Abstract

This paper is concerned with the 𝑛th-order forced nonlinear neutral differential equation [𝑥(𝑡)𝑝(𝑡)𝑥(𝜏(𝑡))](𝑛)+𝑚𝑖=1𝑞𝑖(𝑡)𝑓𝑖(𝑥(𝜎𝑖1(𝑡)),𝑥(𝜎𝑖2(𝑡)),,𝑥(𝜎𝑖𝑘𝑖(𝑡)))=𝑔(𝑡),𝑡𝑡0. Some necessary and sufficient conditions for the oscillation of bounded solutions and several sufficient conditions for the existence of uncountably many bounded positive and negative solutions of the above equation are established. The results obtained in this paper improve and extend essentially some known results in the literature. Five interesting examples that point out the importance of our results are also included.

1. Introduction

Consider the following 𝑛th-order forced nonlinear neutral differential equation:[]𝑥(𝑡)𝑝(𝑡)𝑥(𝜏(𝑡))(𝑛)+𝑚𝑖=1𝑞𝑖(𝑡)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑡),𝑥𝑖2𝜎(𝑡),,𝑥𝑖𝑘𝑖(𝑡)=𝑔(𝑡),𝑡𝑡0,(1.1) where 𝑡0 and 𝑛,𝑚,𝑘𝑖 are constants for 1𝑖𝑚. In what follows, we assume that(𝐴1)  𝑝,𝑔,𝜏,𝜎𝑖𝑗𝐶([𝑡0,+),) and 𝑞𝑖𝐶([𝑡0,+),+) satisfy that lim𝑡+𝜏(𝑡)=lim𝑡+𝜎𝑖𝑗(𝑡)=+,1𝑗𝑘𝑖,1𝑖𝑚,(1.2) and there exists 1𝑖0𝑚 such that 𝑞𝑖0 is positive eventually:(𝐴2)𝜏 is strictly increasing and 𝜏(𝑡)<𝑡 in [𝑡0,+);(𝐴3)𝑓𝑖𝐶(𝑘𝑖,) satisfies that 𝑓𝑖𝑢1,𝑢2,,𝑢𝑘𝑖𝑢>0,1,𝑢2,,𝑢𝑘𝑖+{0}𝑘𝑖,𝑓𝑖𝑢1,𝑢2,,𝑢𝑘𝑖𝑢<0,1,𝑢2,,𝑢𝑘𝑖{0}𝑘𝑖(1.3) for 1𝑖𝑚.

During the last decades, the oscillation criteria and the existence results of nonoscillatory solutions for various linear and nonlinear differential equations have been studied extensively, for example, see [128] and the references cited therein. In particular, Zhang and Yan [25] obtained some sufficient conditions for the oscillation of the first-order linear neutral delay differential equation with positive and negative coefficients:[]𝑥(𝑡)𝑝(𝑡)𝑥(𝑡𝜏)+𝑞(𝑡)𝑥(𝑡𝜎)𝑟(𝑡)𝑥(𝑡𝛿)=0,𝑡𝑡0,(1.4) where 𝑝,𝑞,𝑟𝐶([𝑡0,+),+),𝜏>0, and 𝜎𝛿0. Das and Misra [7] studied the nonhomogeneous neutral delay differential equation:[]𝑥(𝑡)𝑐𝑥(𝑡𝜏)+𝑞(𝑡)𝑓(𝑥(𝑡𝜎))=𝑔(𝑡),𝑡𝑡0,(1.5) where 𝑞,𝑔𝐶([𝑇,+),+{0}),𝜎>0,𝜏>0,𝑐[0,1),𝑓, 𝑡𝑓(𝑡)>0 for 𝑡0, 𝑓 is nondecreasing, Lipschitzian, and satisfies 𝑘0(1/𝑓(𝑡))𝑑𝑡<+ for every 𝑘>0, and they obtained a necessary and sufficient condition for the solutions of (1.5) to be oscillatory or tend to zero asymptotically. Parhi and Rath [18] extended Das and Misra’s result to the following forced first-order neutral differential equation with variable coefficients:[]𝑥(𝑡)𝑝(𝑡)𝑥(𝑡𝜏)+𝑞(𝑡)𝑓(𝑥(𝑡𝜎))=𝑔(𝑡),𝑡0,(1.6) where 𝑝𝐶(+,), and they got necessary and sufficient conditions which ensures every solution of (1.6) is oscillatory or tends to zero or to ± as 𝑡+. By using Banach’s fixed point theorem, Zhang et al. [24] proved the existence of a nonoscillatory solution for the first-order linear neutral delay differential equation:[]𝑥(𝑡)+𝑝(𝑡)𝑥(𝑡𝜏)+𝑛𝑖=1𝑓𝑖(𝑡)𝑥𝑡𝜎𝑖=0,𝑡𝑡0,(1.7) where 𝑝𝐶([𝑡0,+),),𝜏>0,𝜎𝑖+, and 𝑓𝑖𝐶([𝑡0,+),) for 1𝑖𝑚. Çakmak and Tiryaki [6] showed several sufficient conditions for the oscillation of the forced second-order nonlinear differential equations with delayed argument in the form:𝑥(𝑡)+𝑝(𝑡)𝑓(𝑥(𝛼(𝑡)))=𝑔(𝑡),𝑡𝑡00,(1.8) where 𝑝,𝛼,𝑔𝐶([𝑡0,+),), 𝛼(𝑡)𝑡,lim𝑡+𝛼(𝑡)=+, and 𝑓𝐶(,). Travis [20] investigated the oscillatory behavior of the second-order differential equation with functional argument:𝑥(𝑡)+𝑝(𝑡)𝑓(𝑥(𝑡),𝑥(𝛼(𝑡)))=0,𝑡𝑡0,(1.9) where 𝑝,𝛼𝐶([𝑡0,+),) and 𝑓𝐶(2,) satisfies that 𝑓(𝑠,𝑡) has the same sign of 𝑠 and 𝑡 when they have the same sign. Lin [12] got some sufficient conditions for oscillation and nonoscillation of the second order nonlinear neutral differential equation:[]𝑥(𝑡)𝑝(𝑡)𝑥(𝑡𝜏)+𝑞(𝑡)𝑓(𝑥(𝑡𝜎))=0,𝑡0,(1.10) where 𝑝,𝑞𝐶(+,),𝑝[0,1) with 0𝑝(𝑡)𝑝 eventually, 𝑓𝐶(,), 𝑓 is nondecreasing and 𝑡𝑓(𝑡)>0 for 𝑡0. Kulenović and Hadžiomerspahić [9] deduced the existence of a nonoscillatory solution for the neutral delay differential equation of second order with positive and negative coefficients:[𝑥](𝑡)+𝑐𝑥(𝑡𝜏)+𝑞1(𝑡)𝑥𝑡𝜎1𝑞2(𝑡)𝑥𝑡𝜎2=0,𝑡𝑡0,(1.11) where 𝑐±1, 𝜏>0,𝜎𝑖+,𝑞𝑖𝐶([𝑡0,+),+), and 𝑡+0𝑞𝑖(𝑡)𝑑𝑡<+ for 𝑖{1,2}. Utilizing the fixed point theorems due to Banach, Schauder and Krasnoselskii, and Zhou and Zhang [27], and Zhou et al. [28] established some sufficient conditions for the existence of a nonoscillatory solution of the following higher-order neutral functional differential equations:[]𝑥(𝑡)+𝑐𝑥(𝑡𝜏)(𝑛)+(1)𝑛+1[]𝑃(𝑡)𝑥(𝑡𝜎)𝑄(𝑡)𝑥(𝑡𝛿)=0,𝑡𝑡0,[]𝑥(𝑡)+𝑝(𝑡)𝑥(𝑡𝜏)(𝑛)+𝑚𝑖=1𝑞𝑖(𝑡)𝑓𝑖𝑥𝑡𝜎𝑖=𝑔(𝑡),𝑡𝑡0,(1.12) where 𝑐{±1},𝜏,𝜎,𝛿,𝜎𝑖+,𝑃,𝑄𝐶([𝑡0,+),+), and 𝑝,𝑔,𝑓𝑖𝐶([𝑡0,+),) for 1𝑖𝑚. Li et al. [11] investigated the existence of an unbounded positive solution, bounded oscillation, and nonoscillation criteria for the following even-order neutral delay differential equation with unstable type:[]𝑥(𝑡)𝑝(𝑡)𝑥(𝑡𝜏)(𝑛)||||𝑞(𝑡)𝑥(𝑡𝜎)𝛼1𝑥(𝑡𝜎)=0,𝑡𝑡0,(1.13) where 𝜏>0,𝜎>0,𝛼1, and 𝑝,𝑞𝐶([𝑡0,+),+). Zhang and Yan [22] obtained some sufficient conditions for oscillation of all solutions of the even-order neutral differential equation with variable coefficients and delays:[]𝑥(𝑡)+𝑝(𝑡)𝑥(𝜏(𝑡))(𝑛)+𝑞(𝑡)𝑥(𝜎(𝑡))=0,𝑡𝑡0,(1.14) where 𝑛 is even, 𝑝,𝑞,𝜏,𝜎𝐶([𝑡0,+),+),𝑝(𝑡)<1,𝜏(𝑡)𝑡 and 𝜎(𝑡)𝑡 for 𝑡[𝑡0,+), and lim𝑡+𝜏(𝑡)=lim𝑡+𝜎(𝑡)=+. Yilmaz and Zafer [21] discussed sufficient conditions for the existence of positive solutions and the oscillation of bounded solutions of the 𝑛th-order neutral type differential equations:[]𝑥(𝑡)+𝑐𝑥(𝜏(𝑡))(𝑛)+𝑞(𝑡)𝑓(𝑥(𝜎(𝑡)))=0,𝑡𝑡0,[]𝑥(𝑡)+𝑝(𝑡)𝑥(𝜏(𝑡))(𝑛)+𝑞(𝑡)𝑓(𝑥(𝜎(𝑡)))=𝑔(𝑡),𝑡𝑡0,(1.15) where 𝑐{±1}, 𝜏,𝜎𝐶([𝑡0,+),+),𝑝,𝑞,𝑔𝐶([𝑡0,+),), and 𝑓𝐶(,). Bolat and Akin [4, 5] got sufficient criteria for oscillatory behaviour of solutions for the higher-order neutral type nonlinear forced differential equations with oscillating coefficients:[]𝑥(𝑡)+𝑝(𝑡)𝑥(𝜏(𝑡))(𝑛)+𝑚𝑖=1𝑞𝑖(𝑡)𝑓𝑖𝑥𝜎𝑖(𝑡)=0,𝑡𝑡0,[]𝑥(𝑡)+𝑝(𝑡)𝑥(𝜏(𝑡))(𝑛)+𝑚𝑖=1𝑞𝑖(𝑡)𝑓𝑖𝑥𝜎𝑖(𝑡)=𝑔(𝑡),𝑡𝑡0,(1.16) where 𝑛{1},𝑚,𝑝,𝑓𝑖,𝑔,𝜏,𝜎𝑖𝐶([𝑡0,+),), 𝑓𝑖 is nondecreasing and 𝑢𝑓𝑖(𝑢)>0 for 𝑢0,𝜎𝑖𝐶1([𝑡0,+),),𝜎𝑖(𝑡)>0,𝜎𝑖(𝑡)𝑡 for 𝑡[𝑡0,+), lim𝑡+𝜏(𝑡)=lim𝑡+𝜎𝑖(𝑡)=+ for 1𝑖𝑚, and 𝑝 and 𝑔 are oscillating functions. Zhou and Yu [26] attempted to extend the result of Bolat and Akin [4] and established a necessary and sufficient condition for the oscillation of bounded solutions of the higher-order nonlinear neutral forced differential equation of the form:[]𝑥(𝑡)𝑝(𝑡)𝑥(𝜏(𝑡))(𝑛)+𝑚𝑖=1𝑞𝑖(𝑡)𝑓𝑖𝑥𝜎𝑖(𝑡)=𝑔(𝑡),𝑡𝑡0,(1.17) where 𝑛{1},𝑚, and(𝐶1)𝑝,𝑞𝑖,𝜏,𝑔𝐶([𝑡0,+),) for 𝑖=1,2,,𝑚 and lim𝑡+𝜏(𝑡)=+;(𝐶2)𝑝 and 𝑔 are oscillating functions;(𝐶3)𝜎𝑖𝐶([𝑡0,+),),𝜎𝑖(𝑡)>0,𝜎𝑖(𝑡)𝑡 and lim𝑡+𝜎𝑖(𝑡)=+ for 𝑖=1,2,,𝑚;(𝐶4)𝑓𝑖𝐶(,) is nondecreasing function, 𝑢𝑓𝑖(𝑢)>0 for 𝑢0 and 𝑖=1,2,,𝑚.

That is, they claimed the following result.

Theorem 1.1 (see [26, Theorem 2.1]). Assume that(𝐶5) there is an oscillating function 𝑟𝐶([𝑡0,+),) such that 𝑟(𝑛)(𝑡)=𝑔(𝑡) and lim𝑡+𝑟(𝑡)=0;(𝐶6)  𝑝 is an oscillating function and |𝑝(𝑡)|𝑝0<1/2;(𝐶7)  𝑞𝑖(𝑡)0, 𝑖=1,2,,𝑚.Then, every bounded solution of (1.17) either oscillates or tends to zero if and only if 𝑡+0𝑠𝑛1𝑞𝑖(𝑠)𝑑𝑠=+,𝑖=1,2,,𝑚.(1.18)

We, unfortunately, point out that the necessary part in Theorem 1.1 is false, see Remark 4.2 and Example 4.7 below. It is clear that (1.1) includes (1.4)–(1.17) as special cases. To the best of our knowledge, there is no literature referred to the oscillation and existence of uncountably many bounded nonoscillatory solutions of (1.1). The aim of this paper is to establish the bounded oscillation and the existence of uncountably many bounded positive and negative solutions for (1.1) without the monotonicity of the nonlinear term 𝑓𝑖. Our results extend and improve substantially some known results in [4, 5, 9, 10, 20, 24, 2628] and correct Theorem  2.1 in [26].

The paper is organized as follows. In Section 2, a few notation and lemmas are introduced and proved, respectively. In Section 3, by employing Krasnoselskii’s fixed point theorem and some techniques, the existence of uncountably many bounded positive and negative solutions for (1.1) are given, and some necessary and sufficient conditions for all bounded solutions of (1.1) to be oscillatory or tend to zero as 𝑡+ are provided. In Section 4, a number of examples which clarify advantages of our results are constructed.

2. Preliminaries

It is assumed throughout this paper that =(,+),+=[0,+),=(,0] and𝑡𝛽=min0𝜏,inf(𝑡),𝜎𝑖𝑗𝑡(𝑡)𝑡0,+,1𝑗𝑖𝑘,1𝑖𝑚.(2.1) By a solution of (1.1), we mean a function 𝑥𝐶([𝛽,+),) for some 𝑇𝑡0+𝛽, such that 𝑥(𝑡)𝑝(𝑡)𝑥(𝜏(𝑡)) is 𝑛 times continuously differentiable in [𝑇,+) and such that (1.1) is satisfied for 𝑡𝑇. As is customary, a solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros. Otherwise, it is nonoscillatory, that is, if it is eventually positive or eventually negative. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

Let 𝐵𝐶([𝛽,+),) stand for the Banach space of all bounded continuous functions in [𝛽,+) with the norm 𝑥=sup𝑡𝛽|𝑥(𝑡)| for each 𝑥𝐵𝐶([𝛽,+),) and[𝐴(𝑁,𝑀)={𝑥𝐵𝐶(𝛽,+),)𝑁𝑥(𝑡)𝑀,𝑡𝛽}for𝑀,𝑁with𝑀>𝑁.(2.2) It is easy to see that 𝐴(𝑁,𝑀) is a bounded closed and convex subset of the Banach space 𝐵𝐶([𝛽,+),).

Lemma 2.1. Let 𝑛 and 𝑥𝐶𝑛([𝑡0,+),) be bounded. If 𝑥(𝑛)(𝑡)0 eventually, then(a)lim𝑡+𝑥(𝑡) exists and lim𝑡+𝑥(𝑖)(𝑡)=0 for 1𝑖𝑛1; furthermore, there exists 𝜃=0 for 𝑛 odd and 𝜃=1 for 𝑛 even such that(b)(1)𝜃+𝑖𝑥(𝑖)(𝑡)0 eventually for 1𝑖𝑛;(c)(1)𝜃+𝑖𝑥(𝑖) is nonincreasing eventually for 0𝑖𝑛1.

Proof. Now, we consider two possible cases below.
Case 1. Assume that 𝑛=1. Let 𝜃=0. Note that 𝑥(𝑡)0 eventually. It follows that there exists a constant 𝑡1>𝑡0 satisfying 𝑥(𝑡)0, for all 𝑡𝑡1, which yields that 𝑥 is nonincreasing in [𝑡1,+). Since 𝑥 is bounded in [𝑡0,+), it follows that lim𝑡+𝑥(𝑡) exists.
Case 2. Assume that 𝑛2. Notice that 𝜃+𝑛 is odd. It follows that (1)𝜃+𝑛𝑥(𝑛)(𝑡)0 eventually, which implies that there exists a constant 𝑡1>𝑡0 satisfying (1)𝜃+𝑛𝑥(𝑛)(𝑡)0,𝑡𝑡1,(2.3) which means that (1)𝜃+𝑛1𝑥(𝑛1)𝑡(𝑡)isnonincreasingin1,+.(2.4)
Suppose that there exists a constant 𝑡2𝑡1 satisfying (1)𝜃+𝑛1𝑥(𝑛1)(𝑡2)<0, which together with (2.4) gives that (1)𝜃+𝑛1𝑥(𝑛1)(𝑡)(1)𝜃+𝑛1𝑥(𝑛1)𝑡2<0,𝑡𝑡2,(2.5) which guarantees that (1)𝜃+𝑛2𝑥(𝑛2)(𝑡) is increasing in [𝑡2,+) and (1)𝜃+𝑛1𝑥(𝑛2)(𝑡)(1)𝜃+𝑛1𝑥(𝑛2)𝑡2=𝑡𝑡2(1)𝜃+𝑛1𝑥(𝑛1)(𝑠)𝑑𝑠(1)𝜃+𝑛1𝑥(𝑛1)𝑡2𝑡𝑡2as𝑡+,(2.6) that is, lim𝑡+𝑥(𝑛2)(𝑡)=,(2.7) which means that lim𝑡+𝑥(𝑛3)(𝑡)=lim𝑡+𝑥(𝑛4)(𝑡)==lim𝑡+𝑥(𝑡)=lim𝑡+𝑥(𝑡)=,(2.8) which contradicts the boundedness of 𝑥. Consequently, we have (1)𝜃+𝑛1𝑥(𝑛1)(𝑡)0,𝑡𝑡1.(2.9) Combining (2.4) and (2.9), we conclude easily that there exists a constant 𝐿0 with lim𝑡+(1)𝜃+𝑛1𝑥(𝑛1)(𝑡)=𝐿.(2.10)
Next, we claim that 𝐿=0. Otherwise, there exists a constant 𝑏>𝑡1 satisfying (1)𝜃+𝑛1𝑥(𝑛1)𝐿(𝑡)2>0,𝑡𝑏,(2.11) which yields that (1)𝜃+𝑛1𝑥(𝑛2)(𝑡)(1)𝜃+𝑛1𝑥(𝑛2)=(𝑏)𝑡𝑏(1)𝜃+𝑛1𝑥(𝑛1)(𝑠)𝑑𝑠𝐿(𝑡𝑏)2+as𝑡+,(2.12) which gives that lim𝑡+𝑥(𝑛2)(𝑡)=+,(2.13) which means that lim𝑡+𝑥(𝑛3)(𝑡)=lim𝑡+𝑥(𝑛4)(𝑡)==lim𝑡+𝑥(𝑡)=lim𝑡+𝑥(𝑡)=+,(2.14) which contradicts the boundedness of 𝑥 in [𝑡0,+). Hence, 𝐿=0, that is, lim𝑡+𝑥(𝑛1)(𝑡)=0.(2.15)
Repeating the proof of (2.3)–(2.15), we deduce similarly that (1)𝜃+𝑗𝑥(𝑗)𝑡isnonincreasingandnonnegativein1,,+lim𝑡+𝑥(𝑗)(𝑡)=0,1𝑗𝑛1,(2.16) which together with the boundedness of 𝑥 implies that (1)𝜃𝑥 is nonincreasing in [𝑡1,+) and lim𝑡+𝑥(𝑡) exists.
Thus, (2.3) and (2.16) yield (a)–(c). This completes the proof.

Lemma 2.2. Let 𝑥,𝑝,𝜏,𝑟,𝑦𝐶([𝑡0,+),) satisfy (𝐴2) and 𝑦(𝑡)=𝑥(𝑡)𝑝(𝑡)𝑥(𝜏(𝑡))𝑟(𝑡),𝑡𝑡0;(2.17)𝑥isboundedandlim𝑡+𝜏(𝑡)=+;(2.18)lim𝑡+𝑦(𝑡)=lim𝑡+||||𝑟(𝑡)=0,𝑝(𝑡)𝑝0>1eventually,(2.19) where 𝑝0 is a fixed constant. Then, lim𝑡+𝑥(𝑡)=0.

Proof. Since 𝜏 is a strictly increasing continuous function, 𝜏(𝑡)<𝑡 in [𝑡0,+) and lim𝑡+𝜏(𝑡)=+, it follows that the inverse function 𝜏1 of 𝜏 is also strictly increasing continuous, 𝜏1(𝑡)>𝑡 in [𝜏(𝑡0),+) and lim𝑗𝜏𝑗(𝑡)=+, where 𝜏𝑗=𝜏(𝑗1)(𝜏1) for all 𝑗. Equation (2.18) implies that there exists a constant 𝐵>0 with ||||𝑥(𝑡)𝐵,𝑡𝑡0.(2.20) Using (2.18) and (2.19), we deduce that, for any 𝜀>0, there exist sufficiently large numbers 𝑇>1+|𝑡0| and 𝐾 satisfying 𝐵𝑝𝐾0<𝜀4||||,||||<𝜀𝑝,max𝑦(𝑡)𝑟(𝑡)014,||||𝑝(𝑡)𝑝0,𝑡𝑇.(2.21) In view of (2.17), (2.20), and (2.21), we infer that for all 𝑡𝑇||𝑥||=||𝑥𝜏(𝑡)1𝜏(𝑡)𝑦1𝜏(𝑡)𝑟1||(𝑡)||𝑝𝜏1||||𝑥𝜏(𝑡)1(||+||𝑦𝜏𝑡)1(||+||𝑟𝜏𝑡)1(||𝑡)||𝑝𝜏1||<1(𝑡)𝑝0||𝑥𝜏1||+𝜀𝑝(𝑡)012𝑝01𝑝01𝑝0||𝑥𝜏2||+𝜀𝑝(𝑡)012𝑝0+𝜀𝑝012𝑝0=1𝑝20||𝑥𝜏2||+𝜀𝑝(𝑡)012𝑝011+𝑝01𝑝𝐾0||𝑥𝜏𝐾||+𝜀𝑝(𝑡)012𝑝011+𝑝01++𝑝0𝐾1𝐵𝑝𝐾0+𝜀𝑝012𝑝0111/𝑝0<𝜀,(2.22) which gives that lim𝑡+𝑥(𝑡)=0. This completes the proof.

Lemma 2.3. Let 𝑥,𝑝,𝜏,𝑟, and 𝑦 be in 𝐶([𝑡0,+),) satisfying (𝐴2), (2.17), (2.18), and lim𝑡+||||𝑦(𝑡)=𝑑>0,lim𝑡+𝑝𝑟(𝑡)=0;(2.23)1||||𝑝(𝑡)𝑝0>1eventually,𝑝20>𝑝0+𝑝1,(2.24) where 𝑑,𝑝0, and 𝑝1 are constants. Then, there exists 𝐿>0 such that |𝑥(𝑡)|𝐿 eventually.

Proof. Obviously, (2.20) holds. It follows from (2.18), (2.23), and (2.24) that for 𝜀=𝑑[𝑝0(𝑝01)𝑝1]/(𝑝0(𝑝01)+𝑝1)>0, there exist 𝐾 and 𝑇>1+|𝑡0| satisfying 𝐵𝑝𝐾0<𝜀4𝑝1𝜀,𝑑4<||𝑦||𝜀(𝑡)<𝑑+4,||𝑟||<𝜀(𝑡)4𝑝0,𝑝1||𝑝||(𝑡)𝑝0,𝑡𝑇.(2.25) Put 𝐿=𝑑[𝑝0(𝑝01)𝑝1]/2𝑝1𝑝0(𝑝01). In light of (2.17), we conclude that for each 𝑡𝑇𝑥𝑥𝜏(𝑡)=1(𝑡)𝑝𝜏1𝑦𝜏(𝑡)1(𝑡)𝑝𝜏1𝑟𝜏(𝑡)1(𝑡)𝑝𝜏1=1(𝑡)𝑝𝜏1𝑥𝜏(𝑡)2(𝑡)𝑝𝜏2𝑦𝜏(𝑡)2(𝑡)𝑝𝜏2𝑟𝜏(𝑡)2(𝑡)𝑝𝜏2𝑦𝜏(𝑡)1(𝑡)𝑝𝜏1𝑟𝜏(𝑡)1(𝑡)𝑝𝜏1=𝑥𝜏(𝑡)2(𝑡)Π2𝑖=1𝑝(𝜏𝑖(𝑡))2𝑗=1𝑦𝜏𝑗(𝑡)Π𝑗𝑖=1𝑝(𝜏𝑖(𝑡))2𝑗=1𝑟𝜏𝑗(𝑡)Π𝑗𝑖=1𝑝(𝜏𝑖(=𝑥𝜏𝑡))=𝐾(𝑡)Π𝐾𝑖=1𝑝(𝜏𝑖(𝑡))𝐾𝑗=1𝑦𝜏𝑗(𝑡)Π𝑗𝑖=1𝑝(𝜏𝑖(𝑡))𝐾𝑗=1𝑟𝜏𝑗(𝑡)Π𝑗𝑖=1𝑝(𝜏𝑖,(𝑡))(2.26) which together with (2.20) and (2.25) yields that for any 𝑡𝑇||||||𝑦𝜏𝑥(𝑡)1||(𝑡)||𝑝𝜏1||||𝑥𝜏(𝑡)𝐾||(𝑡)Π𝐾𝑖=1||𝑝(𝜏𝑖||(𝑡))𝐾𝑗=2||𝑦𝜏𝑗||(𝑡)Π𝑗𝑖=1||𝑝(𝜏𝑖||(𝑡))𝐾𝑗=1||𝑟𝜏𝑗||(𝑡)Π𝑗𝑖=1||𝑝(𝜏𝑖||(𝑡))𝑑𝜀/4𝑝1𝐵𝑝𝐾0𝜀𝑑+4𝐾𝑗=21𝑝𝑗0𝜀4𝑝0𝐾𝑗=11𝑝𝑗0𝑑𝜀/4𝑝1𝜀4𝑝1𝜀𝑑+41/𝑝2011/𝑝0𝜀4𝑝01/𝑝011/𝑝0=𝑑𝜀/2𝑝1𝑑+𝜀/2𝑝0𝑝0=𝑑𝑝10𝑝01𝑝1𝑝(𝜀/2)0𝑝01+𝑝1𝑝1𝑝0𝑝01=𝐿.(2.27) This completes the proof.

Similar to the proof of Lemma  3.2 in [26], we have the following two lemmas.

Lemma 2.4. Let 𝑥,𝑝,𝜏,𝑟, and 𝑦 be in 𝐶([𝑡0,+),) satisfying (𝐴2), (2.17), (2.18), and lim𝑡+𝑦(𝑡)=lim𝑡+||||𝑟(𝑡)=0;(2.28)𝑝(𝑡)𝑝0<12eventually,(2.29) where 𝑝0 is a constant. Then, lim𝑡+𝑥(𝑡)=0.

Lemma 2.5. Let 𝑥, 𝑝, 𝜏, 𝑟, and 𝑦 be in 𝐶([𝑡0,+),) satisfying (𝐴2), (2.17), (2.18), (2.23), and (2.29). Then, there exists 𝐿>0 such that |𝑥(𝑡)|𝐿 eventually.

Lemma 2.6 (Krasnoselskii’s fixed point theorem). Let 𝑋 be a Banach space, let 𝑌 be a nonempty bounded closed convex subset of 𝑋, and let 𝑓, 𝑔 be mappings of 𝑌 into 𝑋 such that 𝑓𝑥+𝑔𝑦𝑌 for every pair 𝑥,𝑦𝑌. If 𝑓 is a contraction mapping and 𝑔 is completely continuous, then the mapping 𝑓+𝑔 has a fixed point in 𝑌.

3. Main Results

First, we use the Krasnoselskii’s fixed point theorem to show the existence and multiplicity of bounded positive and negative solutions of (1.1).

Theorem 3.1. Let (𝐴1),(𝐴2), and (𝐴3) hold. Assume that there exist 𝑝0,𝑝1+{0},𝑟0,𝑟1+, and 𝑟𝐶𝑛([𝑡0,+),) satisfying 𝑝1𝑝(𝑡)𝑝0>1eventually,𝑝20>𝑝0+𝑝1;𝑟(3.1)(𝑛)(𝑡)=𝑔(𝑡),𝑟0𝑟(𝑡)𝑟1eventually;(3.2)𝑡+0𝑠𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑑𝑠<+.(3.3) Then, the following hold:(a)for arbitrarily positive constants 𝑀 and 𝑁 with 𝑝0𝑝1𝑀>1𝑝1𝑁+1𝑟1𝑝0+𝑟0,(3.4) equation (1.1) has uncountably many bounded positive solutions 𝑥𝐴(𝑁,𝑀) with 𝑁liminf𝑡+𝑥(𝑡)limsup𝑡+𝑥(𝑡)𝑀;(3.5)(b)for arbitrarily positive constants 𝑀 and 𝑁 with 𝑝0𝑝1𝑁>1𝑝1𝑀+1𝑟0𝑝0+𝑟1,(3.6) equation (1.1) has uncountably many bounded negative solutions 𝑥𝐴(𝑁,𝑀) with 𝑁liminf𝑡+𝑥(𝑡)limsup𝑡+𝑥(𝑡)𝑀.(3.7)

Proof. It follows from (3.1) and (3.2) that there exists an enough large constant 𝑇0 with 𝜏1(𝑇0)>1+|𝑡0|+|𝛽| satisfying 𝑝0𝑝(𝑡)𝑝1,𝑟(𝑛)(𝑡)=𝑔(𝑡),𝑟0𝑟(𝑡)𝑟1,𝑡𝑇0.(3.8)
(a) Assume that 𝑀 and 𝑁 are arbitrary positive constants satisfying (3.4). Let 𝐷((𝑝11)𝑁+(𝑝1𝑟1/𝑝0),(𝑝01)𝑀𝑟0). First of all, we prove that there exist two mappings 𝐹𝐷,𝐺𝐷𝐴(𝑁,𝑀)𝐵𝐶([𝛽,+),) and a constant 𝑇𝐷>𝜏1(𝑇0) such that 𝐹𝐷+𝐺𝐷 has a fixed point 𝑥𝐴(𝑁,𝑀), which is also a bounded positive solution of (1.1) with 𝑁liminf𝑡+𝑥(𝑡)limsup𝑡+𝑥(𝑡)𝑀. Put ||𝑓𝐵=max𝑖𝑢1,𝑢2,,𝑢𝑘𝑖||𝑢𝑗[]𝑁,𝑀,1𝑗𝑘𝑖,1𝑖𝑚.(3.9) In light of (3.3), (3.9), and (𝐴2), we infer that there exists a sufficiently large number 𝑇𝐷>𝜏1(𝑇0) satisfying 𝐵𝑝0(𝑛1)!𝜏+1𝑇𝐷𝑠𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑑𝑠<min𝑀𝐷+𝑀+𝑟0𝑝0,𝐷+𝑁𝑝1𝑟1𝑝0𝑁.(3.10) Define two mappings 𝐹𝐷,𝐺𝐷𝐴(𝑁,𝑀)𝐶([𝛽,+),) by 𝐹𝐷𝑥𝐷(𝑡)=𝑝𝜏1+𝑥𝜏(𝑡)1(𝑡)𝑝𝜏1𝑟𝜏(𝑡)1(𝑡)𝑝𝜏1(𝑡),𝑡𝑇𝐷𝐹𝐷𝑥𝑇𝐷,𝛽𝑡<𝑇𝐷,𝐺(3.11)𝐷𝑥(𝑡)=(1)𝑛𝑝𝜏1×(𝑡)(𝑛1)!𝜏+1(𝑡)𝑠𝜏1(𝑡)𝑛1×𝑚𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑠),𝑥𝑖2𝜎(𝑠),,𝑥𝑖𝑘𝑖(𝑠)𝑑𝑠,𝑡𝑇𝐷,𝐺𝐷𝑥𝑇𝐷,𝛽𝑡<𝑇𝐷,(3.12) for each 𝑥𝐴(𝑁,𝑀). In view of (3.1), (3.8), and (3.10)–(3.12), we conclude that for any 𝑥,𝑢𝐴(𝑁,𝑀) and 𝑡𝑇𝐷||𝐹𝐷𝑥𝐹(𝑡)𝐷𝑢||=||||𝑥𝜏(𝑡)1𝜏(𝑡)𝑢1(𝑡)𝑝𝜏1||||1(𝑡)𝑝0𝐹𝑥𝑢,𝐷𝑥𝐺(𝑡)+𝐷𝑢=𝐷(𝑡)𝑝𝜏1(+𝑥𝜏𝑡)1(𝑡)𝑝𝜏1(𝑟𝜏𝑡)1(𝑡)𝑝𝜏1(+𝑡)(1)𝑛𝑝𝜏1((×𝑡)𝑛1)!𝜏+1(𝑡)𝑠𝜏1(𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑢𝜎𝑖1𝜎(𝑠),𝑢𝑖2𝜎(𝑠),,𝑢𝑖𝑘𝑖𝐷(𝑠)𝑑𝑠𝑝0+𝑀𝑝0+𝑟0𝑝0+𝐵𝑝0(𝑛1)!𝜏+1(𝑡)𝑠𝑚𝑛1𝑖=1𝑞𝑖<(𝑠)𝑑𝑠𝐷+𝑀+𝑟0𝑝0+min𝑀𝐷+𝑀+𝑟0𝑝0,𝐷+𝑁𝑝1𝑟1𝑝0𝐹𝑁𝑀,𝐷𝑥𝐺(𝑡)+𝐷𝑢=𝐷(𝑡)𝑝𝜏1+𝑥𝜏(𝑡)1(𝑡)𝑝𝜏1𝑟𝜏(𝑡)1(𝑡)𝑝𝜏1+(𝑡)(1)𝑛𝑝𝜏1×(𝑡)(𝑛1)!𝜏+1(𝑡)𝑠𝜏1(𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑢𝜎𝑖1(𝜎𝑠),𝑢𝑖2(𝜎𝑠),,𝑢𝑖𝑘𝑖(𝐷𝑠)𝑑𝑠𝑝1+𝑁𝑝1𝑟1𝑝0𝐵𝑝0(𝑛1)!𝜏+1(𝑡)𝑠𝑚𝑛1𝑖=1𝑞𝑖>(𝑠)𝑑𝑠𝐷+𝑁𝑝1𝑟1𝑝0min𝑀𝐷+𝑀+𝑟0𝑝0,𝐷+𝑁𝑝1𝑟1𝑝0||𝐺𝑁𝑁,𝐷𝑢||=||||(𝑡)(1)𝑛𝑝𝜏1×(𝑡)(𝑛1)!𝜏+1(𝑡)𝑠𝜏1(𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑢𝜎𝑖1𝜎(𝑠),𝑢𝑖2𝜎(𝑠),,𝑢𝑖𝑘𝑖|||||𝐵(𝑠)𝑑𝑠𝑝0(𝑛1)!𝜏+1(𝑡)𝑠𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑑𝑠<min𝑀𝐷+𝑀+𝑟0𝑝0,𝐷+𝑁𝑝1𝑟1𝑝0𝑁<𝑀,(3.13) which ensures that 𝐹𝐷𝑥𝐹𝐷𝑢=sup𝑡𝑇𝐷||𝐹𝐷𝑥𝐹(𝑡)𝐷𝑢||1(𝑡)𝑝0𝐹𝑥𝑢,𝑥,𝑢𝐴(𝑁,𝑀),(3.14)𝐷𝑥+𝐺𝐷𝐺𝑢𝐴(𝑁,𝑀),𝑥,𝑢𝐴(𝑁,𝑀),(3.15)𝐷𝑢𝑀,𝑢𝐴(𝑁,𝑀).(3.16) It follows from (3.11), (3.12), (3.15), and (3.16) that 𝐹𝐷 and 𝐺𝐷 map 𝐴(𝑁,𝑀) into 𝐵𝐶([𝛽,+),), respectively.
Now, we show that 𝐺𝐷 is continuous in 𝐴(𝑁,𝑀). Let {𝑥𝑙}𝑙𝐴(𝑁,𝑀) and 𝑥𝐴(𝑁,𝑀) with lim𝑙𝑥𝑙=𝑥, given 𝜀>0. It follows from the uniform continuity of 𝑓𝑖 in [𝑁,𝑀]𝑘𝑖 for 1𝑖𝑚 and lim𝑙𝑥𝑙=𝑥 that there exist 𝛿>0 and 𝐾 satisfying ||𝑓𝑖𝑢𝑖1,𝑢𝑖2,,𝑢𝑖𝑘𝑖𝑓𝑖𝑣𝑖1,𝑣𝑖2,,𝑣𝑖𝑘𝑖||<𝜀1+1/𝑝0(𝑛1)!𝜏+1𝑇𝐷𝑠𝑛1𝑚𝑖=1𝑞𝑖(𝑠)𝑑𝑠,𝑢𝑖𝑗,𝑣𝑖𝑗[],||𝑢𝑁,𝑀𝑖𝑗𝑣𝑖𝑗||<𝛿,1𝑗𝑘𝑖𝑥,1𝑖𝑚,𝑙𝑥<𝛿,𝑙𝐾.(3.17) In view of (3.8), (3.12), (3.17), we arrive at 𝐺𝐷𝑥𝑙𝐺𝐷𝑥=sup𝑡𝑇𝐷||||(1)𝑛𝑝𝜏1×(𝑡)(𝑛1)!𝜏+1(𝑡)𝑠𝜏1(𝑡)𝑚𝑛1𝑖=1𝑞𝑖𝑓(𝑠)𝑖𝑥𝑙𝜎𝑖1(𝑠),𝑥𝑙𝜎𝑖2(𝑠),,𝑥𝑙𝜎𝑖𝑘𝑖(𝑠)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑠),𝑥𝑖2𝜎(𝑠),,𝑥𝑖𝑘𝑖|||||(𝑠)𝑑𝑠sup𝑡𝑇𝐷1𝑝0×(𝑛1)!𝜏+1(𝑡)𝑠𝑚𝑛1𝑖=1𝑞𝑖||𝑓(𝑠)𝑖𝑥𝑙𝜎𝑖1(𝑠),𝑥𝑙𝜎𝑖2(𝑠),,𝑥𝑙𝜎𝑖𝑘𝑖(𝑠)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑠),𝑥𝑖2𝜎(𝑠),,𝑥𝑖𝑘𝑖||1(𝑠)𝑑𝑠𝑝0(𝑛1)!𝜏+1𝑇𝐷𝑠𝑚𝑛1𝑖=1𝑞𝑖𝜀(𝑠)𝑑𝑠1+1/𝑝0(𝑛1)!𝜏+1𝑇𝐷𝑠𝑛1𝑚𝑖=1𝑞𝑖(𝑠)𝑑𝑠<𝜀,𝑙𝐾,(3.18) which means that 𝐺𝐷 is continuous in 𝐴(𝑁,𝑀).
Next, we show that 𝐺𝐷(𝐴(𝑁,𝑀)) is equicontinuous in [𝛽,+). Let 𝜀>0. Taking into account (3.3) and (𝐴2), we know that there exists 𝑇>𝑇𝐷 satisfying 1𝑝0(𝑛1)!𝜏+1(𝑇)𝑠𝑚𝑛1𝑖=1𝑞𝑖𝜀(𝑠)𝑑𝑠<4.(3.19) Put 𝐵1𝑠=max𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝜏1𝑇𝐷𝑠𝜏1𝑇.(3.20) It follows from the uniform continuity of 𝑝𝜏1 and 𝜏1 in [𝑇𝐷,𝑇] that there exists 𝛿>0 satisfying ||𝑝𝜏1𝑡1𝜏𝑝1𝑡2||<𝜀𝑝20(𝑛1)!41+𝐵𝜏+1𝑇𝐷𝑠𝑛1𝑚𝑖=1𝑞𝑖,(𝑠)𝑑𝑠𝑡1,𝑡2𝑇𝐷,𝑇||𝑡with1𝑡2||||𝜏<𝛿;1𝑡1𝜏1𝑡2||<𝜀𝑝0(𝑛1)!4𝐵1+𝐵1+(𝑛1)𝜏+1𝑇𝐷𝑢𝑛1𝑚𝑖=1𝑞𝑖,(𝑠)𝑑𝑠𝑡1,𝑡2𝑇𝐷,𝑇||𝑡with1𝑡2||<𝛿.(3.21) Let 𝑥𝐴(𝑁,𝑀) and 𝑡1,𝑡2[𝛽,+) with |𝑡1𝑡2|<𝛿. We consider three possible cases.
Case 1. Let 𝑡1,𝑡2[𝑇,+). In view of (3.8), (3.9), (3.12), and (3.19), we conclude that ||𝐺𝐷𝑥𝑡1𝐺𝐷𝑥𝑡2||=1||||1(𝑛1)!𝑝𝜏1𝑡1×𝜏+1𝑡1𝑠𝜏1𝑡1𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑠),𝑥𝑖2𝜎(𝑠),,𝑥𝑖𝑘𝑖1(𝑠)𝑑𝑠𝑝𝜏1𝑡2×𝜏+1𝑡2𝑠𝜏1𝑡2𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑠),𝑥𝑖2𝜎(𝑠),,𝑥𝑖𝑘𝑖|||||𝐵(𝑠)𝑑𝑠𝑝0(𝑛1)!𝜏+1𝑡1𝑠𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑑𝑠+𝜏+1𝑡2𝑠𝑚𝑛1𝑖=1𝑞𝑖<𝜀(𝑠)𝑑𝑠2.(3.22)
Case 2. Let 𝑡1,𝑡2[𝑇𝐷,𝑇]. In terms of (3.8), (3.9), (3.12), (3.21), we arrive at ||𝐺𝐷𝑥𝑡1𝐺𝐷𝑥𝑡2||=1||||1(𝑛1)!𝑝𝜏1𝑡1×𝜏+1𝑡1𝑠𝜏1𝑡1𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑠),𝑥𝑖2𝜎(𝑠),,𝑥𝑖𝑘𝑖1(𝑠)𝑑𝑠𝑝𝜏1𝑡2×𝜏+1𝑡2𝑠𝜏1𝑡2𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑠),𝑥𝑖2𝜎(𝑠),,𝑥𝑖𝑘𝑖|||||1(𝑠)𝑑𝑠||||1(𝑛1)!𝑝𝜏1𝑡11𝑝𝜏1𝑡2||||×𝜏+1𝑡1𝑠𝜏1𝑡1𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑠),𝑥𝑖2𝜎(𝑠),,𝑥𝑖𝑘𝑖+1(𝑠)𝑑𝑠𝑝𝜏1𝑡2×|||||𝜏1(𝑡2)𝜏1𝑡1𝑠𝜏1𝑡1𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑠),𝑥𝑖2𝜎(𝑠),,𝑥𝑖𝑘𝑖|||||+(𝑠)𝑑𝑠𝜏+1(𝑡2)|||𝑠𝜏1𝑡1𝑛1𝑠𝜏1𝑡2𝑛1|||×𝑚𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑠),𝑥𝑖2𝜎(𝑠),,𝑥𝑖𝑘𝑖𝐵(𝑠)𝑑𝑠||𝑝𝜏(𝑛1)!1𝑡1𝜏𝑝1𝑡2||𝑝𝜏1𝑡1𝑝𝜏1𝑡2𝜏+1𝑇𝐷𝑠𝑚𝑛1𝑖=1𝑞𝑖(1𝑠)𝑑𝑠+𝑝0×|||||𝜏1(𝑡2)𝜏1𝑡1𝑠𝑚𝑛1𝑖=1𝑞𝑖|||||+(𝑠)𝑑𝑠𝜏+1𝑡2(𝑛1)𝑠max{𝑛2,0}||𝜏1𝑡1𝜏1𝑡2||𝑚𝑖=1𝑞𝑖𝐵(𝑠)𝑑𝑠𝑝20||𝑝𝜏(𝑛1)!1𝑡1𝜏𝑝1𝑡2||𝜏+1𝑇𝐷𝑠𝑚𝑛1𝑖=1𝑞𝑖+𝐵(𝑠)𝑑𝑠𝑝0𝐵(𝑛1)!1+(𝑛1)𝜏+1𝑇𝐷𝑠𝑚𝑛1𝑖=1𝑞𝑖||𝜏(𝑠)𝑑𝑠1𝑡1𝜏1𝑡2||<𝜀2.(3.23)
Case 3. Let 𝑡1,𝑡2[𝛽,𝑇𝐷]. By (3.12), we have ||𝐺𝐷𝑥𝑡1𝐺𝐷𝑥𝑡2||=||𝐺𝐷𝑥𝑇𝐷𝐺𝐷𝑥𝑇𝐷||=0<𝜀.(3.24) Thus, 𝐺𝐷(𝐴(𝑁,𝑀)) is equicontinuous in [𝛽,+). Consequently, 𝐺𝐷(𝐴(𝑁,𝑀)) is relatively compact by (3.16) and the continuity of 𝐺𝐷. By means of (3.14), (3.15), and Lemma 2.6, we infer that 𝐹𝐷+𝐺𝐷 possesses a fixed point 𝑥𝐴(𝑁,𝑀), that is, 𝑥𝐷(𝑡)=𝑝𝜏1+𝑥𝜏(𝑡)1(𝑡)𝑝𝜏1𝑟𝜏(𝑡)1(𝑡)𝑝𝜏1+(𝑡)(1)𝑛𝑝𝜏1×(𝑡)(𝑛1)!𝜏+1(𝑡)𝑠𝜏1(𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑠),𝑥𝑖2𝜎(𝑠),,𝑥𝑖𝑘𝑖(𝑠)𝑑𝑠,𝑡𝑇𝐷,(3.25) which gives that 𝑥(𝑡)𝑝(𝑡)𝑥(𝜏(𝑡))=𝐷+𝑟(𝑡)+(1)𝑛1×(𝑛1)!𝑡+(𝑠𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑠),𝑥𝑖2𝜎(𝑠),,𝑥𝑖𝑘𝑖(𝑠)𝑑𝑠,𝑡𝜏1𝑇𝐷,[]𝑥(𝑡)𝑝(𝑡)𝑥(𝜏(𝑡))(𝑛)=𝑔(𝑡)𝑚𝑖=1𝑞𝑖(𝑡)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑡),𝑥𝑖2𝜎(𝑡),,𝑥𝑖𝑘𝑖(𝑡),𝑡𝜏1𝑇𝐷,(3.26) which mean that 𝑥𝐴(𝑁,𝑀) is a bounded positive solution of (1.1) with 𝑁liminf𝑡+𝑥(𝑡)limsup𝑡+𝑥(𝑡)𝑀.(3.27)
Let 𝐷1 and 𝐷2 be two arbitrarily different numbers in ((𝑝11)𝑁+(𝑝1𝑟1/𝑝0),(𝑝01)𝑀𝑟0). Similarly, we conclude that for each 𝑙{1,2} there exist two mappings 𝐹𝐷𝑗,𝐺𝐷𝑗𝐴(𝑁,𝑀)𝐵𝐶([𝛽,+),) and a sufficiently large number 𝑇𝐷𝑙>𝜏1(𝑇0) satisfying (3.8)–(3.12), where 𝐷,𝑇𝐷,𝐹𝐷, and 𝐺𝐷 are replaced by 𝐷𝑙,𝑇𝐷𝑙,𝐹𝐷𝑙, and 𝐺𝐷𝑙, respectively, and 𝐹𝐷𝑙+𝐺𝐷𝑙 has a fixed point 𝑥𝑙𝐴(𝑁,𝑀), which is also a bounded positive solution with 𝑁liminf𝑡+𝑥𝑙(𝑡)limsup𝑡+𝑥𝑙(𝑡)𝑀, that is, 𝑥𝑙𝐷(𝑡)=𝑙𝑝𝜏1+𝑥(𝑡)𝑙𝜏1(𝑡)𝑝𝜏1𝑟𝜏(𝑡)1(𝑡)𝑝𝜏1+(𝑡)(1)𝑛𝑝𝜏1×(𝑡)(𝑛1)!𝜏+1(𝑡)𝑠𝜏1(𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑥𝑙𝜎𝑖1(𝑠),𝑥𝑙𝜎𝑖2(𝑠),,𝑥𝑙𝜎𝑖𝑘𝑖(𝑠)𝑑𝑠,𝑡𝑇𝐷𝑙.(3.28) It follows from (3.3) that there exists 𝑇3>max{𝑇𝐷1,𝑇𝐷2} satisfying 𝐵𝑝0(𝑛1)!𝜏+1𝑇3𝑠𝑚𝑛1𝑖=1𝑞𝑖||𝐷(𝑠)𝑑𝑠<1𝐷2||4𝑝1.(3.29) Combining (3.8), (3.28), and (3.29), we conclude easily that ||𝑥1(𝑡)𝑥2||=||||𝐷(𝑡)1𝐷2𝑝𝜏1+𝑥(𝑡)1𝜏1(𝑡)𝑥2𝜏1(𝑡)𝑝𝜏1+(𝑡)(1)𝑛𝑝𝜏1×(𝑡)(𝑛1)!𝜏+1(𝑡)𝑠𝜏1(𝑡)𝑛1×𝑚𝑖=1𝑞𝑖𝑓(𝑠)𝑖𝑥1𝜎𝑖1(𝑠),𝑥1𝜎𝑖2(𝑠),,𝑥1𝜎𝑖𝑘𝑖(𝑠)𝑓𝑖𝑥2𝜎𝑖1(𝑠),𝑥2𝜎𝑖2(𝑠),,𝑥2𝜎𝑖𝑘𝑖||||||𝐷(𝑠)𝑑𝑠1𝐷2||𝑝𝜏1||𝑥(𝑡)1𝜏1(𝑡)𝑥2𝜏1||(𝑡)𝑝𝜏1(𝑡)2𝐵𝑝𝜏1(𝑡)(𝑛1)!𝜏+1(𝑡)𝑠𝑚𝑛1𝑖=1𝑞𝑖||𝐷(𝑠)𝑑𝑠1𝐷2||𝑝1𝑥1𝑥2𝑝02𝐵𝑝0(𝑛1)!𝜏+1𝑇3𝑠𝑚𝑛1𝑖=1𝑞𝑖>||𝐷(𝑠)𝑑𝑠1𝐷2||𝑝1𝑥1𝑥2𝑝0||𝐷1𝐷2||2𝑝1=||𝐷1𝐷2||2𝑝1𝑥1𝑥2𝑝0,𝑡𝑇3,(3.30) which guarantees that 𝑥1𝑥2𝑝0||𝐷1𝐷2||2𝑝11+𝑝0>0,(3.31) that is, 𝑥1𝑥2. Hence, (1.1) has uncountably many bounded positive solutions 𝑥𝐴(𝑁,𝑀) with 𝑁liminf𝑡+𝑥(𝑡)limsup𝑡+𝑥(𝑡)𝑀.

(b) Assume that 𝑀 and 𝑁 are arbitrary positive constants satisfying (3.6) and put 𝐵2||𝑓=max𝑖𝑢1,𝑢2,,𝑢𝑘𝑖||𝑢𝑗[]𝑁,𝑀,1𝑗𝑘𝑖,1𝑖𝑚.(3.32) Let 𝐷((1𝑝0)𝑁+𝑟1,(1𝑝1)𝑀(𝑝1𝑟0/𝑝0)). It follows from (3.3), (3.8), (3.32), and (𝐴2) that there exists 𝑇𝐷>𝜏1(𝑇0) satisfying 𝐵2𝑝0(𝑛1)!𝜏+1𝑇𝐷𝑠𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑑𝑠<min𝑀+𝑀𝐷𝑝1𝑟0𝑝0,𝑁+𝐷𝑁𝑟1𝑝0.(3.33) Let the mappings 𝐹𝐷,𝐺𝐷𝐴(𝑁,𝑀)𝐶([𝛽,+),) be defined by (3.11) and (3.12), respectively.
Using (3.1), (3.8), (3.11), (3.12), and (3.33), we deduce that for any 𝑥,𝑢𝐴(𝑁,𝑀) and 𝑡𝑇𝐷𝐹𝐷𝑥𝐺(𝑡)+𝐷𝑢=𝐷(𝑡)𝑝𝜏1+𝑥𝜏(𝑡)1(𝑡)𝑝𝜏1𝑟𝜏(𝑡)1(𝑡)𝑝𝜏1+(𝑡)(1)𝑛𝑝𝜏1×(𝑡)(𝑛1)!𝜏+1(𝑡)𝑠𝜏1(𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑢𝜎𝑖1𝜎(𝑠),𝑢𝑖2𝜎(𝑠),,𝑢𝑖𝑘𝑖𝐷(𝑠)𝑑𝑠𝑝1𝑀𝑝1+𝑟0𝑝0+𝐵2𝑝0(𝑛1)!𝜏+1(𝑡)𝑠𝑚𝑛1𝑖=1𝑞𝑖(<𝑠)𝑑𝑠𝐷𝑀𝑝1+𝑟0𝑝0+min𝑀+𝑀𝐷𝑝1𝑟0𝑝0,𝑁+𝐷𝑁𝑟1𝑝0𝐹𝑀,𝐷𝑥𝐺(𝑡)+𝐷𝑢=𝐷(𝑡)𝑝𝜏1(+𝑥𝜏𝑡)1(𝑡)𝑝𝜏1(𝑟𝜏𝑡)1(𝑡)𝑝𝜏1(+𝑡)(1)𝑛𝑝𝜏1(×𝑡)(𝑛1)!𝜏+1(𝑡)𝑠𝜏1(𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑢𝜎𝑖1𝜎(𝑠),𝑢𝑖2𝜎(𝑠),,𝑢𝑖𝑘𝑖𝐷(𝑠)𝑑𝑠𝑝0𝑁𝑝0𝑟1𝑝0𝐵2𝑝0(𝑛1)!𝜏+1(𝑡)𝑠𝑚𝑛1𝑖=1𝑞𝑖>(𝑠)𝑑𝑠𝐷𝑁𝑟1𝑝0min𝑀+𝑀𝐷𝑝1𝑟0𝑝0,𝑁+𝐷𝑁𝑟1𝑝0𝑁,(3.34) which give that 𝐹𝐷𝑥+𝐺𝐷𝑢𝐴(𝑁,𝑀),𝑥,𝑢𝐴(𝑁,𝑀).(3.35) The rest of the proof is similar to the proof of (a) and is omitted. This completes the proof.

Theorem 3.2. Let (𝐴1),(𝐴2), and (𝐴3), hold. Assume that there exist 𝑝0,𝑝1+{0},𝑟0,𝑟1+, and 𝑟𝐶𝑛([𝑡0,+),) satisfying (3.2), (3.3), and 𝑝1𝑝(𝑡)𝑝0>1eventually.(3.36) Then, the following hold:(a)for arbitrarily positive constants 𝑀 and 𝑁 with 𝑝𝑁<𝑀,20𝑝1𝑝𝑀>1𝑝0𝑝1𝑝0𝑁+𝑝0𝑟1+𝑝1𝑟0,(3.37) equation (1.1) has uncountably many bounded positive solutions 𝑥𝐴(𝑁,𝑀) with 𝑁liminf𝑡+𝑥(𝑡)limsup𝑡+𝑥(𝑡)𝑀;(3.38)(b)for arbitrarily positive constants 𝑀 and 𝑁 with 𝑝𝑀<𝑁,20𝑝1𝑝𝑁>1𝑝0𝑝1𝑝0𝑀+𝑝1𝑟1+𝑝0𝑟0,(3.39) equation (1.1) has uncountably many bounded negative solutions 𝑥𝐴(𝑁,𝑀) with 𝑁liminf𝑡+𝑥(𝑡)limsup𝑡+𝑥(𝑡)𝑀.(3.40)

Proof. It follows from (3.2) and (3.36) that there exists a constant 𝑇0 with 𝜏(𝑇0)>1+|𝑡0|+|𝛽| satisfying 𝑝0𝑝(𝑡)𝑝1,𝑟(𝑛)(𝑡)=𝑔(𝑡),𝑟0𝑟(𝑡)𝑟1,𝑡𝑇0.(3.41)
(a) Assume that 𝑀 and 𝑁 are arbitrary positive constants satisfying (3.37). Let 𝐷(𝑝1((𝑀+𝑟0)/𝑝0+𝑁),𝑝0(𝑁/𝑝1+𝑀)𝑟1) and 𝐵 be defined by (3.9). In light of (3.3), (3.9), and (𝐴2), there exists a sufficiently large number 𝑇𝐷>𝜏1(𝑇0) satisfying 𝐵𝑝0(𝑛1)!𝜏+1𝑇𝐷𝑠𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑑𝑠<min𝑀𝐷+𝑟1𝑝0+𝑁𝑝1,𝐷𝑝1𝑀+𝑟0𝑝0𝑁.(3.42) Define two mappings 𝐹𝐷,𝐺𝐷𝐴(𝑁,𝑀)𝐶([𝛽,+),) by (3.12) and 𝐹𝐷𝑥𝐷(𝑡)=𝑝𝜏1+𝑥𝜏(𝑡)1(𝑡)𝑝𝜏1𝑟𝜏(𝑡)1(𝑡)𝑝𝜏1(𝑡),𝑡𝑇𝐷𝐹𝐷𝑥𝑇𝐷,𝛽𝑡<𝑇𝐷(3.43) for each 𝑥𝐴(𝑁,𝑀). In view of (3.12), (3.36), and (3.41)–(3.43), we conclude that for any 𝑥,𝑢𝐴(𝑁,𝑀) and 𝑡𝑇𝐷𝐹𝐷𝑥𝐺(𝑡)+𝐷𝑢𝐷(𝑡)=𝑝𝜏1+𝑥𝜏(𝑡)1(𝑡)𝑝𝜏1𝑟𝜏(𝑡)1(𝑡)𝑝𝜏1+(𝑡)(1)𝑛𝑝𝜏1×(𝑡)(𝑛1)!𝜏+1(𝑡)𝑠𝜏1(𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑢𝜎𝑖1𝜎(𝑠),𝑢𝑖2𝜎(𝑠),,𝑢𝑖𝑘𝑖𝐷(𝑠)𝑑𝑠𝑝0𝑁𝑝1+𝑟1𝑝0+𝐵𝑝0(𝑛1)!𝜏+1(𝑡)𝑠𝑚𝑛1𝑖=1𝑞𝑖(<𝐷𝑠)𝑑𝑠𝑝0𝑁𝑝1+𝑟1𝑝0+min𝑀𝐷+𝑟1𝑝0+𝑁𝑝1,𝐷𝑝1𝑀+𝑟0𝑝0𝐹𝑁𝑀,𝐷𝑥𝐺(𝑡)+𝐷𝑢𝐷(𝑡)=𝑝𝜏1(+𝑥𝜏𝑡)1(𝑡)𝑝𝜏1(𝑟𝜏𝑡)1(𝑡)𝑝𝜏1(+𝑡)(1)𝑛𝑝𝜏1(×𝑡)(𝑛1)!𝜏+1(𝑡)𝑠𝜏1(𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑢𝜎𝑖1𝜎(𝑠),𝑢𝑖2𝜎(𝑠),,𝑢𝑖𝑘𝑖𝐷(𝑠)𝑑𝑠𝑝1𝑀𝑝0𝑟0𝑝0𝐵𝑝0(𝑛1)!𝜏+1(𝑡)𝑠𝑚𝑛1𝑖=1𝑞𝑖>𝐷(𝑠)𝑑𝑠𝑝1𝑀+𝑟0𝑝0min𝑀𝐷+𝑟1𝑝0+𝑁𝑝1,𝐷𝑝1𝑀+𝑟0𝑝0𝑁𝑁,(3.44) which imply (3.15). The rest of the proof is similar to that of Theorem 3.1 and is omitted.
(b) Assume that 𝑀 and 𝑁 are arbitrary positive constants satisfying (3.39). Let 𝐷(𝑝0(𝑁+(𝑀/𝑝1))𝑀+𝑟0,𝑀𝑝1(𝑝1/𝑝0)(𝑁+𝑟1)) and 𝐵2 be defined by (3.32). Note that (3.3), (3.32), and (𝐴2) yield that there exists a sufficiently large number 𝑇𝐷>𝜏1(𝑇0) satisfying 𝐵2𝑝0(𝑛1)!𝜏+1𝑇𝐷𝑠𝑚𝑛1𝑖=1𝑞𝑖𝐷(𝑠)𝑑𝑠<min𝑀𝑝1𝑁+𝑟1𝑝0,𝑁+𝐷𝑟0𝑝0+𝑀𝑝1.(3.45) Let the mappings 𝐹𝐷,𝐺𝐷𝐴(𝑁,𝑀)𝐶([𝛽,+),) be defined by (3.12) and (3.43), respectively.
Using (3.12), (3.36), (3.41), and (3.45), we infer that for any 𝑥,𝑢𝐴(𝑁,𝑀) and 𝑡𝑇𝐷𝐹𝐷𝑥𝐺(𝑡)+𝐷𝑢𝐷(𝑡)=𝑝𝜏1+𝑥𝜏(𝑡)1(𝑡)𝑝𝜏1𝑟𝜏(𝑡)1(𝑡)𝑝𝜏1+(𝑡)(1)𝑛𝑝𝜏1×(𝑡)(𝑛1)!𝜏+1(𝑡)𝑠𝜏1(𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑢𝜎𝑖1𝜎(𝑠),𝑢𝑖2𝜎(𝑠),,𝑢𝑖𝑘𝑖𝐷(𝑠)𝑑𝑠𝑝1+𝑁𝑝0+𝑟1𝑝0+𝐵2𝑝0(𝑛1)!𝜏+1(𝑡)𝑠𝑚𝑛1𝑖=1𝑞𝑖(<𝐷𝑠)𝑑𝑠𝑝1+𝑁𝑝0+𝑟1𝑝0𝐷+min𝑀𝑝1𝑁+𝑟1𝑝0,𝑁+𝐷𝑟0𝑝0+𝑀𝑝1𝐹𝑀,𝐷𝑥𝐺(𝑡)+𝐷𝑢𝐷(𝑡)=𝑝𝜏1(+𝑥𝜏𝑡)1(𝑡)𝑝𝜏1(𝑟𝜏𝑡)1(𝑡)𝑝𝜏1(+𝑡)(1)𝑛𝑝𝜏1(×𝑡)(𝑛1)!𝜏+1(𝑡)𝑠𝜏1(𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑢𝜎𝑖1𝜎(𝑠),𝑢𝑖2𝜎(𝑠),,𝑢𝑖𝑘𝑖𝐷(𝑠)𝑑𝑠𝑝0+𝑀𝑝1𝑟0𝑝0𝐵2𝑝0(𝑛1)!𝜏+1(𝑡)𝑠𝑚𝑛1𝑖=1𝑞𝑖>𝐷(𝑠)𝑑𝑠𝑝0+𝑀𝑝1𝑟0𝑝0𝐷min𝑀𝑝1𝑁+𝑟1𝑝0,𝑁+𝐷𝑟0𝑝0+𝑀𝑝1𝑁,(3.46) which give (3.15). The rest of the proof is similar to the proof of Theorem 3.1 and is omitted. This completes the proof.

Theorem 3.3. Let (𝐴1) and (𝐴3) hold. Assume that there exist 𝑝0,𝑝1+{0}, 𝑟0,𝑟1+, and 𝑟𝐶𝑛([𝑡0,+),) satisfying (3.2), (3.3), and 𝑝0𝑝(𝑡)𝑝1eventually,𝑝0+𝑝1<1.(3.47) Then, the following hold:
(a) for arbitrarily positive constants 𝑀 and 𝑁 with 𝑟0+𝑟1+𝑁<1𝑝0𝑝1𝑀,(3.48) equation (1.1) has uncountably many bounded positive solutions 𝑥𝐴(𝑁,𝑀) with 𝑁liminf𝑡+𝑥(𝑡)limsup𝑡+𝑥(𝑡)𝑀;(3.49) for arbitrarily positive constants 𝑀 and 𝑁 with 𝑟0+𝑟1+𝑀<1𝑝0𝑝1𝑁,(3.50) equation (1.1) has uncountably many bounded negative solutions 𝑥𝐴(𝑁,𝑀) with 𝑁liminf𝑡+𝑥(𝑡)limsup𝑡+𝑥(𝑡)𝑀.(3.51)

Proof. It follows from (3.2) and (3.47) that there exists a constant 𝑇0>1+|𝑡0|+|𝛽| satisfying 𝑝0𝑝(𝑡)𝑝1,𝑟(𝑛)(𝑡)=𝑔(𝑡),𝑟0𝑟(𝑡)𝑟1,𝑡𝑇0.(3.52)
(a) Assume that 𝑀 and 𝑁 are arbitrary positive constants satisfying (3.48). Let 𝐷(𝑝0𝑀+𝑟0+𝑁,(1𝑝1)𝑀1𝑟1) and 𝐵 be defined by (3.9). In light of (3.3), (3.9), and (𝐴2), we infer that there exists a sufficiently large number 𝑇𝐷>max{𝑇0,𝜏(𝑇0)} satisfying 𝐵𝑝0(𝑛1)!𝑇+𝐷𝑠𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑑𝑠<min𝑀𝐷𝑝1𝑀𝑟1,𝐷𝑝0𝑀𝑟0𝑁.(3.53) Define two mappings 𝐹𝐷,𝐺𝐷𝐴(𝑁,𝑀)𝐶([𝛽,+),) by 𝐹𝐷𝑥(𝑡)=𝐷+𝑝(𝑡)𝑥(𝜏(𝑡))+𝑟(𝑡),𝑡𝑇𝐷,𝐹𝐷𝑥𝑇𝐷,𝛽𝑡<𝑇𝐷,𝐺(3.54)𝐷𝑥(𝑡)(1)𝑛1×(𝑛1)!𝑡+(𝑠𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑠),𝑥𝑖2𝜎(𝑠),,𝑥𝑖𝑘𝑖(𝑠)𝑑𝑠,𝑡𝑇𝐷𝐺𝐷𝑥𝑇𝐷,𝛽𝑡<𝑇𝐷,(3.55) for each 𝑥𝐴(𝑁,𝑀). In view of (3.47) and (3.52)–(3.55), we conclude that for any 𝑥,𝑢𝐴(𝑁,𝑀) and 𝑡𝑇𝐷||𝐹𝐷𝑥𝐹(𝑡)𝐷𝑢||||𝑝||𝑝(𝑡)(𝑡)(𝑥(𝜏(𝑡))𝑢(𝜏(𝑡)))0+𝑝1𝐹𝑥𝑢,𝐷𝑥𝐺(𝑡)+𝐷𝑢(𝑡)=𝐷+𝑝(𝑡)𝑥(𝜏(𝑡))+𝑟(𝑡)+(1)𝑛1(×𝑛1)!𝑡+(𝑠𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑢𝜎𝑖1(𝜎𝑠),𝑢𝑖2(𝜎𝑠),,𝑢𝑖𝑘𝑖(𝑠)𝑑𝑠𝐷+𝑝1𝑀+𝑟1+𝐵(𝑛1)!𝑡+𝑠𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑑𝑠<𝐷+𝑝1𝑀+𝑟1+min𝑀𝐷𝑝1𝑀𝑟1,𝐷𝑝0𝑀𝑟0𝐹𝑁𝑀,𝐷𝑥𝐺(𝑡)+𝐷𝑢(𝑡)=𝐷+𝑝(𝑡)𝑥(𝜏(𝑡))+𝑟(𝑡)+(1)𝑛1×(𝑛1)!𝑡+(𝑠𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑢𝜎𝑖1𝜎(𝑠),𝑢𝑖2𝜎(𝑠),,𝑢𝑖𝑘𝑖(𝑠)𝑑𝑠𝐷𝑝0𝑀𝑟0𝐵(𝑛1)!𝑡+𝑠𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑑𝑠>𝐷𝑝0𝑀𝑟0min𝑀𝐷𝑝1𝑀𝑟1,𝐷𝑝0𝑀𝑟0𝑁𝑁,(3.56) which yield (3.15). The rest of the proof is similar to that of Theorem 3.1 and is omitted.
(b) Assume that 𝑀 and 𝑁 are arbitrary positive constants satisfying (3.50). Let 𝐷(𝑟0(1𝑝1)𝑁𝑀𝑁,𝑝0𝑟1) and 𝐵2 be defined by (3.32). In light of (3.3), (3.32), and (𝐴2), we infer that there exists a sufficiently large number 𝑇𝐷>max{𝑇0,𝜏(𝑇0)} satisfying 𝐵2𝑝0(𝑛1)!𝑇+𝐷𝑠𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑑𝑠<min𝑀𝐷𝑝0𝑁𝑟1,𝐷+𝑁1𝑝1𝑟0.(3.57) Define two mappings 𝐹𝐷,𝐺𝐷𝐴(𝑁,𝑀)𝐶([𝛽,+),) by (3.54) and (3.55). In view of (3.47), (3.52), (3.54), (3.55), and (3.57), we conclude that (3.56) holds and 𝐹𝐷𝑥𝐺(𝑡)+𝐷𝑢(𝑡)=𝐷+𝑝(𝑡)𝑥(𝜏(𝑡))+𝑟(𝑡)+(1)𝑛1×(𝑛1)!𝑡+(𝑠𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑢𝜎𝑖1𝜎(𝑠),𝑢𝑖2𝜎(𝑠),,𝑢𝑖𝑘𝑖(𝑠)𝑑𝑠𝐷+𝑝0𝑁+𝑟1+𝐵(𝑛1)!𝑡+𝑠𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑑𝑠<𝐷+𝑝0𝑁+𝑟1+min𝑀𝐷𝑝0𝑁𝑟1,𝐷+𝑁1𝑝1𝑟0𝑀,𝑥,𝑢𝐴(𝑁,𝑀),𝑡𝑇𝐷,𝐹𝐷𝑥𝐺(𝑡)+𝐷𝑢(𝑡)=𝐷+𝑝(𝑡)𝑥(𝜏(𝑡))+𝑟(𝑡)+(1)𝑛1(×𝑛1)!𝑡+(𝑠𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑢𝜎𝑖1(𝜎𝑠),𝑢𝑖2(𝜎𝑠),,𝑢𝑖𝑘𝑖(𝑠)𝑑𝑠𝐷𝑝1𝑁𝑟0𝐵(𝑛1)!𝑡+𝑠𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑑𝑠>𝐷𝑝1𝑁𝑟0min𝑀𝐷𝑝0𝑁𝑟1,𝐷+𝑁1𝑝1𝑟0𝑁,𝑥,𝑢𝐴(𝑁,𝑀),𝑡𝑇𝐷.(3.58) Thus, (3.15) follows from (3.58). The rest of the proof is similar to that of Theorem 3.1 and is omitted. This completes the proof.

Second, we provide necessary and sufficient conditions for the oscillation of bounded solutions of (1.1).

Theorem 3.4. Let (𝐴1),(𝐴2), and (𝐴3) hold. Assume that there exist 𝑝0,𝑝1+{0} and 𝑟𝐶𝑛([𝑡0,+),) satisfying (2.24) and lim𝑡+𝑟(𝑡)=0,𝑟(𝑛)(𝑡)=𝑔(𝑡)eventually.(3.59) Then, each bounded solution of (1.1) either oscillates or tends to 0 as 𝑡+ if and only if 𝑡+0𝑠𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑑𝑠=+.(3.60)

Proof. Sufficiency. Suppose, without loss of generality, that (1.1) possesses a bounded eventually positive solution 𝑥 with limsup𝑡+𝑥(𝑡)>0, which together with (𝐴1),(𝐴3), (2.17), (2.24), and (3.60), yields that there exist constants 𝑀>0 and 𝑇>1+|𝑡0|+|𝛽| satisfying 0<𝑥(𝑡)𝑀,𝑡𝑇;(3.61)𝑦(𝑛)(𝑡)=𝑚𝑖=1𝑞𝑖(𝑡)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑡),𝑥𝑖2𝜎(𝑡),,𝑥𝑖𝑘𝑖(𝑡)<0,𝑡𝑇.(3.62) Obviously (2.17), (2.24), (3.59), and the boundedness of 𝑥 imply that 𝑦 is bounded. It follows from (2.17), (3.62), Lemmas 2.1 and 2.2 that there exists a constant 𝐿 satisfying lim𝑡+𝑦(𝑡)=𝐿0,lim𝑡+𝑦(𝑖)(𝑡)=0,1𝑖𝑛1.(3.63) Thus, (𝐴1), (3.61), (3.63), and Lemma 2.3 imply that there exist constants 𝑁 and 𝑇1𝑇0𝑇 satisfying 𝜎inf𝑖𝑗(𝑡)𝑡𝑇1,1𝑗𝑘𝑖,1𝑖𝑚𝑇0,||||0<𝑁𝑥(𝑡),𝑦(𝑡)𝐿<1,𝑡𝑇1.(3.64) Put 𝐵3𝑓=min𝑖𝑢1,𝑢2,,𝑢𝑘𝑖𝑢𝑗[]𝑁,𝑀,1𝑗𝑘𝑖,1𝑖𝑚.(3.65) Clearly, (𝐴3) guarantees that 𝐵3>0. Integrating (3.62) from 𝑡 to +, by (3.63) and (3.64), we have 𝑦(𝑛1)(𝑡)=(1)2𝑡𝑚+𝑖=1𝑞𝑖𝑢1𝑓𝑖𝑥𝜎𝑖1𝑢1𝜎,𝑥𝑖2𝑢1𝜎,,𝑥𝑖𝑘𝑖𝑢1𝑑𝑢1,𝑡𝑇1,(3.66) repeating this procedure, we obtain that 𝑦(𝑛2)(𝑡)=(1)3𝑡+𝑑𝑢2𝑢+2𝑚𝑖=1𝑞𝑖𝑢1𝑓𝑖𝑥𝜎𝑖1𝑢1𝜎,𝑥𝑖2𝑢1𝜎,,𝑥𝑖𝑘𝑖𝑢1𝑑𝑢1,𝑡𝑇1,𝑦(𝑡)=(1)𝑛𝑡+𝑑𝑢𝑛1𝑢+𝑛1𝑑𝑢𝑛2×𝑢+2𝑚𝑖=1𝑞𝑖𝑢1𝑓𝑖𝑥𝜎𝑖1𝑢1𝜎,𝑥𝑖2𝑢1𝜎,,𝑥𝑖𝑘𝑖𝑢1𝑑𝑢1,𝑡𝑇1,𝐿𝑦(𝑡)=lim𝑢+𝑦(𝑢)𝑦(𝑡)=(1)𝑛𝑡+𝑑𝑢𝑛𝑢+𝑛𝑑𝑢𝑛1×𝑢+2𝑚𝑖=1𝑞𝑖𝑢1𝑓𝑖𝑥𝜎𝑖1𝑢1𝜎,𝑥𝑖2𝑢1𝜎,,𝑥𝑖𝑘𝑖𝑢1𝑑𝑢1=(1)𝑛(𝑛1)!𝑡+(𝑠𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑠),𝑥𝑖2𝜎(𝑠),,𝑥𝑖𝑘𝑖(𝑠)𝑑𝑠,𝑡𝑇1,(3.67) which together with (3.64) and (𝐴3) means that ||||=|||||1>𝐿𝑦(𝑡)(1)𝑛(𝑛1)!𝑡+(𝑠𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑓𝑖𝑥𝜎𝑖1𝜎(𝑠),𝑥𝑖2𝜎(𝑠),,𝑥𝑖𝑘𝑖|||||𝐵(𝑠)𝑑𝑠3(𝑛1)!𝑡+(𝑠𝑡)𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑑𝑠,𝑡𝑇1,(3.68) which gives that 𝑇+1𝑠𝑚𝑛1𝑖=1𝑞𝑖(𝑠)𝑑𝑠<+,(3.69) which contradicts (3.60).
Necessity. Suppose that (3.60) does not hold. Observe that lim𝑡+𝑟(𝑡)=0 implies that there exist two positive constants 𝑟0 and 𝑟1 satisfying 𝑟0𝑟(𝑡)𝑟1eventually.(3.70) It follows from Theorem 3.1 or Theorem 3.2 that, for any positive constants 𝑀 and 𝑁 satisfying (3.4) or (3.37), (1.1) possesses uncountably many bounded positive solutions 𝑥𝐴(𝑁,𝑀) with 𝑀limsup𝑡+𝑥(𝑡)liminf𝑡+𝑥(𝑡)𝑁. This is a contradiction. This completes the proof.

As in the proof of Theorem 3.4, by means of Lemmas 2.1, 2.4, and 2.5, we have

Theorem 3.5. Let (𝐴1) and (𝐴3) hold. Assume that there exist 𝑝0+{0} and 𝑟𝐶𝑛([𝑡0,+),) satisfying (2.29) and (3.59). Then, each bounded solution of (1.1) either oscillates or tends to 0 as 𝑡+ if and only if (3.60) holds.

4. Remarks and Examples

Now, we compare the results in Section 3 with some known results in the literature. In order to illustrate the advantage and applications of our results, five nontrivial examples are constructed.

Remark 4.1. Theorems 3.13.3 extend and improve the Theorem in [9], Theorem  8.4.2 in [10], Theorem  1 in [21], Theorems  1–3 in [24], Theorem  2.2 in [26], and Theorems  1–4 in [27, 28].

Remark 4.2. The sufficient part of Theorem 3.5 is a generalization of Theorem  3.1 in [4, 5]. Theorem 3.5 corrects and perfects Theorem  2.1 in [26].

The examples below show that our results extend indeed the corresponding results in [4, 5, 9, 10, 21, 24, 2628]. Notice that none of the known results can be applied to these examples.

Example 4.3. Consider the 𝑛th-order forced nonlinear neutral differential equation: 𝑥(𝑡)3+4𝑡𝑛1+𝑡𝑛𝑥𝑡(𝑛)+1+𝑥3+2𝑡5(3𝑡+sin𝑡)+𝑥3(𝑡1/𝑡)1+𝑡𝑛+3|||𝑥1+83𝑡22𝑥21𝑡|||+𝑡1𝑡𝑥(3𝑡ln𝑡)𝑥4𝑡2𝑥𝑡6(𝑡2)+5𝑡𝑥𝑡(1+1/𝑡)𝑡1+3𝑡3𝑛+1||𝑥1+34𝑡cos3𝑡4𝑥4||=1(𝑡1)2sin𝑡+𝑛𝜋2,𝑡2,(4.1) where 𝑡0=2,𝑚=2, and 𝑛. Put 𝑘1=4,𝑘2=6,𝛽=0,𝑟0=𝑟1=1/2,𝑝0=3,𝑝1=4, 𝑝(𝑡)=3+4𝑡𝑛1+𝑡𝑛,𝑞1(𝑡)=1+3+2𝑡1+𝑡𝑛+3,𝑞2𝑡(𝑡)=1+3𝑡3𝑛+1,1𝑔(𝑡)=2sin𝑡+𝑛𝜋21,𝑟(𝑡)=2sin𝑡,𝜏(𝑡)=𝑡,𝜎11𝜎(𝑡)=3𝑡+sin𝑡,121(𝑡)=𝑡𝑡,𝜎13(𝑡)=3𝑡2,𝜎14(𝑡)=𝑡𝑡1,𝜎21𝜎(𝑡)=3𝑡ln𝑡,22(𝑡)=𝑡2𝑡,𝜎23(𝑡)=𝑡2,𝜎24(1𝑡)=𝑡1+𝑡𝑡,𝜎25(𝑡)=4𝑡cos3𝜎𝑡,26(𝑡)=𝑡1,𝑓1𝑢(𝑢,𝑣,𝑤,𝑧)=5+𝑣3||𝑤1+82𝑧21||,𝑓2(𝑢,𝑣,𝑤,𝑧,𝑦,𝑠)=𝑢𝑣4𝑤6+5𝑧||𝑦1+34𝑠4||𝑡,(𝑡,𝑢,𝑣,𝑤,𝑧,𝑦,𝑠)0,+×6.(4.2) Clearly (𝐴1), (𝐴2), (𝐴3), and (3.1)–(3.3) hold.
Let 𝑀 and 𝑁 be arbitrarily positive constants satisfying 𝑀>(3/2)𝑁+7/12. It is easy to verify that (3.4) holds. It follows from Theorem 3.1 that (4.1) has uncountably many bounded positive solutions 𝑥𝐴(𝑁,𝑀) with 𝑁liminf𝑡+𝑥(𝑡)limsup𝑡+𝑥(𝑡)𝑀.
Let 𝑀 and 𝑁 be arbitrarily positive constants satisfying 𝑁>3𝑀/2+7/12. It is easy to verify that (3.6) holds. It follows from Theorem 3.1 that (4.1) has uncountably many bounded negative solutions 𝑥𝐴(𝑁,𝑀) with 𝑁liminf𝑡+𝑥(𝑡)limsup𝑡+𝑥(𝑡)𝑀.

Example 4.4. Consider the 𝑛th-order forced nonlinear neutral differential equation: 𝑥(𝑡)+8+10𝑡52+𝑡5𝑥𝑡2+11(𝑛)+𝑡2+3𝑡3𝑥73𝑡2𝑥(𝑡1)𝑥3(𝑡ln𝑡)2+sin3𝑡2+𝑡𝑛+51+𝑥2(𝑡1)𝑥4+(𝑡ln𝑡)3+𝑡2𝑥5𝑡2+1+7𝑥3𝑡42+𝑥9𝑡+𝑡𝑥8(𝑡4)𝑡+1+𝑡𝑛+3𝑥1+5𝑡+𝑡4𝑥4(𝑡4)36=(1)𝑛𝑛!𝑡𝑛+1+𝑛!(1𝑡)𝑛+1,𝑡3,(4.3) where 𝑡0=3,𝑚=2, and 𝑛. Put 𝑘1=3,𝑘2=4,𝛽=1,𝑟0=1/2,𝑟1=0,𝑝0=4,𝑝1=10, 𝑝(𝑡)=8+10𝑡52+𝑡5,𝑞1𝑡(𝑡)=2+3𝑡32+sin3𝑡2+𝑡𝑛+5,𝑞2(𝑡)=3+𝑡2𝑡+1+𝑡𝑛+3,𝑔(𝑡)=(1)𝑛𝑛!𝑡𝑛+1+𝑛!(1𝑡)𝑛+11,𝑟(𝑡)=𝑡(1𝑡),𝜏(𝑡)=𝑡2𝜎+11,11(𝑡)=3𝑡2,𝜎12(𝑡)=𝑡1,𝜎13(𝑡)=𝑡ln𝑡,𝜎21(𝑡)=𝑡2𝜎+1,22(𝑡)=𝑡42,𝜎23(𝑡)=𝑡+𝑡,𝜎24(𝑡)=𝑡4,𝑓1𝑢(𝑢,𝑣,𝑤)=7𝑣𝑤31+𝑣2𝑤4,𝑓2𝑢(𝑢,𝑣,𝑤,𝑧)=5+7𝑣3+𝑤9𝑧8𝑤1+54𝑧436𝑡,(𝑡,𝑢,𝑣,𝑤,𝑧)0,+×4.(4.4) Clearly (𝐴1), (𝐴2), (𝐴3), (3.2), (3.3), and (3.36) hold.
Let 𝑀 and 𝑁 be arbitrarily positive constants satisfying 𝑀>(32/5)𝑁+5/6. It is easy to verify that (3.37) holds. It follows from Theorem 3.2 that (4.3) has uncountably many bounded positive solutions 𝑥𝐴(𝑁,𝑀) with 𝑁liminf𝑡+𝑥(𝑡)limsup𝑡+𝑥(𝑡)𝑀.
Let 𝑀 and 𝑁 be arbitrarily positive constants satisfying 𝑁>(32/5)𝑀+1/3. It is easy to verify that (3.39) holds. It follows from Theorem 3.2 that (4.3) has uncountably many bounded negative solutions 𝑥𝐴(𝑁,𝑀) with 𝑁liminf𝑡+𝑥(𝑡)limsup𝑡+𝑥(𝑡)𝑀.

Example 4.5. Consider the 𝑛th-order forced nonlinear neutral differential equation: 𝑡𝑥(𝑡)2sin2𝑡𝑡5+sin2𝑡𝑥(𝑡5)2(𝑛)+3𝑡1+𝑡5𝑥3(𝑡4)𝑡2+1+𝑡𝑛+62+cos5𝑥+𝑡+131𝑡+1ln2𝑡+𝑡4𝑥9𝑡2𝑡+sin2+112𝑡3+3𝑡4+𝑡𝑛+5ln2+𝑥2𝑡2=1+2𝑡(1)𝑛cos𝑡+𝑛𝜋2,𝑡1,(4.5) where 𝑡0=1,𝑚=2, and 𝑛. Put 𝑘1=𝑘2=2,𝛽=4,𝑟0=𝑟1=1,𝑝0=1/2,𝑝1=1/3, 𝑡𝑝(𝑡)=2sin2𝑡𝑡5+sin2𝑡,𝑞13(𝑡)=𝑡1+𝑡5𝑡2+1+𝑡𝑛+6,𝑞2(𝑡)=1𝑡+1ln2𝑡+𝑡412𝑡3+3𝑡4+𝑡𝑛+5,𝑔(𝑡)=(1)𝑛cos𝑡+𝑛𝜋2,𝑟(𝑡)=(1)𝑛cos𝑡,𝜏(𝑡)=(𝑡4)2𝜎11𝜎(𝑡)=𝑡5,12(𝑡)=𝑡+13,𝜎21𝑡(𝑡)=2𝑡+sin2+1,𝜎22(𝑡)=𝑡2𝑓1+2𝑡,1𝑢(𝑢,𝑣)=32+cos5𝑣,𝑓2𝑢(𝑢,𝑣)=9ln2+𝑣2𝑡,(𝑡,𝑢,𝑣)0,+×2.(4.6) Clearly (𝐴1), (𝐴3), (3.2), (3.3), and (3.47) hold.
Let 𝑀 and 𝑁 be arbitrarily positive constants satisfying 𝑀>6𝑁+12. It is easy to verify that (3.48) holds. It follows from Theorem 3.3 that (4.5) has uncountably many bounded positive solutions 𝑥𝐴(𝑁,𝑀) with 𝑁liminf𝑡+𝑥(𝑡)limsup𝑡+𝑥(𝑡)𝑀.
Let 𝑀 and 𝑁 be arbitrarily positive constants satisfying 𝑁>6𝑀+12. It is easy to verify that (3.50) holds. It follows from Theorem 3.3 that (4.5) has uncountably many bounded negative solutions 𝑥𝐴(𝑁,𝑀) with 𝑁liminf𝑡+𝑥(𝑡)limsup𝑡+𝑥(𝑡)𝑀.

Example 4.6. Consider the 𝑛th-order forced nonlinear neutral differential equation: 𝑥(𝑡)(1)𝑛5+9ln2𝑡1+ln2𝑡𝑥𝑡1(𝑛)+𝑡8+9𝑡5+32𝑥3𝑡ln2𝑡+5𝑥7(𝑡16)+𝑡2𝑡2+sin3𝑥5𝑡9𝑡sin𝑡𝑡𝑥4(𝑡cos𝑡)+4𝑥61+𝑡+𝑡2+𝑡31+𝑡+𝑡22+(𝑡+1)2𝑡𝑥5𝑡𝑡arctan3/+11+𝑡+1ln1+𝑥6(𝑡+1)/1+𝑥2(𝑡2)2𝑡𝑛+3+𝑡sin3𝑡511+𝑥2𝑡2𝑥𝑡4𝑡2=(+𝑡1)𝑛𝑛!ln𝑡𝑛𝑖=1(1/𝑖)𝑡𝑛+1,𝑡4,(4.7) where 𝑡0=4,𝑚=3, and 𝑛. Put 𝑘1=2,𝑘2=3,𝑘3=5,𝛽=12,𝑝0=5,𝑝1=9, 𝑝(𝑡)=(1)𝑛5+9ln2𝑡1+ln2𝑡,𝑞1(𝑡)=𝑡8+9𝑡5+3,𝑞2(𝑡)=𝑡2𝑡2+sin3,𝑞5𝑡3=(𝑡+1)2𝑡2𝑡𝑛+3+𝑡sin3𝑡51,𝑔(𝑡)=(1)𝑛𝑛!ln𝑡𝑛𝑖=11/𝑖𝑡𝑛+1,𝑟(𝑡)=ln𝑡𝑡,𝜏(𝑡)=𝑡1,𝜎11(𝑡)=𝑡ln2𝑡,𝜎12(𝑡)=𝑡16,𝜎21(𝑡)=𝑡sin𝑡𝑡,𝜎22(𝑡)=𝑡cos𝑡,𝜎23(𝑡)=1+𝑡+𝑡2+𝑡31+𝑡+𝑡2,𝜎31(𝑡𝑡)=𝑡arctan3+11+,𝜎𝑡+132(𝑡)=𝑡+1,𝜎33(𝑡)=𝑡2,𝜎34(𝑡)=𝑡2𝑡,𝜎35(𝑡)=𝑡2𝑓+𝑡,1(𝑢,𝑣)=2𝑢3+5𝑣7,𝑓2(𝑢,𝑣,𝑤)=𝑢9𝑣4+4𝑤62,𝑓3𝑢(𝑢,𝑣,𝑤,𝑦,𝑧)=5ln1+𝑣6/1+𝑤21+𝑦2𝑧4𝑡,(𝑡,𝑢,𝑣,𝑤,𝑦,𝑧)0,+×5.(4.8) Clearly (𝐴1), (𝐴2), (𝐴3), (2.24), (3.59), and (3.60) hold. It follows from Theorem 3.4 that each bounded solution of (4.7) either oscillates or tends to 0 as 𝑡+.

Example 4.7. Consider the 𝑛th-order forced nonlinear neutral differential equation: 𝑥(𝑡)(1)𝑛cos3(3𝑡1)4+cos3(3𝑡1)𝑥(𝑡sin𝑡)(𝑛)+𝑡3+2𝑡2𝑥𝑡+15𝑡211+𝑥2+𝑡21𝑡2𝑥13(𝑡1/𝑡)+5𝑥7(𝑡1/𝑡)ln2+𝑥6(𝑡1/𝑡)𝑡2𝑛+1+2𝑡𝑛ln31+𝑡2=2+1𝑛sin2𝑡+𝑛𝜋/4𝑒2𝑡,𝑡6,(4.9) where 𝑡0=6,𝑚=2, and 𝑛. Put 𝑘1=𝑘2=1,𝛽=1,𝑝0=1/3, 𝑝(𝑡)=(1)𝑛cos3(3𝑡1)4+cos3(3𝑡1),𝑞1(𝑡)=𝑡3+2𝑡2𝑞𝑡+1,2(𝑡)=𝑡21𝑡2𝑛+1+2𝑡𝑛ln31+𝑡22+1,𝑔(𝑡)=𝑛sin2𝑡+𝑛𝜋/4𝑒2𝑡,𝑟(𝑡)=sin2𝑡𝑒2𝑡,𝜏(𝑡)=𝑡sin𝑡,𝜎1(𝑡)=𝑡21𝜎21(𝑡)=𝑡𝑡,𝑓1𝑢(𝑢)=51+𝑢2,𝑓2(𝑢)=𝑢3+5𝑢7ln2+𝑢6𝑡,(𝑡,𝑢)0,+×.(4.10) Clearly (𝐴1), (𝐴3), (2.29), (3.59), and (3.60) hold. It follows from Theorem 3.5 that each bounded solution of (4.9) either oscillates or tends to 0 as 𝑡+.

Next, we prove that the necessary part of Theorem  2.1 in [26] does not hold by means of (4.9). It is easy to verify that the conditions of Theorem  2.1 in [26] are fulfilled. Suppose that the necessary part of Theorem  2.1 in [26] is true. Because each bounded solution of (4.9) either oscillates or tends to 0 as 𝑡+, it follows that the necessary part of Theorem  2.1 in [26] gives that𝑡+0𝑠𝑛1𝑞𝑖(𝑠)𝑑𝑠=+,𝑖{1,2},(4.11) which yields that+=𝑡+0𝑠𝑛1𝑞2(𝑠)𝑑𝑠=𝑡+0𝑠𝑛1𝑠21𝑠2𝑛+1+2𝑠𝑛ln31+𝑠2+1𝑑𝑠𝑡+01𝑠𝑛+1𝑑𝑠<+,(4.12) which is a contradiction.

Acknowledgments

The authors would like to thank the referees for useful comments and suggestions. This study was supported by research funds from Dong-A University.