝐡=0, then 𝐴+𝐡 is generalized Drazin invertible and (𝐴+𝐡)𝑑=π΅πœ‹βˆžξ“π‘›=0𝐡𝑛𝐴𝑑𝑛+1+ξƒ©βˆžξ“π‘›=0𝐡𝑑𝑛+1𝐴𝑛ξƒͺπ΄πœ‹.(1.2)

Lemma 1.2 (see [7, Theorem  5.1]). If π΄βˆˆβ„¬(𝒳) and π΅βˆˆβ„¬(𝒴) are generalized Drazin invertible and πΆβˆˆβ„¬(𝒴,𝒳), then βŽ›βŽœβŽœβŽβŽžβŽŸβŽŸβŽ π‘€=𝐴𝐢0𝐡(1.3) is also generalized Drazin invertible and 𝑀𝑑=βŽ›βŽœβŽœβŽπ΄π‘‘π‘†π‘‚π΅π‘‘βŽžβŽŸβŽŸβŽ ,(1.4) where 𝑆=𝐴2π‘‘ξƒ©βˆžξ“π‘›=0𝐴𝑛𝑑𝐢𝐡𝑛ξƒͺπ΅πœ‹+π΄πœ‹ξƒ©βˆžξ“π‘›=0𝐴𝑛𝐢𝐡𝑛𝑑ξƒͺ𝐡2π‘‘βˆ’π΄π‘‘πΆπ΅π‘‘.(1.5)

2. Main Results

We start with our main result.

Theorem 2.1. Let π΄βˆˆβ„¬(𝒳) be the generalized Drazin invertible, πΆβˆˆβ„¬(𝒳,𝒴), and π΅βˆˆβ„¬(𝒴,𝒳). Suppose that there exists a π‘ƒβˆˆβ„¬(𝒳) such that 𝐴𝑃=𝑃𝐴𝑃 and 𝐡𝑃=0. If 𝑅=(πΌβˆ’π‘ƒ)(π΄βˆ’πΆπ΅) and 𝐴𝑃 are generalized Drazin invertible, then π΄βˆ’πΆπ΅ is generalized Drazin invertible and (π΄βˆ’πΆπ΅)𝑑=ξƒ¬βˆžξ“π‘›=0(𝐴𝑃)𝑑𝑛+1𝑅𝑛+π‘‰π‘…π‘›βˆ’1+𝑉2π‘…π‘›βˆ’2ξ€Έξƒ­π‘…πœ‹βˆ’(𝐴𝑃)𝑑𝑉𝑅𝑑+𝑉2𝑅2𝑑+(𝐴𝑃)𝑑𝑉2𝑅𝑑+(𝐴𝑃)πœ‹βˆžξ“π‘›=0(𝐴𝑃)𝑛𝑅𝑑𝑛+1+𝑉𝑅𝑑𝑛+2+𝑉2𝑅𝑑𝑛+3ξ€Έ,(2.1) where 𝑉=π‘ƒπ΄βˆ’π‘ƒπΆπ΅βˆ’π΄π‘ƒ and the symbols 𝑉𝑖𝑅𝑗=0,𝑖=1,2, if 𝑗<0.

Proof. Let π‘†βˆΆ=𝐴𝑃 and π‘‡βˆΆ=(π΄βˆ’πΆπ΅)(πΌβˆ’π‘ƒ). Then ,𝑇𝑆=(π΄βˆ’πΆπ΅)(πΌβˆ’π‘ƒ)𝐴𝑃=0(2.2)𝑅𝑃=(πΌβˆ’π‘ƒ)(π΄βˆ’πΆπ΅)𝑃=0,(2.3)π΄βˆ’πΆπ΅=𝐴𝑃+𝐴(πΌβˆ’π‘ƒ)βˆ’πΆπ΅(πΌβˆ’π‘ƒ)=𝑆+𝑇(2.4) since 𝐴𝑃=𝑃𝐴𝑃 and 𝐡𝑃=0. So, by Lemma 1.1, (𝑇+𝑆)𝑑=π‘†πœ‹βˆžβˆ‘π‘›=0𝑆𝑛𝑇𝑑𝑛+1+βˆžβˆ‘π‘›=0𝑆𝑑𝑛+1π‘‡π‘›π‘‡πœ‹.(2.5)
Next, we will give the representations of 𝑇𝑑, 𝑇𝑛, and 𝑇𝑛𝑑. In order to obtain the expression of 𝑇𝑑, rewrite 𝑇 as 𝑇=𝑅+π‘ƒπ΄βˆ’π‘ƒπΆπ΅βˆ’π‘ƒπ΄π‘ƒ=𝑅+𝑉.(2.6) Since 𝑉𝑃=π‘ƒπ΄π‘ƒβˆ’π΄π‘ƒ2=𝑃𝐴𝑃(πΌβˆ’π‘ƒ), 𝑉2𝑃=(π‘ƒπ΄βˆ’π‘ƒπΆπ΅βˆ’π΄π‘ƒ)𝑃𝐴𝑃(πΌβˆ’π‘ƒ)=(π‘ƒπ΄π‘ƒπ΄π‘ƒβˆ’π΄π‘ƒπ‘ƒπ΄π‘ƒ)(πΌβˆ’π‘ƒ)=0,(2.7) and then 𝑉𝑛=0 for 𝑛>2 since 𝑉=π‘ƒπ΄βˆ’πΆπ΅βˆ’π΄π‘ƒ. So 𝑉𝑑 exists and 𝑉𝑑=0. By (2.3), 𝑅𝑉=𝑅𝑃(π΄βˆ’πΆπ΅βˆ’π΄π‘ƒ)=0 and then 𝑅𝑑𝑉=𝑅𝑑𝑅𝑑𝑅𝑉=0. So, by Lemma 1.1, 𝑇𝑑=(𝑅+𝑉)𝑑=𝑅𝑑+𝑉𝑅2𝑑+𝑉2𝑅3𝑑,(2.8) and then 𝑇𝑇𝑑=𝑅𝑅𝑑+𝑉𝑅𝑑+𝑉2𝑅2𝑑.(2.9) Since 𝑅(𝑅+𝑉)π‘˜=π‘…π‘˜+1 and 𝑉2(𝑅+𝑉)π‘˜=𝑉2π‘…π‘˜ for π‘˜β‰₯1, 𝑇𝑛=(𝑅+𝑉)𝑛=𝑅2+𝑉𝑅+𝑉2ξ€Έ(𝑅+𝑉)π‘›βˆ’2=𝑅𝑛+π‘‰π‘…π‘›βˆ’1+𝑉2π‘…π‘›βˆ’2,𝑛β‰₯2.(2.10) From 𝑅𝑑𝑉=0, it is easy to verify that 𝑇𝑛𝑑=𝑅𝑑+𝑉𝑅2𝑑+𝑉2𝑅3𝑑𝑛=𝑅𝑛𝑑+𝑉𝑅𝑑𝑛+1+𝑉2𝑅𝑑𝑛+2.(2.11) Hence, ξƒ©βˆžξ“π‘›=0𝑆𝑑𝑛+1𝑇𝑛ξƒͺπ‘‡πœ‹=(𝐴𝑃)𝑑𝐼+(𝐴𝑃)𝑑(𝑅+𝑉)+(𝐴𝑃)2𝑑𝑅2+𝑉𝑅+𝑉2Γ—ξ€·π‘…ξ€Έξ€»πœ‹βˆ’π‘‰π‘…π‘‘βˆ’π‘‰2𝑅2𝑑+βˆžξ“π‘›=3(𝐴𝑃)𝑑𝑛+1𝑅𝑛+π‘‰π‘…π‘›βˆ’1+𝑉2π‘…π‘›βˆ’2ξ€Έπ‘…πœ‹=(𝐴𝑃)𝑑𝐼+(𝐴𝑃)𝑑(𝑅+𝑉)+(𝐴𝑃)2𝑑𝑅2+𝑉𝑅+𝑉2π‘…ξ€Έξ€»πœ‹βˆ’(𝐴𝑃)𝑑𝑉𝑅𝑑+𝑉2𝑅2𝑑+(𝐴𝑃)𝑑𝑉2𝑅𝑑+βˆžξ“π‘›=3(𝐴𝑃)𝑑𝑛+1𝑅𝑛+π‘‰π‘…π‘›βˆ’1+𝑉2π‘…π‘›βˆ’2ξ€Έπ‘…πœ‹,π‘†πœ‹βˆžξ“π‘›=0𝑆𝑛𝑇𝑑𝑛+1=(𝐴𝑃)πœ‹βˆžξ“π‘›=0(𝐴𝑃)𝑛𝑅𝑑𝑛+1+𝑉𝑅𝑑𝑛+2+𝑉2𝑅𝑑𝑛+3ξ€Έ.(2.12) Therefore, we reach (2.1).

When Ind(𝐴𝑃),Ind(𝑅)<+∞, we have the following corollary.

Corollary 2.2. Let π΄βˆˆβ„¬(𝒳) be generalized Drazin invertible. πΆβˆˆβ„¬(𝒳,𝒴), and π΅βˆˆβ„¬(𝒴,𝒳). Suppose that there exists a π‘ƒβˆˆβ„¬(𝒳) such that 𝐴𝑃=𝑃𝐴𝑃 and 𝐡𝑃=0. If 𝑅=(πΌβˆ’π‘ƒ)(π΄βˆ’πΆπ΅) and 𝐴𝑃 are generalized Drazin invertible and Ind(𝑅)=π‘˜<+∞ and Ind(𝐴𝑃)=β„Ž<+∞, then π΄βˆ’πΆπ΅ is generalized Drazin invertible and (π΄βˆ’πΆπ΅)𝑑=ξƒ¬π‘˜βˆ’1𝑛=0(𝐴𝑃)𝑑𝑛+1𝑅𝑛+π‘‰π‘…π‘›βˆ’1+𝑉2π‘…π‘›βˆ’2ξ€Έξƒ­π‘…πœ‹βˆ’(𝐴𝑃)𝑑𝑉𝑅𝑑+𝑉2𝑅2𝑑+(𝐴𝑃)𝑑𝑉2𝑅𝑑+(𝐴𝑃)πœ‹β„Žβˆ’1𝑛=0(𝐴𝑃)𝑛𝑅𝑑𝑛+1+𝑉𝑅𝑑𝑛+2+𝑉2𝑅𝑑𝑛+3ξ€Έ,(2.13) where 𝑉=π‘ƒπ΄βˆ’π‘ƒπΆπ΅βˆ’π΄π‘ƒ and the symbols 𝑉𝑖𝑅𝑗=0,𝑖=1,2, if 𝑗<0.

If an operator 𝑇 is quasinilpotent, 𝑇𝑑=0 and π‘‡πœ‹=𝐼. So, the following corollary follows from Theorem 2.1.

Corollary 2.3. Let π΄βˆˆβ„¬(𝒳) be generalized Drazin invertible, πΆβˆˆβ„¬(𝒳,𝒴), and π΅βˆˆβ„¬(𝒴,𝒳). Suppose that there exists a π‘ƒβˆˆβ„¬(𝒳) such that 𝐴𝑃=𝑃𝐴𝑃 and 𝐡𝑃=0. If 𝑅=(πΌβˆ’π‘ƒ)(π΄βˆ’πΆπ΅) is generalized Drazin invertible and 𝐴𝑃 is a quasinilpotent operator, then π΄βˆ’πΆπ΅ is generalized Drazin invertible and (π΄βˆ’πΆπ΅)𝑑=βˆžξ“π‘›=0(𝐴𝑃)𝑛𝑅𝑑𝑛+1+𝑉𝑅𝑑𝑛+2+𝑉2𝑅𝑑𝑛+3ξ€Έ,(2.14) where 𝑉=π‘ƒπ΄βˆ’π‘ƒπΆπ΅βˆ’π΄π‘ƒ.

Theorem 2.4. Let π΄βˆˆβ„¬(𝒳) be generalized Drazin invertible, πΆβˆˆβ„¬(𝒳,𝒴), and π΅βˆˆβ„¬(𝒴,𝒳). Suppose that there exists an idempotent π‘ƒβˆˆβ„¬(𝒳) such that 𝑃𝐴=𝑃𝐴𝑃 and 𝐡𝑃=𝐡. If 𝑅=𝑃(π΄βˆ’πΆπ΅) is generalized Drazin invertible, then π΄βˆ’πΆπ΅ is generalized Drazin invertible and (π΄βˆ’πΆπ΅)𝑑=𝑅𝑑+𝐴𝑑(πΌβˆ’π‘ƒ)+βˆžξ“π‘›=0𝐴𝑑𝑛+2(πΌβˆ’π‘ƒ)(π΄βˆ’πΆπ΅)𝑃(π΄βˆ’πΆπ΅)π‘›π‘…πœ‹+π΄πœ‹βˆžξ“π‘›=0𝐴𝑛(πΌβˆ’π‘ƒ)(π΄βˆ’πΆπ΅)𝑃𝑅𝑑𝑛+2βˆ’π΄π‘‘(πΌβˆ’π‘ƒ)(π΄βˆ’πΆπ΅)𝑅𝑑.(2.15)

Proof. Since 𝑃2=𝑃, we have ⨁𝒳=β„›(𝑃)𝒩(𝑃) and can write 𝑃 in the following matrix form: βŽ›βŽœβŽœβŽβŽžβŽŸβŽŸβŽ .𝑃=𝐼000(2.16) The condition 𝑃𝐴=𝑃𝐴𝑃, therefore, yields the matrix form of 𝐴 as follows: βŽ›βŽœβŽœβŽπ΄π΄=10𝐴3𝐴2⎞⎟⎟⎠.(2.17) From 𝜎(𝐴)=𝜎(𝐴1)βˆͺ𝜎(𝐴2) and the hypothesis that 𝐴𝑑 exists, 𝐴1βˆˆβ„¬(β„›(𝑃)) and 𝐴2βˆˆβ„¬(𝒩(𝑃)) are generalized Drazin invertible since 0βˆ‰acc(𝜎(𝐴)) if and only if 0βˆ‰acc(𝜎(𝐴1)) and 0βˆ‰acc(𝜎(𝐴2)). And, by Lemma 1.2, 𝐴𝑑=βŽ›βŽœβŽœβŽπ΄π‘‘10π‘Šπ΄π‘‘2⎞⎟⎟⎠,(2.18) where π‘Š is some operator. Since βŽ›βŽœβŽœβŽπ΄(πΌβˆ’π‘ƒ)=000𝐴2⎞⎟⎟⎠,(2.19)(𝐴(πΌβˆ’π‘ƒ))𝑑 exists and (𝐴(πΌβˆ’π‘ƒ))𝑑=βŽ›βŽœβŽœβŽ000𝐴𝑑2⎞⎟⎟⎠=𝐴𝑑(πΌβˆ’π‘ƒ).(2.20)
To use Theorem 2.1 to complete the proof, let 𝑄=(πΌβˆ’π‘ƒ). So 𝑅=(πΌβˆ’π‘„)(π΄βˆ’πΆπ΅) and 𝐴𝑄 are generalized Drazin invertible. And from the conditions 𝑃𝐴=𝑃𝐴𝑃 and 𝐡𝑃=𝐡, we can obtain 𝐴𝑄=𝑄𝐴𝑄 and 𝐡𝑄=0. Thus, by Theorem 2.1, we have (π΄βˆ’πΆπ΅)𝑑=(𝐴𝑄)π‘‘π‘…πœ‹+(𝐴𝑄)2𝑑(𝑅+𝑉)π‘…πœ‹+ξƒ¬βˆžξ“π‘›=2(𝐴𝑄)𝑑𝑛+1𝑅𝑛+π‘‰π‘…π‘›βˆ’1+𝑉2π‘…π‘›βˆ’2ξ€Έξƒ­π‘…πœ‹βˆ’(𝐴𝑄)𝑑𝑉𝑅𝑑+𝑉2𝑅2𝑑+(𝐴𝑄)𝑑𝑉2𝑅𝑑+(𝐴𝑄)πœ‹ξ€·π‘…π‘‘+𝑉𝑅2𝑑+𝑉2𝑅3𝑑+(𝐴𝑄)πœ‹βˆžξ“π‘›=1(𝐴𝑃)𝑛𝑅𝑑𝑛+1+𝑉𝑅𝑑𝑛+2+𝑉2𝑅𝑑𝑛+3ξ€Έ,(2.21) where 𝑉=π‘„π΄βˆ’π‘„πΆπ΅βˆ’π΄π‘„.
Since 𝑃2=𝑃 and 𝑄2=𝑄 and then 𝑉𝑄=0 and 𝑉=𝑄𝑉. So 𝑉2=0. Note that 𝑄𝑅=0 and then 𝑄𝑅𝑑=0 and (𝐴𝑄)𝑑𝑅=0. Thus it follows from (2.21) that (π΄βˆ’πΆπ΅)𝑑=(𝐴𝑄)𝑑+(𝐴𝑄)2π‘‘π‘‰π‘…πœ‹+ξƒ¬βˆžξ“π‘›=2(𝐴𝑄)𝑑𝑛+1π‘‰π‘…π‘›βˆ’1ξƒ­π‘…πœ‹βˆ’(𝐴𝑄)𝑑𝑉𝑅𝑑+𝑅𝑑+(𝐴𝑄)πœ‹π‘‰π‘…2𝑑+(𝐴𝑄)πœ‹βˆžξ“π‘›=1(𝐴𝑄)𝑛𝑉𝑅𝑑𝑛+2=(𝐴𝑄)𝑑+ξƒ¬βˆžξ“π‘›=0(𝐴𝑄)𝑑𝑛+2π‘‰π‘…π‘›ξƒ­π‘…πœ‹βˆ’(𝐴𝑄)𝑑𝑉𝑅𝑑+𝑅𝑑+(𝐴𝑄)πœ‹βˆžξ“π‘›=0(𝐴𝑄)𝑛𝑉𝑅𝑑𝑛+2.(2.22) Since 𝑉=𝑄(π΄βˆ’πΆπ΅)βˆ’(π΄βˆ’πΆπ΅)𝑄=(π΄βˆ’πΆπ΅)(πΌβˆ’π‘„)βˆ’(πΌβˆ’π‘„)(π΄βˆ’πΆπ΅), 𝑉𝑅=𝑄(π΄βˆ’πΆπ΅)𝑅 and 𝑄𝑉=𝑄(π΄βˆ’πΆπ΅)(πΌβˆ’π‘„). Note that 𝑅𝑛=𝑃(π΄βˆ’πΆπ΅)𝑛 and (𝐴𝑄)𝑛=𝐴𝑛𝑄. Substituting 𝑉 and 𝑄=πΌβˆ’π‘ƒ in (2.22) yields (2.15).

Adding the condition 𝑃𝐢=𝐢 in Theorem 2.4 yields a result below.

Corollary 2.5. Let π΄βˆˆβ„¬(𝒳) be generalized Drazin invertible, πΆβˆˆβ„¬(𝒳,𝒴), and π΅βˆˆβ„¬(𝒡,𝒳). Suppose that there exists an idempotent π‘ƒβˆˆβ„¬(𝒳) such that 𝑃𝐴=𝑃𝐴𝑃, 𝐡𝑃=𝐡, and 𝑃𝐢=𝐢. If 𝑅=𝑃(π΄βˆ’πΆπ΅) is generalized Drazin invertible, then π΄βˆ’πΆπ΅ is generalized Drazin invertible and (π΄βˆ’πΆπ΅)𝑑=𝑅𝑑+𝐴𝑑(πΌβˆ’π‘ƒ)+βˆžξ“π‘›=0𝐴𝑑𝑛+2(πΌβˆ’π‘ƒ)𝐴𝑃(π΄βˆ’πΆπ΅)π‘›π‘…πœ‹+π΄πœ‹βˆžξ“π‘›=0𝐴𝑛(πΌβˆ’π‘ƒ)𝐴𝑃𝑅𝑑𝑛+2βˆ’π΄π‘‘(πΌβˆ’π‘ƒ)𝐴𝑅𝑑.(2.23)

Adding the condition 𝑃𝐢=0 in Theorem 2.4 yields 𝑅=𝑃𝐴. So similar to the proof of (𝐴(πΌβˆ’π‘ƒ))𝑑=𝐴𝑑(πΌβˆ’π‘ƒ) in Theorem 2.4, we can gain (𝑃𝐴)𝑑=𝑃𝐴𝑑.

Corollary 2.6. Let π΄βˆˆβ„¬(𝒳) be generalized Drazin invertible, πΆβˆˆβ„¬(𝒳,𝒴), and π΅βˆˆβ„¬(𝒡,𝒳). Suppose that there exists an idempotent π‘ƒβˆˆβ„¬(𝒳) such that 𝑃𝐴=𝑃𝐴𝑃, 𝐡𝑃=𝐡, and 𝑃𝐢=0; then π΄βˆ’πΆπ΅ is generalized Drazin invertible and (π΄βˆ’πΆπ΅)𝑑=𝐴𝑑+βˆžξ“π‘›=0𝐴𝑑𝑛+2(πΌβˆ’π‘ƒ)(π΄βˆ’πΆπ΅)π‘ƒπ΄π‘›π΄πœ‹+π΄πœ‹βˆžξ“π‘›=0𝐴𝑛(πΌβˆ’π‘ƒ)(π΄βˆ’πΆπ΅)𝑃𝐴𝑑𝑛+2βˆ’π΄π‘‘(πΌβˆ’π‘ƒ)(π΄βˆ’πΆπ΅)𝑃𝐴𝑑.(2.24)

Analogously, we can deduce Theorem 2.7 and Corollary 2.9 below.

Theorem 2.7. Let π΄βˆˆβ„¬(𝒳) be generalized Drazin invertible, πΆβˆˆβ„¬(𝒳,𝒴), and π΅βˆˆβ„¬(𝒴,𝒳). Suppose that there exists an idempotent π‘ƒβˆˆβ„¬(𝒳) such that 𝐴𝑃=𝑃𝐴𝑃 and 𝑃𝐢=𝐢. If 𝑅=(π΄βˆ’πΆπ΅)𝑃 is generalized Drazin invertible, then π΄βˆ’πΆπ΅ is generalized Drazin invertible and (π΄βˆ’πΆπ΅)𝑑=𝑅𝑑+(πΌβˆ’π‘ƒ)𝐴𝑑+βˆžξ“π‘›=0𝑅𝑑𝑛+2𝑃(π΄βˆ’πΆπ΅)(πΌβˆ’π‘ƒ)π΄π‘›π΄πœ‹+π‘…πœ‹βˆžξ“π‘›=0(π΄βˆ’πΆπ΅)𝑛𝑃(π΄βˆ’πΆπ΅)(πΌβˆ’π‘ƒ)𝐴𝑑𝑛+2βˆ’π‘…π‘‘(π΄βˆ’πΆπ΅)(πΌβˆ’π‘ƒ)𝐴𝑑.(2.25)

Remark 2.8 (see [4, Theorem  2.4]). It is a special case of Theorem 2.7.

Corollary 2.9. Let π΄βˆˆβ„¬(𝒳) be generalized Drazin invertible, πΆβˆˆβ„¬(𝒳,𝒴), and π΅βˆˆβ„¬(𝒡,𝒳). Suppose that there exists an idempotent π‘ƒβˆˆβ„¬(𝒳) such that 𝐴𝑃=𝑃𝐴𝑃, 𝑃𝐢=𝐢, and 𝐡𝑃=0; then π΄βˆ’πΆπ΅ is generalized Drazin invertible and (π΄βˆ’πΆπ΅)𝑑=𝐴𝑑+βˆžξ“π‘›=0𝐴𝑑𝑛+2𝑃(π΄βˆ’πΆπ΅)(πΌβˆ’π‘ƒ)π΄π‘›π΄πœ‹+π΄πœ‹βˆžξ“π‘›=0𝐴𝑛𝑃(π΄βˆ’πΆπ΅)(πΌβˆ’π‘ƒ)𝐴𝑑𝑛+2βˆ’π΄π‘‘π‘ƒ(π΄βˆ’πΆπ΅)(πΌβˆ’π‘ƒ)𝐴𝑑.(2.26)

Similar to Theorem 2.1 and Corollary 2.2, we can show the following two results.

Theorem 2.10. Let π΄βˆˆβ„¬(𝒳) be generalized Drazin invertible, πΆβˆˆβ„¬(𝒳,𝒴), and π΅βˆˆβ„¬(𝒴,𝒳). Suppose that there exists a π‘ƒβˆˆβ„¬(𝒳) such that 𝑃𝐴=𝑃𝐴𝑃 and 𝑃𝐢=0. If 𝑅=(π΄βˆ’πΆπ΅)(πΌβˆ’π‘ƒ) and 𝑃𝐴 are generalized Drazin invertible, then π΄βˆ’πΆπ΅ is generalized Drazin invertible and (π΄βˆ’πΆπ΅)𝑑=π‘…πœ‹βˆžξ“π‘›=0𝑅𝑛+π‘…π‘›βˆ’1𝑉+π‘…π‘›βˆ’2𝑉2ξ€Έ(𝑃𝐴)𝑑𝑛+1βˆ’ξ€Ίπ‘…π‘‘π‘‰+𝑅2𝑑𝑉2+𝑅𝑑𝑉2(𝑃𝐴)𝑑(𝑃𝐴)𝑑+ξƒ¬βˆžξ“π‘›=0𝑅𝑑𝑛+1+𝑅𝑑𝑛+2𝑉+𝑅𝑑𝑛+3𝑉2ξ€Έ(𝑃𝐴)𝑛(𝑃𝐴)πœ‹,(2.27) where 𝑉=π΄π‘ƒβˆ’πΆπ΅π‘ƒβˆ’π‘ƒπ΄ and the symbols 𝑅𝑖𝑉𝑗=0,𝑗=1,2, if 𝑖<0.

Corollary 2.11. Let π΄βˆˆβ„¬(𝒳) be generalized Drazin invertible. πΆβˆˆβ„¬(𝒳,𝒴), and π΅βˆˆβ„¬(𝒴,𝒳). Suppose that there exists a π‘ƒβˆˆβ„¬(𝒳) such that 𝑃𝐴=𝑃𝐴𝑃 and 𝑃𝐢=0. If 𝑅=(π΄βˆ’πΆπ΅)(πΌβˆ’π‘ƒ) and 𝑃𝐴 are generalized Drazin invertible and Ind(𝑅)=π‘˜<+∞ and Ind(𝑃𝐴)=β„Ž<+∞, then π΄βˆ’πΆπ΅ is generalized Drazin invertible and (π΄βˆ’πΆπ΅)𝑑=π‘…πœ‹π‘˜βˆ’1𝑛=0𝑅𝑛+π‘…π‘›βˆ’1𝑉+π‘…π‘›βˆ’2𝑉2ξ€Έ(𝑃𝐴)𝑑𝑛+1βˆ’ξ€Ίπ‘…π‘‘π‘‰+𝑅2𝑑𝑉2+𝑅𝑑𝑉2(𝑃𝐴)𝑑(𝑃𝐴)𝑑+ξƒ¬β„Žβˆ’1𝑛=0𝑅𝑑𝑛+1+𝑅𝑑𝑛+2𝑉+𝑅𝑑𝑛+3𝑉2ξ€Έ(𝑃𝐴)𝑛(𝑃𝐴)πœ‹,(2.28) where 𝑉=π΄π‘ƒβˆ’πΆπ΅π‘ƒβˆ’π‘ƒπ΄ and the symbols 𝑅𝑖𝑉𝑗=0,𝑗=1,2, if 𝑖<0.

When 𝑃𝐴=𝐴𝑃 and 𝑃2=𝑃 in Theorem 2.10, we can obtain the following result since 𝑅𝑛=(π΄βˆ’πΆπ΅)𝑛(πΌβˆ’π‘ƒ).

Corollary 2.12 (see [3, Theorem  4.3]). Let π΄βˆˆβ„¬(𝒳) be the generalized Drazin invertible, πΆβˆˆβ„¬(𝒳,𝒴), and π΅βˆˆβ„¬(𝒴,𝒳). Suppose that there exists an idempotent π‘ƒβˆˆβ„¬(𝒳) commuting with 𝐴 such that 𝑃𝐢=0. If 𝑅=(π΄βˆ’πΆπ΅)(πΌβˆ’π‘ƒ) is generalized Drazin invertible, then π΄βˆ’πΆπ΅ is the generalized Drazin invertible and (π΄βˆ’πΆπ΅)𝑑=𝑅𝑑+π‘ƒπ΄π‘‘βˆ’π‘…π‘‘π‘‰π΄π‘‘+π‘…πœ‹βˆžξ“π‘›=0(π΄βˆ’πΆπ΅)𝑛𝑉𝐴𝑑𝑛+2+βˆžξ“π‘›=0𝑅𝑑𝑛+2π‘‰π΄π‘›π΄πœ‹,(2.29) where 𝑉=βˆ’πΆπ΅π‘ƒ.

3. Example

Before ending this paper, we give an example as follows.

Example 3.1. Let βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ ξ‚€ξ‚βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ100⎞⎟⎟⎟⎟⎟⎟⎠.𝐴=12410βˆ’1100βˆ’1100000,𝐡=0001,𝐢=βˆ’1(3.1) Then βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ .𝐢𝐡=0001000βˆ’100000000,π΄βˆ’πΆπ΅=12400βˆ’1110βˆ’1100000(3.2) We will compute the Drazin inverse of π΄βˆ’πΆπ΅. To do this, we choose the matrix βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ .𝑃=100001000βˆ’1200000(3.3) Apparently, 𝑃 is not idempotent and 𝑃𝐴≠𝐴𝑃. But 𝐡𝑃=0 and βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ .𝐴𝑃=𝑃𝐴𝑃=1βˆ’2800βˆ’2200βˆ’2200000(3.4) Obviously, Ind(𝐴𝑃)=2. Computing βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ π‘…=(πΌβˆ’π‘ƒ)(π΄βˆ’πΆπ΅)=0000000000010000,𝑅𝑑=βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ ,0000000000000000(3.5)βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ ,𝑉=π‘ƒπ΄βˆ’π‘ƒπΆπ΅βˆ’π΄π‘ƒ=04βˆ’4001βˆ’1101βˆ’1βˆ’10000(3.6) we have Ind(𝑅)=2. So, by Corollary 2.2, (π΄βˆ’πΆπ΅)𝑑=βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽβŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ .1βˆ’410βˆ’4000000000000(3.7)

Acknowledgments

The authors would like to thank the referees for their helpful comments and suggestions. This work was supported by the National Natural Science Foundation of China (11061005), the Ministry of Education Science and Technology Key Project under Grant no. 210164, and Grants HCIC201103 of Guangxi Key Laboratory of Hybrid Computational and IC Design Analysis Open Fund.