Abstract

A combined interior point homotopy continuation method is proposed for solving general multiobjective programming problem. We prove the existence and convergence of a smooth homotopy path from almost any interior initial interior point to a solution of the KKT system under some basic assumptions.

1. Introduction

In this paper, for any two vectors 𝑦=(𝑦1,𝑦2,…,𝑦𝑛)𝑇 and 𝑧=(𝑧1,𝑧2,…,𝑧𝑛)𝑇 in 𝑅𝑛, we use the following conventions: 𝑦=𝑧,iff𝑦𝑖=𝑧𝑖,𝑖=1,2,…,𝑛;𝑦<𝑧,iff𝑦𝑖<𝑧𝑖,𝑖=1,2,…,𝑛;𝑦≦𝑧,iff𝑦𝑖≀𝑧𝑖,𝑖=1,2,…,𝑛;𝑦≀𝑧,iff𝑦𝑖≀𝑧𝑖,𝑦≠𝑧,𝑖=1,2,…,𝑛.(1.1)

We consider the following multiobjective programming problem:

(MOP) min𝑓(π‘₯),s.t.𝑔(π‘₯)≦0,β„Ž(π‘₯)=0,(1.2) where 𝑓=(𝑓1,𝑓2,…,𝑓𝑝)π‘‡βˆΆπ‘…π‘›β†’π‘…π‘, 𝑔=(𝑔1,𝑔2,…,π‘”π‘š)π‘‡βˆΆπ‘…π‘›β†’π‘…π‘š, and β„Ž=(β„Ž1,β„Ž2,…,β„Žπ‘ )π‘‡βˆΆπ‘…π‘›β†’π‘…π‘ .

For πœ†=(πœ†1,πœ†2,…,πœ†π‘)π‘‡βˆˆπ‘…π‘, let 𝑅𝑛+ and 𝑅𝑛++ denote the nonnegative and positive orthant of 𝑅𝑛. Respectively, let Ξ©={π‘₯βˆˆπ‘…π‘›βˆ£π‘”(π‘₯)≦0,β„Ž(π‘₯)=0},Ξ©0={π‘₯βˆˆπ‘…π‘›Ξ©βˆ£π‘”(π‘₯)<0,β„Ž(π‘₯)=0},πœ•Ξ©=Ξ©0,Ξ›+=ξƒ―πœ†βˆˆπ‘…π‘+βˆ£π‘ξ“π‘–=1πœ†π‘–ξƒ°=1,Ξ›++=ξƒ―πœ†βˆˆπ‘…π‘++βˆ£π‘ξ“π‘–=1πœ†π‘–ξƒ°,=1𝐼={1,2,…,π‘š},𝐽={1,2,…,𝑠},(1.3) and let 𝐡(π‘₯)=π‘–βˆˆ{1,2,…,π‘š}βˆ£π‘”π‘–ξ€Ύ(π‘₯)=0(1.4) denote the active index set at a given point.

MOP has important application in many practical fields like production planning, structural designing, portfolio selection, and so forth. Research on it can be traced back to Pareto [1], Von Neumann and Morgenstern [2], and Koopmans [3] or even earlier. Especially, more and more attention has been paid to the homotopy method since Kellogg et al. [4], Smale [5], and Chow et al. [6] published the remarkable papers. The homotopy method now becomes an important tool for numerically solving complementary, variational inequalities, convex multiobjective programming, and nonlinear mathematical programming et al. [7–12] as a globally convergent method.

Among many methods, the weighed sum method is popular and efficient. It transforms the MOP to a single-objective programming [13]: minπœ†π‘‡π‘“(π‘₯),s.t.𝑔(π‘₯)≦0,𝑝𝑖=1πœ†π‘–=1,(1.5) where πœ† is the weight vector.

Recently, Song and Yao [14] generalize the combined homotopy interior point method to the general multi-objective programming problem under the so-called normal cone condition instead of the convexity condition about the feasible set. In that paper, they proved the existence of the homotopy path under the following assumptions:(A1)Ξ©0 is nonempty and bounded;(A2) for all π‘₯∈Ω, the vectors {βˆ‡π‘”π‘–(π‘₯),π‘–βˆˆπ΅(π‘₯),βˆ‡β„Žπ‘—(π‘₯),π‘—βˆˆπ½} are linearly independent;(A3) for all π‘₯∈Ω, βˆ‘{π‘₯+π‘–βˆˆπ΅(π‘₯)π‘’π‘–βˆ‡π‘”π‘–βˆ‘(π‘₯)+π‘—βˆˆπ½π‘§π‘—βˆ‡β„Žπ‘—(π‘₯)βˆΆπ‘§π‘—βˆˆπ‘…,𝑒𝑖⋂β‰₯0,π‘—βˆˆπ½,π‘–βˆˆπ΅(π‘₯)}Ξ©={π‘₯}.

In [14], the combined homotopy method was given as follows: π»ξ€·πœ”,πœ”(0)ξ€Έ=βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ£ξ€·,𝑑(1βˆ’π‘‘)(βˆ‡π‘“(π‘₯)πœ†+βˆ‡π‘”(π‘₯)𝑒)+βˆ‡β„Ž(π‘₯)𝑧+𝑑π‘₯βˆ’π‘₯(0)ξ€Έβ„Ž(π‘₯)π‘ˆΓ—π‘”(π‘₯)βˆ’π‘‘π‘ˆ(0)ξ€·π‘₯×𝑔(0)ξ€Έξ‚΅(1βˆ’π‘‘)1βˆ’π‘βˆ‘π‘–=1πœ†π‘–ξ‚Άξ€·π‘’βˆ’π‘‘πœ†βˆ’πœ†(0)ξ€ΈβŽ€βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦=0,(1.6) where π‘₯(0)∈Ω0, 𝑒(0)>0, πœ†(0)>0, and βˆ‘π‘π‘–=1πœ†π‘–(0)=1. However, the solution simply yields πœ†=πœ†(0) for all π‘‘βˆˆ(0,1]. That is, πœ† is fixed. In fact, from the last equation, we have βˆ‘π‘(1βˆ’π‘‘)+(π‘π‘‘βˆ’π‘βˆ’π‘‘)𝑝𝑖=1πœ†π‘–+𝑑=0. According to this, we know that πœ†β‰‘πœ†0 for all of π‘‘βˆˆ[0,1].

That is, these methods are all solving the single-objective programming problem.

In [15], they present the concept of β€œpositive linear independent” and weaken the assumptions than the ones in [14]. But in order to extend their results to a broader class of nonconvex multi-objective programming problems, we construct a new homotopy equation under generalized quasinorm cone condition in this paper and πœ† is not fixed in the calculation process.

The paper is organized as follows. In Section 2, we recall some notations and preliminaries results. In Section 3, we construct a new combined homotopy mapping and prove the existence and convergence of a smooth homotopy path from almost any interior initial point to the KKT points of MOP under some assumptions.  In Section 4, numerical results are given,which show that the method is feasible and effective.

2. Some Definitions and Properties

Definition 2.1. Let π‘ˆβŠ‚π‘…π‘› be an open set, and let πœ‘βˆΆπ‘ˆβ†’π‘…π‘ƒ be a smooth mapping. If Range[πœ•πœ‘(π‘₯)/πœ•π‘₯]=𝑅𝑝 for all π‘₯βˆˆπœ‘βˆ’1(𝑦), then π‘¦βˆˆπ‘…π‘ is a regular value and π‘₯βˆˆπ‘…π‘› is a regular point.

Definition 2.2. Let πœ‚π‘–βˆΆπ‘…π‘›β†’π‘…π‘›(𝑖=1,2,…,π‘š) and π›½π‘—βˆΆπ‘…π‘›β†’π‘…π‘›(𝑗=1,2,…,𝑠). For any π‘₯∈Ω,{βˆ‡π‘”π‘–(π‘₯),πœ‚π‘–(π‘₯)βˆΆπ‘–βˆˆπ΅(π‘₯)} is said to be positive linear independent with respect to 𝛽(π‘₯), if 𝛽(π‘₯)𝑧+π‘–βˆˆπ΅(π‘₯)ξ€·π‘¦π‘–βˆ‡π‘”π‘–(π‘₯)+π‘’π‘–πœ‚π‘–(ξ€Έπ‘₯)=0,π‘§βˆˆπ‘…π‘ ,𝑦𝑖β‰₯0,𝑒𝑖β‰₯0(2.1) implies that 𝑧=0,𝑦𝑖=0,𝑒𝑖=0(π‘–βˆˆπ΅(π‘₯)),(2.2) where 𝛽(π‘₯)=(𝛽1(π‘₯),…,𝛽𝑠(π‘₯)).

Lemma 2.3 (parametric form of the Sard theorem on a smooth manifold; see [16]). Let 𝑄,𝑁,𝑃 be smooth manifolds of dimensions π‘ž,π‘š,𝑝. Respectively, let πœ‘βˆΆπ‘„Γ—π‘β†’π‘ƒ be a πΆπ‘Ÿ map, where π‘Ÿ>max{0,π‘šβˆ’π‘}. If 0βˆˆπ‘ƒ is a regular value of πœ‘, then for almost all π›Όβˆˆπ‘„, 0 is a regular value of πœ‘(𝛼,β‹…).

Lemma 2.4 (inverse image theorem; see [17]). If 0 is a regular value of the mapping πœ‘π›Ό(β‹…)β‰œπœ‘(𝛼,β‹…), then πœ‘π›Όβˆ’1(0) consists of some smooth manifolds.

Lemma 2.5 (classification theorem of one-dimensional manifold; see [17]). A one-dimensional smooth manifold is diffeomorphic to a unit circle or a unit interval.

The following four basic assumptions are commonly used in this paper:(C1)Ξ©0 is nonempty and bounded;(C2) for any π‘₯∈Ω and π‘‘βˆˆ[0,1], there exists map πœ‚(π‘₯) and 𝛽(π‘₯), such that {βˆ‡π‘”π‘–(π‘₯),πœ‚π‘–(π‘₯)βˆΆπ‘–βˆˆπ΅(π‘₯)} is positive linear independent with respect to βˆ‡β„Ž(π‘₯)+𝑑(𝛽(π‘₯)βˆ’βˆ‡β„Ž(π‘₯)); (C3) for any π‘₯βˆˆπœ•Ξ©, π‘₯+π‘–βˆˆπ΅(π‘₯)π‘’π‘–πœ‚π‘–(π‘₯)+𝛽(π‘₯)π‘§βˆΆπ‘§βˆˆπ‘…π‘ ,𝑒𝑖β‰₯0,π‘–βˆˆπ΅(π‘₯)Ξ©={π‘₯}(2.3) (generalized quasinormal cone condition);(C4) for any π‘₯∈Ω, βˆ‡β„Ž(π‘₯)𝑇𝛽(π‘₯) is nonsingular.

Remark 2.6. If Ξ© satisfies the assumptions (A1)–(A3), then it necessarily satisfies the assumptions (C1)–(C4).
In fact, if we choose πœ‚(π‘₯)=βˆ‡π‘”(π‘₯) and 𝛽(π‘₯)=βˆ‡β„Ž(π‘₯), then it is easy to get the result. Clearly, if Ξ© satisfies the assumptions (C1)–(C4), then it does not necessarily satisfies the assumptions (A1)–(A3).

3. Main Results

Let π‘₯∈Ω be a KKT point of MOP; our aim is to find (πœ†,𝑒,𝑧)βˆˆπ‘…+𝑝+π‘šΓ—π‘…π‘ , such that βˆ‡π‘“(π‘₯)πœ†+βˆ‡π‘”(π‘₯)𝑒+βˆ‡β„Ž(π‘₯)𝑧=0,(3.1a)π‘ˆπ‘”(π‘₯)=0,(3.1b)1βˆ’π‘ξ“π‘–=1πœ†π‘–=0,(3.1c)where βˆ‡π‘“(π‘₯)=(βˆ‡π‘“1(π‘₯),…,βˆ‡π‘“π‘(π‘₯))βˆˆπ‘…π‘›Γ—π‘, βˆ‡π‘”(π‘₯)=(βˆ‡π‘”1(π‘₯),…,βˆ‡π‘”π‘š(π‘₯))βˆˆπ‘…π‘›Γ—π‘š, βˆ‡β„Ž(π‘₯)=(βˆ‡β„Ž1(π‘₯),…,βˆ‡β„Žπ‘š(π‘₯))βˆˆπ‘…π‘›Γ—π‘ .

Meanwhile, the KKT system of MOP is (3.1a)–(3.1c).

For a convex multi-objective programming problem, the solution of the MOP can be obtained from the KKT system. And for a nonconvex multi-objective programming problem, it is significant that we can obtain a solution of the KKT system.

To solve the KKT system (3.1a)–(3.1c), we construct a homotopy equation as follows: π»ξ€·πœ”,πœ”(0)ξ€Έ=βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ£ξ€·,𝑑(1βˆ’π‘‘)βˆ‡π‘“(π‘₯)πœ†+βˆ‡π‘”(π‘₯)𝑒+π‘‘πœ‚(π‘₯)𝑒2ξ€Έ+[]ξ€·βˆ‡β„Ž(π‘₯)+𝑑(𝛽(π‘₯)βˆ’βˆ‡β„Ž(π‘₯))𝑧+𝑑π‘₯βˆ’π‘₯(0)ξ€Έβ„Ž(π‘₯)π‘ˆΓ—π‘”(π‘₯)βˆ’π‘‘π‘ˆ(0)ξ€·π‘₯×𝑔(0)ξ€Έξ‚΅(1βˆ’π‘‘)1βˆ’π‘βˆ‘π‘–=1πœ†π‘–ξ‚Άξ‚€πœ†π‘’βˆ’π‘‘5/2βˆ’ξ€·πœ†(0)ξ€Έ5/2ξ‚βŽ€βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦=0,(3.2) where πœ”(0)=(π‘₯(0),πœ†(0),𝑒(0),𝑧(0))∈Ω0Γ—Ξ›++Γ—π‘…π‘š++Γ—{0}, πœ”=(π‘₯,πœ†,𝑒,𝑧)βˆˆΞ©Γ—π‘…π‘+π‘š+𝑠, 𝑒2=(𝑒21,𝑒22…,𝑒2π‘š)π‘‡βˆˆπ‘…π‘š, πœ†5/2=(πœ†15/2,πœ†25/2,…,πœ†π‘5/2)π‘‡βˆˆπ‘…π‘, π‘ˆ=diag(𝑒), 𝑒=(1,1,…,1)π‘‡βˆˆπ‘…π‘, and π‘‘βˆˆ[0,1].

As 𝑑=1, the homotopy equation (3.2) becomes 𝛽(π‘₯)𝑧+π‘₯βˆ’π‘₯(0)ξ€Έ=0,(3.3a)β„Ž(π‘₯)=0,(3.3b)π‘ˆπ‘”(π‘₯)βˆ’π‘ˆ(0)𝑔π‘₯(0)ξ€Έπœ†=0,(3.3c)5/2=ξ€·πœ†(0)ξ€Έ5/2.(3.3d)

By the assumption (C3), we get 𝑧=0, π‘₯=π‘₯(0). Since 𝑔(π‘₯(0))<0 and π‘₯=π‘₯(0), (3.3c) implies that 𝑒=𝑒(0). Equation (3.3d) shows that πœ†=πœ†(0). That is, 𝐻(πœ”,πœ”(0),1)=0 with respect to πœ” has only one solution πœ”=πœ”(0)=(π‘₯(0),πœ†(0),𝑒(0),0).

As 𝑑=0, 𝐻(πœ”,πœ”(0),𝑑)=0 turns to the KKT system (3.1a)–(3.1c).

For a given πœ”(0), rewrite 𝐻(πœ”,πœ”(0),𝑑) as π»πœ”(0)(πœ”,𝑑). The zero-point set of π»πœ”(0) is π»πœ”βˆ’1(0)=ξ€½(πœ”,𝑑)βˆˆΞ©Γ—π‘…π‘+π‘š++×𝑅𝑠]ξ€·Γ—(0,1βˆΆπ»πœ”,πœ”(0)ξ€Έξ€Ύ.,𝑑=0(3.4)

Theorem 3.1. Suppose 𝑓,𝑔, and β„Ž are three times continuous differentiable functions. In addition, let the assumptions (C1)-(C2) hold and πœ‚π‘–,𝛽𝑗 twice times continuously differentiable functions. Then for almost all initial points πœ”(0)∈Ω0Γ—Ξ›++Γ—π‘…π‘š++Γ—{0}, 0 is a regular value of π»πœ”(0) and π»πœ”βˆ’1(0) consists of some smooth curves. Among them, a smooth curve, say Ξ“πœ”(0), is starting from (πœ”(0),1).

Proof. Denote the Jacobi matrix of 𝐻(πœ”,πœ”(0),𝑑) by 𝐷𝐻(πœ”,πœ”(0),𝑑). For any πœ”(0)∈Ω0Γ—Ξ›++Γ—π‘…π‘š++Γ—{0} and π‘‘βˆˆ[0,1], we have 𝐷𝐻(πœ”,πœ”(0),𝑑)=(πœ•π»/πœ•πœ”,πœ•π»/πœ•πœ”(0),πœ•π»/πœ•π‘‘). Now, we consider the submatrix of 𝐷𝐻(πœ”,πœ”(0),𝑑).
For any (π‘₯,π‘₯(0),πœ†(0),𝑒(0))βˆˆπ‘…π‘›Γ—Ξ©0Γ—Ξ›++Γ—π‘…π‘š++, πœ•π»πœ•ξ€·π‘₯,π‘₯(0),πœ†(0),𝑒(0)ξ€Έ=βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ£π‘„βˆ’π‘‘πΌπ‘›00βˆ‡β„Ž(π‘₯)𝑇000π‘ˆβˆ‡π‘”(π‘₯)π‘‡βˆ’π‘‘π‘ˆ(0)ξ€·π‘₯βˆ‡π‘”(0)𝑇𝑔π‘₯0βˆ’π‘‘diag(0)5ξ€Έξ€Έ002π‘‘ξ€·πœ†(0)ξ€Έ3/2𝐼𝑝0⎀βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦,(3.5) where βˆ‘π‘„=(1βˆ’π‘‘)(𝑝𝑖=1πœ†π‘–βˆ‡2π‘“π‘–βˆ‘(π‘₯)+π‘šπ‘—=1π‘’π‘—βˆ‡2π‘”π‘—βˆ‘(π‘₯)+π‘‘π‘šπ‘—=1𝑒2π‘—βˆ‡πœ‚π‘—(π‘₯))+[βˆ‡2β„Ž(π‘₯)+𝑑(βˆ‡π›½(π‘₯)βˆ’βˆ‡2β„Ž(π‘₯))]𝑧+𝑑𝐼𝑛.
We obtain that rankπœ•π»πœ•ξ€·π‘₯,π‘₯(0),πœ†(0),𝑒(0)ξ€Έ=𝑛+𝑝+π‘š+𝑠.(3.6)
That is, 0 is a regular value of 𝐻. By parametric form of the Sard theorem, for almost all πœ”(0)∈Ω0Γ—Ξ›++Γ—π‘…π‘š++Γ—{0}, 0 is a regular value of π»πœ”(0). By inverse image theorem, π»πœ”βˆ’1(0)(0) consists of some smooth curves. Since 𝐻(πœ”(0),πœ”(0),1)=0, there must be a smooth curve, denoted by Ξ“πœ”(0), that starts from (πœ”(0),1).

Theorem 3.2. Let assumptions (C1)-(C2) hold. For a given πœ”(0)=(π‘₯(0),πœ†(0),𝑒(0),𝑧(0))∈Ω0Γ—Ξ›++Γ—π‘…π‘š++Γ—{0}, if 0 is a regular value of π»πœ”(0), then the projection of the smooth curve Ξ“πœ”(0) on the component πœ† is bounded.

Proof. Suppose that the conclusion does not hold. Since (0,1] is bounded, there exists a sequence {(πœ”(π‘˜),π‘‘π‘˜)}βŠ‚Ξ“πœ”(0), such that π‘‘π‘˜β†’π‘‘βˆ—,β€–β€–πœ†(π‘˜)β€–β€–β†’βˆž.(3.7) From the last equality of (3.2), we have βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽ1βˆ’π‘‘π‘˜1βˆ’π‘‘π‘˜β‹―1βˆ’π‘‘π‘˜βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ βˆ’βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽξ€·1βˆ’π‘‘π‘˜ξ€Έπœ†1(π‘˜)+ξ€·1βˆ’π‘‘π‘˜ξ€Έβˆ‘π‘–β‰ 1πœ†π‘–(π‘˜)+π‘‘π‘˜ξ‚€πœ†1(π‘˜)5/2ξ€·1βˆ’π‘‘π‘˜ξ€Έπœ†2(π‘˜)+ξ€·1βˆ’π‘‘π‘˜ξ€Έβˆ‘π‘–β‰ 2πœ†π‘–(π‘˜)+π‘‘π‘˜ξ‚€πœ†2(π‘˜)5/2β‹―ξ€·1βˆ’π‘‘π‘˜ξ€Έπœ†π‘(π‘˜)+ξ€·1βˆ’π‘‘π‘˜ξ€Έβˆ‘π‘–β‰ π‘πœ†π‘–(π‘˜)+π‘‘π‘˜ξ‚€πœ†π‘(π‘˜)5/2βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ βˆ’π‘‘π‘˜βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽξ‚€πœ†1(0)5/2ξ‚€πœ†2(0)5/2β‹―ξ‚€πœ†π‘(0)5/2⎞⎟⎟⎟⎟⎟⎟⎟⎠=0.(3.8) If we assume β€–πœ†(π‘˜)β€–β†’+∞(π‘˜β†’βˆž), this hypothesis implies ξ‚»π‘–βˆˆ{1,2,…,𝑝}∢limπ‘˜β†’βˆžπœ†π‘–(π‘˜)ξ‚Ό=βˆžβ‰ Ξ¦.(3.9)
Since π‘‘π‘˜β†’π‘‘βˆ—, πœ†(π‘˜)>0, it follows that the second part in the left-hand side of some equations in (3.8) tends to infinity as π‘˜β†’βˆž. But the other two parts are bounded. This is impossible. Thus, the component πœ† is bounded.

Theorem 3.3. Let 𝑓,𝑔, and β„Ž be three times continuous differentiable functions. In addition, let the assumptions (C1)–(C4) hold and πœ‚π‘–,𝛽𝑗 twice times continuously differentiable functions. Then, for almost all of πœ”(0)∈Ω0Γ—Ξ›++Γ—π‘…π‘š++Γ—{0}, π»πœ”βˆ’1(0)(0) contains a smooth curve Ξ“πœ”(0)βŠ‚Ξ©Γ—π‘…π‘+Γ—π‘…π‘š+×𝑅𝑠×(0,1], which starts from (πœ”(0),1). As 𝑑→0, the limit set 𝑇×{0}βŠ‚Ξ©Γ—Ξ›+Γ—π‘…π‘š+×𝑅𝑠×{0} of Ξ“πœ”(0) is nonempty and every point in 𝑇 is a solution of the KKT system (3.1a)–(3.1c).

Proof. From the homotopy equation (3.2), it is easy to see that Ξ“πœ”(0)βŠ‚Ξ©Γ—π‘…π‘+Γ—π‘…π‘š+×𝑅𝑠×(0,1]. By Theorem 3.1, for almost all πœ”(0)∈Ω0Γ—Ξ›++Γ—π‘…π‘š++Γ—{0}, 0 is a regular value of π»πœ”(0) and π»πœ”βˆ’1(0) contains a smooth curve Ξ“πœ”(0) starting from (πœ”(0),1). By the classification theorem of one-dimensional smooth manifolds, Ξ“πœ”(0) is diffeomorphic to a unit circle or the unit interval (0,1].
Noticing that ||||πœ•π»πœ”(0)ξ€·πœ”(0)ξ€Έ,1||||=|||||||||||||||πΌπœ•πœ”π‘›ξ€·π‘₯00𝛽(0)ξ€Έξ€·π‘₯βˆ‡β„Ž(0)ξ€Έπ‘‡π‘ˆ000(0)ξ€·π‘₯βˆ‡π‘”(0)𝑇𝑔π‘₯0diag(0)05ξ€Έξ€Έ0βˆ’2ξ€·πœ†(0)ξ€Έ3/2𝐼𝑝|||||||||||||||=00(βˆ’1)𝑠||𝑔π‘₯diag(0)|||||βˆ’5ξ€Έξ€Έ2ξ€·πœ†(0)ξ€Έ3/2𝐼𝑝||||||ξ€·π‘₯βˆ‡β„Ž(0)𝑇𝛽π‘₯(0)ξ€Έ|||.(3.10)
Because 𝑔(π‘₯(0))<0, πœ†(0)βˆˆΞ›++ and by the assumption (C4), we know that [πœ•π»πœ”(0)(πœ”(0),1)/πœ•πœ”] is nonsingular. Therefore, the smooth curve Ξ“πœ”(0) starts from (πœ”(0),1) diffeomorphic to (0,1].
Let (πœ”βˆ—,π‘‘βˆ—) be a limit point of Ξ“πœ”(0); only three cases are possible:(a)(πœ”βˆ—,π‘‘βˆ—)βˆˆΞ©Γ—Ξ›+Γ—π‘…π‘š+×𝑅𝑠×{0}; (b)(πœ”βˆ—,π‘‘βˆ—)βˆˆπœ•(Ξ©0×𝑅+𝑝+π‘š)×𝑅𝑠×(0,1];(c)(πœ”βˆ—,π‘‘βˆ—)βˆˆΞ©Γ—π‘…+𝑝+π‘šΓ—π‘…π‘ Γ—{1}.
Because 𝐻(πœ”(0),πœ”(0),1)=0 has a unique solution (πœ”(0),1), the case (c) will not happen.
In case (b), because Ξ© and (0,1] are bounded sets and by the assumption (C2), for any π‘₯∈Ω and π‘‘βˆˆ[0,1], there exists map πœ‚(π‘₯) and 𝛽(π‘₯) such that, {βˆ‡π‘”π‘–(π‘₯),πœ‚π‘–(π‘₯)βˆΆπ‘–βˆˆπ΅(π‘₯)} is positive linear independent with respect to βˆ‡β„Ž(π‘₯)+𝑑(𝛽(π‘₯)βˆ’βˆ‡β„Ž(π‘₯)). From the first equation of (3.2), we get that the component 𝑧 of Ξ“πœ”(0) is bounded.
If case (b) holds, then there exists a sequence {(πœ”(π‘˜),π‘‘π‘˜)}βŠ‚Ξ“πœ”(0), such that β€–β€–ξ€·πœ”(π‘˜),π‘‘π‘˜ξ€Έβ€–β€–β†’βˆž.(3.11)
Because Ξ© and (0,1] are bounded, there exists a subsequence (denoted also by {(πœ”(π‘˜),π‘‘π‘˜)}βŠ‚Ξ“πœ”(0)) such that π‘₯(π‘˜)β†’π‘₯βˆ—,πœ†(π‘˜)β†’πœ†βˆ—,‖‖𝑒(π‘˜)β€–β€–β†’βˆž,𝑧(π‘˜)β†’π‘§βˆ—,π‘‘π‘˜β†’π‘‘βˆ—,asπ‘˜β†’βˆž.(3.12)
By the third equation of (3.2), we have 𝑔π‘₯(π‘˜)ξ€Έ=π‘‘π‘˜ξ€·π‘ˆ(π‘˜)ξ€Έβˆ’1π‘ˆ(0)𝑔π‘₯(0)ξ€Έ.(3.13) Hence, the active index set 𝐡(π‘₯βˆ—) is nonempty.
From the first equation of (3.2), it follows that ξ€·1βˆ’π‘‘π‘˜ξ€Έξ‚€ξ€·π‘₯βˆ‡π‘“(π‘˜)ξ€Έπœ†(π‘˜)ξ€·π‘₯+βˆ‡π‘”(π‘˜)𝑒(π‘˜)+π‘‘π‘˜πœ‚ξ€·π‘₯(π‘˜)𝑒(π‘˜)ξ€Έ2+ξ€Ίξ€·π‘₯βˆ‡β„Ž(π‘˜)ξ€Έ+π‘‘π‘˜ξ€·π›½ξ€·π‘₯(π‘˜)ξ€Έξ€·π‘₯βˆ’βˆ‡β„Ž(π‘˜)𝑧(π‘˜)+π‘‘π‘˜ξ€·π‘₯(π‘˜)βˆ’π‘₯(0)ξ€Έ=0.(3.14)
(i) When π‘‘βˆ—=1, rewrite (3.14) as ξ“π‘—βˆˆπ΅(π‘₯βˆ—)ξ€·1βˆ’π‘‘π‘˜ξ€Έξ‚΅βˆ‡π‘”π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)+π‘‘π‘˜πœ‚π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)2ξ‚Ά+π‘‘π‘˜π›½ξ€·π‘₯(π‘˜)𝑧(π‘˜)+ξ€·1βˆ’π‘‘π‘˜ξ€Έξ€·π‘₯βˆ‡β„Ž(π‘˜)𝑧(π‘˜)+ξ€·π‘₯(π‘˜)βˆ’π‘₯(0)ξ€Έξ€·=βˆ’1βˆ’π‘‘π‘˜ξ€Έξƒ¬ξ“π‘—βˆ‰π΅(π‘₯βˆ—)βˆ‡π‘”π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)+π‘‘π‘˜πœ‚π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)2ξ€·π‘₯+βˆ‡π‘“(π‘˜)ξ€Έπœ†(π‘˜)βˆ’ξ€·π‘₯(π‘˜)βˆ’π‘₯(0)ξ€Έξƒ­.(3.15)
From the fact that 𝑒𝑗(π‘˜) is bounded for π‘—βˆ‰π΅(π‘₯βˆ—) and by the assumptions (C1) and (C2), when π‘˜β†’βˆž, we observe that ξ“π‘—βˆˆπ΅(π‘₯βˆ—)ξ‚΅βˆ‡π‘”π‘—ξ€·π‘₯βˆ—ξ€Έlimπ‘˜β†’βˆžξ€·1βˆ’π‘‘π‘˜ξ€Έπ‘’π‘—(π‘˜)+πœ‚π‘—ξ€·π‘₯βˆ—ξ€Έlimπ‘˜β†’βˆžξ€·1βˆ’π‘‘π‘˜ξ€Έπ‘‘π‘˜ξ‚€π‘’π‘—(π‘˜)2𝛽π‘₯=βˆ’βˆ—ξ€Έπ‘§βˆ—+π‘₯βˆ—βˆ’π‘₯(0)ξ€Έ.(3.16)
It is easy to see that the right-hand side of the equation is bounded. By the assumption (C2), we have limπ‘˜β†’βˆžξ€·1βˆ’π‘‘π‘˜ξ€Έπ‘’π‘—(π‘˜)=0,limπ‘˜β†’βˆžξ€·1βˆ’π‘‘π‘˜ξ€Έπ‘‘π‘˜ξ‚€π‘’π‘—(π‘˜)2=𝛼𝑗π‘₯,π‘—βˆˆπ΅βˆ—ξ€Έ,(3.17) where 𝛼𝑗β‰₯0.
Then, we have π‘₯(0)=π‘₯βˆ—ξ€·π‘₯+π›½βˆ—ξ€Έπ‘§βˆ—+ξ“π‘—βˆˆπ΅(π‘₯βˆ—)π›Όπ‘—πœ‚π‘—ξ€·π‘₯βˆ—ξ€Έ,(3.18) which contradicts the assumption (C3).
(ii) When π‘‘βˆ—βˆˆ[0,1), rewrite (3.14) as ξ“π‘—βˆˆπ΅(π‘₯βˆ—)ξ€·1βˆ’π‘‘π‘˜ξ€Έξ‚΅βˆ‡π‘”π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)+π‘‘π‘˜πœ‚π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)2ξ‚Άξ€·=βˆ’1βˆ’π‘‘π‘˜ξ€Έξƒ¬ξ“π‘—βˆ‰π΅(π‘₯βˆ—)ξ‚΅βˆ‡π‘”π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)+π‘‘π‘˜πœ‚π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)2ξ‚Άξ€·π‘₯+βˆ‡π‘“(π‘˜)ξ€Έπœ†(π‘˜)ξƒ­βˆ’π‘‘π‘˜ξ€·π‘₯(π‘˜)βˆ’π‘₯(0)ξ€Έβˆ’ξ€Ίξ€·π‘₯βˆ‡β„Ž(π‘˜)ξ€Έ+π‘‘π‘˜ξ€·π›½ξ€·π‘₯(π‘˜)ξ€Έξ€·π‘₯βˆ’βˆ‡β„Ž(π‘˜)𝑧(π‘˜).(3.19)
We know that, since Ξ© and 𝑒𝑗(π‘˜), π‘—βˆ‰π΅(π‘₯βˆ—) are bounded as π‘˜β†’βˆž, the right-hand side of (3.19) is bounded. But by the assumption (C2), if 𝑒𝑗(π‘˜)β†’βˆž(π‘—βˆˆπ΅(π‘₯βˆ—)), then the left-hand side of (3.19) is infinite; this is a contradiction.
As a conclusion, (a) is the only possible case, and πœ”βˆ— is a solution of the KKT system.
Let 𝑠 be the arc-length of Ξ“πœ”(0). We can parameterize Ξ“πœ”(0) with respect to 𝑠.

Theorem 3.4. The homotopy path Ξ“πœ”(0) is determined by the following initial-value problem for the ordinary differential equation π·π»πœ”(0)βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ£β‹…πœ”β‹…πœ‡βŽ€βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦(πœ”(𝑠),𝑑(𝑠))=0,πœ”(0)=πœ”(0),𝑑(0)=1.(3.20) The component πœ”βˆ— of the solution point (πœ”(π‘ βˆ—),𝑑(π‘ βˆ—)),   for 𝑑(π‘ βˆ—)=0, is the solution of the KKT system.

4. Algorithm and Numerical Example

Algorithm 4.1. MOP’s Euler-Newton method.

Step 1. Give an initial point (πœ”(0),1)∈Ω0×𝑅𝑝+π‘š++Γ—{0}Γ—{1}, an initial step length β„Ž0>0, and three small positive numbers πœ€1,πœ€2,πœ€3. Let π‘˜βˆΆ=0.

Step 2. Compute the direction 𝛾(π‘˜) of the predictor step.(a)Compute a unit tangent vector πœ‰(π‘˜)βˆˆπ‘…π‘›+𝑝+π‘š+𝑠+1 of Ξ“πœ”0 at (πœ”(0),π‘‘π‘˜).(b)Determine the direction 𝛾(π‘˜) of the predictor step. If the sign of the determinant |||π·π»πœ”(0)(πœ”(π‘˜),π‘‘π‘˜)πœ‰π‘‡(π‘˜)||| is (βˆ’1)𝑝+π‘š+𝑠+π‘π‘š+𝑝𝑠+π‘šπ‘ +1, take 𝛾(π‘˜)=πœ‰(π‘˜). If the sign of the determinant |||π·π»πœ”(0)(πœ”(π‘˜),π‘‘π‘˜)πœ‰π‘‡(π‘˜)||| is (βˆ’1)𝑝+π‘š+𝑠+π‘π‘š+𝑝𝑠+π‘šπ‘ , take 𝛾(π‘˜)=βˆ’πœ‰(π‘˜).

Step 3. Compute a corrector point (πœ”(π‘˜+1),π‘‘π‘˜+1): ξ‚€ξ€·πœ”βˆ—ξ€Έ(π‘˜),ξ€·π‘‘βˆ—ξ€Έπ‘˜ξ‚=ξ€·πœ”(π‘˜),π‘‘π‘˜ξ€Έ+β„Žπ‘˜π›Ύ(π‘˜),ξ€·πœ”(π‘˜+1),π‘‘π‘˜+1ξ€Έ=ξ‚€ξ€·πœ”βˆ—ξ€Έ(π‘˜),ξ€·π‘‘βˆ—ξ€Έπ‘˜ξ‚βˆ’π·π»πœ”(0)ξ‚€ξ€·πœ”βˆ—ξ€Έ(π‘˜),ξ€·π‘‘βˆ—ξ€Έπ‘˜ξ‚+π»πœ”(0)ξ‚€ξ€·πœ”βˆ—ξ€Έ(π‘˜),ξ€·π‘‘βˆ—ξ€Έπ‘˜ξ‚,(4.1) where π·π»πœ”(0)(πœ”,𝑑)+=π·π»πœ”(0)(πœ”,𝑑)π‘‡ξ€·π·π»πœ”(0)(πœ”,𝑑)π·π»πœ”(0)(πœ”,𝑑)π‘‡ξ€Έβˆ’1(4.2) is the Moore-Penrose inverse of π·π»πœ”(0)(πœ”,𝑑). If β€–π»πœ”(0)(πœ”(π‘˜+1),π‘‘π‘˜+1)β€–β‰€πœ€1, let β„Žπ‘˜+1=min{β„Ž0,2β„Žπ‘˜}, and go to Step 4. If β€–π»πœ”(0)(πœ”(π‘˜+1),π‘‘π‘˜+1)β€–βˆˆ(πœ€1,πœ€2), let β„Žπ‘˜+1=β„Žπ‘˜, and go to Step 4. If β€–π»πœ”(0)(πœ”(π‘˜+1),π‘‘π‘˜+1)β€–β‰₯πœ€2, let β„Žπ‘˜+1=max{(1/2)β„Ž0,(1/2)β„Žπ‘˜}, and go to Step 3.

Step 4. If πœ”(π‘˜+1)βˆˆΞ©Γ—π‘…+𝑝+π‘šΓ—π‘…π‘  and π‘‘π‘˜+1>πœ€3, let π‘˜=π‘˜+1 and go to Step 2.
If πœ”(π‘˜+1)βˆˆΞ©Γ—π‘…+𝑝+π‘šΓ—π‘…π‘  and π‘‘π‘˜+1<βˆ’πœ€3, let β„Žπ‘˜βˆΆ=β„Žπ‘˜(π‘‘π‘˜/(π‘‘π‘˜βˆ’π‘‘π‘˜+1)), go to Step 3, and recompute (πœ”(π‘˜+1),π‘‘π‘˜+1) for the initial point (πœ”(π‘˜),π‘‘π‘˜).
If πœ”(π‘˜+1)βˆ‰Ξ©Γ—π‘…+𝑝+π‘šΓ—π‘…π‘ , let β„Žπ‘˜βˆΆ=(β„Žπ‘˜/2)(π‘‘π‘˜/(π‘‘π‘˜βˆ’π‘‘π‘˜+1)), go to Step 3, and recompute (πœ”(π‘˜+1),π‘‘π‘˜+1) for the initial point (πœ”(π‘˜),π‘‘π‘˜).
If πœ”(π‘˜+1)βˆˆΞ©Γ—π‘…+𝑝+π‘šΓ—π‘…π‘ , and |π‘‘π‘˜+1|β‰€πœ€3, then stop.

Example 4.2 (see [9]). Considerπ‘₯min𝑓=min21+π‘₯22+π‘₯23+π‘₯24+π‘₯25,3π‘₯1+2π‘₯2βˆ’13π‘₯3ξ€·π‘₯+0.014βˆ’π‘₯5ξ€Έ3;s.t.𝑔1(π‘₯)=π‘₯21+π‘₯22+π‘₯23+π‘₯24β„Žβˆ’10≀0;1(π‘₯)=4π‘₯1βˆ’2π‘₯2+0.8π‘₯3+0.6π‘₯4+0.5π‘₯25β„Ž=0;2(π‘₯)=π‘₯1+2π‘₯2βˆ’π‘₯3βˆ’0.5π‘₯4+π‘₯5βˆ’2=0.(4.3)
The results are shown in Table 1.

Example 4.3. Considerξ€½π‘₯min𝑓=min21+π‘₯22,π‘₯1ξ€Ύ;s.t.𝑔1(π‘₯)=βˆ’π‘₯2π‘”βˆ’6≀0;2(π‘₯)=π‘₯2β„Žβˆ’6≀0;1(π‘₯)=π‘₯1βˆ’π‘₯22βˆ’3=0.(4.4)
(1) Since βˆ‡β„Ž(π‘₯)=(1,βˆ’2π‘₯2)𝑇, it is easy to see that the assumption (A3) in [14] and the assumption (C3) in [15] are not satisfied at most points in feasible set. Hence, we introduce the functions πœ‚π‘–(π‘₯)(𝑖=1,2) and 𝛽(π‘₯).
(2) Let πœ‚π‘–(π‘₯)=βˆ‡π‘”π‘–(π‘₯)(𝑖=1,2) and 𝛽(π‘₯)=(10,0)𝑇. It is easily verified that the feasible set satisfies the assumptions (C1)–(C4). The results are shown in Table 2.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant no. 11171003), Key Project of Chinese Ministry of Education (Grant no. 211039), and the Jilin Province Natural Science Foundation (Grant no. 20101597).