TY - JOUR
A2 - Momani, Shaher M.
AU - Cabrera, I. J.
AU - Harjani, J.
AU - Sadarangani, K. B.
PY - 2012
DA - 2012/01/03
TI - Positive and Nondecreasing Solutions to an *m*-Point Boundary Value Problem for Nonlinear Fractional Differential Equation
SP - 826580
VL - 2012
AB - We are concerned with the existence and uniqueness of a positive and nondecreasing solution for the following nonlinear fractional m-point boundary value problem: D0+αu(t)+f(t,u(t))=0, 0<t<1, 2<α≤3, u(0)=u′(0)=0, u′(1)=∑i=1m-2aiu′(ξi), where D0+α denotes the standard Riemann-Liouville fractional derivative, f:[0,1]×[0,∞)→[0,∞) is a continuous function, ai≥0 for i=1,2,…,m-2, and 0<ξ1<ξ2<⋯<ξm-2<1. Our analysis relies on a fixed point theorem in partially ordered sets. Some examples are also presented to illustrate the main results.
SN - 1085-3375
UR - https://doi.org/10.1155/2012/826580
DO - 10.1155/2012/826580
JF - Abstract and Applied Analysis
PB - Hindawi Publishing Corporation
KW -
ER -