Abstract

Let 𝐏𝑛={𝑝(𝑥)[𝑥]deg𝑝(𝑥)𝑛} be an inner product space with the inner product 𝑝(𝑥),𝑞(𝑥)=0𝑥𝛼𝑒𝑥𝑝(𝑥)𝑞(𝑥)𝑑𝑥, where 𝑝(𝑥),𝑞(𝑥)𝐏𝑛 and 𝛼 with 𝛼>1. In this paper we study the properties of the extended Laguerre polynomials which are an orthogonal basis for 𝐏𝑛. From those properties, we derive some interesting relations and identities of the extended Laguerre polynomials associated with Hermite, Bernoulli, and Euler numbers and polynomials.

1. Introduction/Preliminaries

For 𝛼 with 𝛼>1, the extended Laguerre polynomials are defined by the generating function as follows: exp(𝑥𝑡/(1𝑡))(1𝑡)𝛼+1=𝑛=0𝐿𝛼𝑛(𝑥)𝑡𝑛,(1.1) see [16].

From (1.1), we can derive the following: 𝐿𝛼𝑛(𝑥)=𝑛𝑟=0(1)𝑟(𝑛+𝛼𝑛𝑟)𝑥𝑟!𝑟,(1.2) see [19].

As is well known, Rodrigues' formula for 𝐿𝛼𝑛(𝑥) is given by 𝐿𝛼𝑛1(𝑥)=𝑥𝑛!𝛼𝑒𝑥𝑑𝑛𝑑𝑥𝑛𝑒𝑥𝑥𝑛+𝛼,(1.3) see [16, 8, 9].

From (1.3), we note that 0𝑥𝛼𝑒𝑥𝐿𝛼𝑚(𝑥)𝐿𝛼𝑛1(𝑥)𝑑𝑥=𝑛!Γ(𝛼+𝑛+1)𝛿𝑚,𝑛,(𝛼>1),(1.4) where 𝛿𝑚,𝑛 is the Kronecker symbol.

From (1.1), (1.2), and (1.3), we can derive the following identities: (𝑛+1)𝐿𝛼𝑛+1(𝑥)+(𝑥𝛼2𝑛1)𝐿𝛼𝑛(𝑥)+(𝑛+𝛼)𝐿𝛼𝑛1(𝑑𝑥)=0,(𝑛),(1.5)𝐿𝑑𝑥𝛼𝑛𝑑(𝑥)𝐿𝑑𝑥𝛼𝑛1(𝑥)+𝐿𝛼𝑛1𝑥𝑑(𝑥)=0,for𝑛1,(1.6)𝐿𝑑𝑥𝛼𝑛(𝑥)=𝑛𝐿𝛼𝑛(𝑥)(𝑛+𝛼)𝐿𝛼𝑛1(𝑥)=0,(𝑛1),(1.7) and 𝐿𝛼𝑛(𝑥) is a solution of 𝑥𝑦+(𝛼+1𝑥)𝑦+𝑥𝑦=0.

The derivatives of general Laguerre polynomials are given by 𝑑𝐿𝑑𝑥𝛼𝑛(𝑥)=𝐿𝛼+1𝑛1𝑑(𝑥),𝑥𝑑𝑥𝛼𝐿𝛼𝑛(𝑥)=(𝑛+𝛼)𝑥𝛼1𝐿𝑛𝛼1𝑑(𝑥),𝑒𝑑𝑥𝑥𝐿𝛼𝑛(𝑥)=𝑒𝑥𝐿𝑛𝛼+1𝑑(𝑥),𝑥𝑑𝑥𝛼𝑒𝑥𝐿𝛼𝑛(𝑥)=(𝑛+1)𝑥𝛼1𝑒𝑥𝐿𝛼1𝑛+1(𝑥).(1.8) The 𝑛th Bernoulli polynomials, 𝐵𝑛(𝑥), are defined by the generating function to be 𝑡𝑒𝑡𝑒1𝑥𝑡=𝑒𝐵(𝑥)𝑡=𝑛=0𝐵𝑛(𝑡𝑥)𝑛,𝑛!(1.9) see [1017], with the usual convention about replacing 𝐵𝑛(𝑥) by 𝐵𝑛(𝑥). In the special case, 𝑥=0, 𝐵𝑛(0)=𝐵𝑛 are called the 𝑛th Bernoulli numbers.

It is well known that the 𝑛th Euler polynomials are also defined by the generating function to be 2𝑒𝑡𝑒+1𝑥𝑡=𝑒𝐸(𝑥)𝑡=𝑛=0𝐸𝑛(𝑡𝑥)𝑛,𝑛!(1.10) see [1822], with the usual convention about replacing 𝐸𝑛(𝑥) by 𝐸𝑛(𝑥).

The Hermite polynomials are given by 𝐻𝑛(𝑥)=(𝐻+2𝑥)𝑛=𝑛𝑙=0𝑛𝑙2𝑙𝑥𝑙𝐻𝑛𝑙,(1.11) see [23, 24], with the usual convention about replacing 𝐻𝑛 by 𝐻𝑛. In the special case, 𝑥=0, 𝐻𝑛(0)=𝐻𝑛 are called the 𝑛th Hermite numbers.

From (1.11), we note that 𝑑𝐻𝑑𝑥𝑛(𝑥)=2𝑛(𝐻+2𝑥)𝑛1=2𝑛𝐻𝑛1(𝑥),(1.12) see [23, 24], and 𝐻𝑛(𝑥) is a solution of Hermite differential equation which is given by 𝑦2𝑥𝑦+𝑛𝑦=0,(1.13) (see [16, 2332]).

Throughout this paper we assume that 𝛼 with 𝛼>1. Let 𝐏𝑛={𝑝(𝑥)[𝑥]|deg𝑝(𝑥)𝑛}. Then 𝐏𝑛 is an inner product space with the inner product 𝑝(𝑥),𝑞(𝑥)=0𝑥𝛼𝑒𝑥𝑝(𝑥)𝑞(𝑥)𝑑𝑥, where 𝑝(𝑥),𝑞(𝑥)𝐏𝑛. By (1.4) the set of the extended Laguerre polynomials {𝐿𝛼0(𝑥),𝐿𝛼1(𝑥),,𝐿𝛼𝑛(𝑥)} is an orthogonal basis for 𝐏𝑛. In this paper we study the properties of the extended Laguerre polynomials which are an orthogonal basis for 𝐏𝑛. From those properties, we derive some new and interesting relations and identities of the extended Laguerre polynomials associated with Hermite, Bernoulli and Euler numbers and polynomials.

2. On the Extended Laguerre Polynomials Associated with Hermite, Bernoulli, and Euler Polynomials

For 𝑝(𝑥)𝐏𝑛, 𝑝(𝑥) is given by 𝑝(𝑥)=𝑛𝑘=0𝐶𝑘𝐿𝛼𝑘(𝑥),foruniquelydeterminedrealnumbers𝐶𝑘.(2.1) From (1.3), (1.4), and (2.1), we note that 𝑝(𝑥),𝐿𝛼𝑘(𝑥)=𝐶𝑘𝐿𝛼𝑘(𝑥),𝐿𝛼𝑘(𝑥)=𝐶𝑘0𝑥𝛼𝑒𝑥𝐿𝛼𝑘(𝑥)𝐿𝛼𝑘(𝑥)𝑑𝑥=𝐶𝑘Γ(𝛼+𝑘+1).𝑘!(2.2) Thus, by (2.2), we get 𝐶𝑘=𝑘!Γ(𝛼+𝑘+1)𝑝(𝑥),𝐿𝛼𝑘=(𝑥)𝑘!Γ1(𝛼+𝑘+1)𝑘!0𝑑𝑘𝑑𝑥𝑘𝑥𝑘+𝛼𝑒𝑥=1𝑝(𝑥)𝑑𝑥Γ(𝛼+𝑘+1)0𝑑𝑘𝑑𝑥𝑘𝑥𝑘+𝛼𝑒𝑥𝑝(𝑥)𝑑𝑥.(2.3) Therefore, by (2.1) and (2.3), we obtain the following proposition.

Proposition 2.1. For 𝑝(𝑥)𝐏𝑛, let 𝑝(𝑥)=𝑛𝑘=0𝐶𝑘𝐿𝛼𝑘(𝑥),(𝛼>1).(2.4) Then one has the following: 𝐶𝑘=1Γ(𝛼+𝑘+1)0𝑑𝑘𝑑𝑥𝑘𝑥𝑘+𝛼𝑒𝑥𝑝(𝑥)𝑑𝑥.(2.5)

To derive inverse formula of (1.2), let take one 𝑝(𝑥)=𝑥𝑛𝐏𝑛. Then, by Proposition 2.1, one gets 𝐶𝑘=1Γ(𝛼+𝑘+1)0𝑑𝑘𝑑𝑥𝑘𝑒𝑥𝑥𝑘+𝛼𝑥𝑛=𝑑𝑥(1)𝑘𝑛(𝑛1)(𝑛𝑘+1)Γ(𝛼+𝑘+1)0𝑒𝑥𝑥𝛼+𝑛𝑑𝑥=(1)𝑘𝑛(𝑛1)(𝑛𝑘+1)=Γ(𝛼+𝑘+1)Γ(𝛼+𝑛+1)(1)𝑘𝑛!(𝛼+𝑛)𝛼Γ(𝛼)(𝛼+𝑘)𝛼Γ(𝛼)(𝑛𝑘)!=(1)𝑘𝑛!(𝛼+𝑛)(𝛼+𝑘+1)(𝑛𝑘)!=(1)𝑘.𝑛!𝛼+𝑛𝑛𝑘(2.6) Therefore, by (2.6), we obtain the following corollary.

Corollary 2.2 (Inverse formula of 𝐿𝛼𝑛(𝑥)). For 𝑛Z+, one has 𝑥𝑛=𝑛!𝑛𝑘=0𝛼+𝑛𝑛𝑘(1)𝑘𝐿𝛼𝑘(𝑥).(2.7)

Let one takes Bernoulli polynomials of degree 𝑛 with 𝑝(𝑥)=𝐵𝑛(𝑥)𝐏𝑛. Then 𝐵𝑛(𝑥) can be written as 𝐵𝑛(𝑥)=𝑛𝑘=0𝐶𝑘𝐿𝛼𝑘(𝑥),(𝛼with𝛼>1).(2.8) From Proposition 2.1, one has 𝐶𝑘=1Γ(𝛼+𝑘+1)0𝑑𝑘𝑑𝑥𝑘𝑒𝑥𝑥𝑘+𝛼𝐵𝑛=(𝑥)𝑑𝑥(1)𝑘𝑛(𝑛1)(𝑛𝑘+1)Γ(𝛼+𝑘+1)0𝑒𝑥𝑥𝑘+𝛼𝐵𝑛𝑘=(𝑥)𝑑𝑥(1)𝑘𝑛(𝑛1)(𝑛𝑘+1)Γ(𝛼+𝑘+1)𝑛𝑘𝑙=0𝑙𝐵𝑛𝑘𝑛𝑘𝑙0𝑒𝑥𝑥𝑘+𝛼+𝑙=𝑑𝑥(1)𝑘𝑛(𝑛1)(𝑛𝑘+1)Γ(𝛼+𝑘+1)𝑛𝑘𝑙=0𝑙𝐵𝑛𝑘𝑛𝑘𝑙Γ(𝛼+𝑘+𝑙+1).(2.9) By the fundamental property of gamma function, one gets Γ(𝛼+𝑘+𝑙+1)𝑙=(Γ(𝛼+𝑘+1)(𝑛𝑘)!𝑛𝑘𝛼+𝑙+𝑘)(𝛼+𝑘+1)Γ(𝛼+𝑘+1)(𝑛𝑘)!=Γ(𝛼+𝑘+1)(𝑛𝑘)!(𝑛𝑘𝑙)!𝑙!𝑙𝛼+𝑘+𝑙(𝑛𝑘𝑙)!.(2.10) Therefore, by (2.8), (2.9), and (2.10), we obtain the following theorem.

Theorem 2.3. For 𝑛+, 𝛼 with 𝛼>1, one has 𝐵𝑛(𝑥)=𝑛!𝑛𝑘=0𝑛𝑘𝑙=0(1)𝑘𝑙𝐵𝛼+𝑘+𝑙𝑛𝑘𝑙𝐿(𝑛𝑘𝑙)!𝛼𝑘(𝑥).(2.11)

As is known, relationships between Hermite and Laguerre polynomials are given by 𝐻2𝑚(𝑥)=(1)𝑚22𝑚𝑚!𝐿𝑚1/2𝑥2,𝐻(2.12)2𝑚+1(𝑥)=(1)𝑚22𝑚+1𝑚!𝐿𝑚1/2𝑥2,(2.13) see [16]. In the special case 𝛼=1/2, by (2.12) and (2.13), we obtain the following corollary.

Corollary 2.4. For 𝑛+, one has 𝐵𝑛𝑥2=𝑛!𝑛𝑘=0𝑛𝑘𝑙=0𝐻2𝑘(𝑥)22𝑘1𝑘!2𝑙𝐵+𝑘+𝑙𝑛𝑘𝑙(𝑛𝑘𝑙)!.(2.14)

By the same method as Theorem 2.3, one gets 𝐸𝑛(𝑥)=𝑛!𝑛𝑘=0𝑛𝑘𝑙=0(1)𝑘𝑙𝐸𝛼+𝑘+𝑙𝑛𝑘𝑙𝐿(𝑛𝑘𝑙)!𝛼𝑘(𝑥),(2.15) where 𝐸𝑛(𝑥) are the 𝑛th Euler polynomials. In the special case, 𝑥=0, 𝐸𝑛(0)=𝐸𝑛 are called the 𝑛th Euler numbers.

Let one considers the 𝑛th Hermite polynomials with 𝑝(𝑥)=𝐻𝑛(𝑥)𝐏𝑛. Then 𝐻𝑛(𝑥) can be written as 𝐻𝑛(𝑥)=𝑛𝑘=0𝐶𝑘𝐿𝛼𝑘(𝑥),(𝛼with𝛼>1).(2.16) From Proposition 2.1, one notes that 𝐶𝑘=1Γ(𝛼+𝑘+1)0𝑑𝑘𝑑𝑥𝑘𝑒𝑥𝑥𝑘+𝛼𝐻𝑛=(𝑥)𝑑𝑥(2𝑛)Γ(𝛼+𝑘+1)0𝑑𝑘1𝑑𝑥𝑘1𝑒𝑥𝑥𝑘+𝛼𝐻𝑛1=(𝑥)𝑑𝑥=(2𝑛)(2(𝑛1))(2(𝑛𝑘+1))Γ(𝛼+𝑘+1)0𝑒𝑥𝑥𝑘+𝛼𝐻𝑛𝑘=(𝑥)𝑑𝑥(1)𝑘2𝑘𝑛!Γ(𝛼+𝑘+1)(𝑛𝑘)!𝑛𝑘𝑙=0𝑙𝐻𝑛𝑘𝑛𝑘𝑙2𝑙0𝑒𝑥𝑥𝑘+𝛼+𝑙=𝑑𝑥(1)𝑘2𝑘𝑛!Γ(𝛼+𝑘+1)(𝑛𝑘)!𝑛𝑘𝑙=0𝑙𝐻𝑛𝑘𝑛𝑘𝑙2𝑙Γ(𝛼+𝑘+𝑙+1).(2.17) It is not difficult to show that 𝑙𝑛𝑘Γ(𝛼+𝑘+𝑙+1)=Γ(𝛼+𝑘+1)(𝑛𝑘)!(𝑛𝑘)!(𝛼+𝑘+𝑙)(𝛼+𝑘+1)Γ(𝛼+𝑘+1)=(𝑛𝑘𝑙)!𝑙!Γ(𝛼+𝑘+1)(𝑛𝑘)!𝑙𝛼+𝑘+𝑙.(𝑛𝑘𝑙)!(2.18) Therefore, by (2.16), (2.17), and (2.18), we obtain the following theorem.

Theorem 2.5. For 𝑛+, 𝛼 with 𝛼>1, one has 𝐻𝑛(𝑥)=𝑛!𝑛𝑘=0𝑛𝑘𝑙=0(1)𝑘2𝑘+𝑙𝑙𝐻𝛼+𝑘+𝑙𝑛𝑘𝑙𝐿(𝑛𝑘𝑙)!𝛼𝑘(𝑥).(2.19)

In the special case, 𝛼=1/2, we obtain the following corollary.

Corollary 2.6. For 𝑛+, one has 𝐻𝑛𝑥2=𝑛!𝑛𝑘=0𝑛𝑘𝑙=02𝑙𝑘𝐻2𝑘(𝑥)1𝑘!2𝑙𝐻+𝑘+𝑙𝑛𝑘𝑙(𝑛𝑘𝑙)!.(2.20)

For 𝛽 with 𝛽>1, let one takes 𝑝(𝑥)=𝐿𝛽𝑛(𝑥)𝐏𝑛.(2.21) Then 𝐿𝛽𝑛(𝑥) is also written as 𝐿𝛽𝑛(𝑥)=𝑛𝑘=0𝐶𝑘𝐿𝛼𝑘(𝑥).(2.22) From Proposition 2.1, one can determine the coefficients of (2.22) as follows: 𝐶𝑘=1Γ(𝛼+𝑘+1)0𝑑𝑘𝑑𝑥𝑘𝑒𝑥𝑥𝑘+𝛼𝐿𝛽𝑛=1(𝑥)𝑑𝑥Γ(𝛼+𝑘+1)0𝑑𝑘1𝑑𝑥𝑘1𝑒𝑥𝑥𝑘+𝛼𝐿𝛽+1𝑛1=1(𝑥)𝑑𝑥=Γ(𝛼+𝑘+1)0𝑒𝑥𝑥𝑘+𝛼𝐿𝛽+𝑘𝑛𝑘=1(𝑥)𝑑𝑥Γ(𝛼+𝑘+1)𝑛𝑘𝑟=0(1)𝑟𝑛+𝛽𝑛𝑘𝑟𝑟!0𝑒𝑥𝑥𝑘+𝛼+𝑟=1𝑑𝑥Γ(𝛼+𝑘+1)𝑛𝑘𝑟=0(1)𝑟𝑛+𝛽𝑛𝑘𝑟𝑟!Γ(𝑘+𝛼+𝑟+1).(2.23) By the fundamental property of gamma function, one gets Γ(𝑘+𝛼+𝑟+1)=(𝑟!Γ(𝛼+𝑘+1)𝑘+𝛼+𝑟)(𝛼+𝑘+1)Γ(𝛼+𝑘+1)=𝑟𝑟!Γ(𝛼+𝑘+1)𝑘+𝛼+𝑟.(2.24) Therefore, by (2.22), (2.23), and (2.24), we obtain the following theorem.

Theorem 2.7. For 𝛽 with 𝛽>1, and 𝑛+, one has 𝐿𝛽𝑛(𝑥)=𝑛𝑘=0𝑛𝑘𝑟=0(1)𝑟𝑟𝐿𝑛+𝛽𝑛𝑘𝑟𝛼+𝑘+𝑟𝛼𝑘(𝑥).(2.25)

In the special case, 𝛼=𝛽, one has 𝑛1𝑘=0𝑛𝑘𝑟=0(1)𝑟𝑟𝐿𝑛+𝛼𝑛𝑘𝑟𝛼+𝑘+𝑟𝛼𝑘(𝑥)=0.(2.26) Thus, by (2.26), we obtain the following corollary.

Corollary 2.8. For 0𝑘𝑛1, 𝛼 with 𝛼>1, one has 𝑛𝑘𝑟=0(1)𝑟𝑟𝑛+𝛼𝑛𝑘𝑟𝛼+𝑘+𝑟=0.(2.27)

Let one assumes that 𝑝(𝑥)=𝑛𝑙=0𝐵𝑙(𝑥)𝐵𝑛𝑙(𝑥)𝐏𝑛.(2.28) Then 𝑝(𝑥) can be rewritten as a linear combination of 𝐿𝛼0(𝑥),𝐿𝛼1(𝑥),,𝐿𝛼𝑛(𝑥) as follows: 𝑝(𝑥)=𝑛𝑙=0𝐵𝑙(𝑥)𝐵𝑛𝑙(𝑥)=𝑛𝑘=0𝐶𝑘𝐿𝛼𝑘(𝑥).(2.29) By Proposition 2.1, one can determine the coefficients of (2.29) as follows: 𝐶𝑘=1Γ(𝛼+𝑘+1)𝑛𝑙=00𝑑𝑘𝑑𝑥𝑘𝑒𝑥𝑥𝑘+𝛼𝐵𝑙(𝑥)𝐵𝑛𝑙(𝑥)𝑑𝑥.(2.30) It is known that 𝑛𝑙=0𝐵𝑙(𝑥)𝐵𝑛𝑙2(𝑥)=𝑛+2𝑛2𝑙=0𝑙𝐵𝑛+2𝑛𝑙𝐵𝑙(𝑥)+(𝑛+1)𝐵𝑛(𝑥),(2.31) see [25].

From (2.30) and (2.31), one notes that 𝐶𝑛=𝑛+1Γ(𝛼+𝑛+1)0𝑑𝑛𝑑𝑥𝑛𝑒𝑥𝑥𝑛+𝛼𝐵𝑛=(𝑥)𝑑𝑥𝑛+1Γ(𝛼+𝑛+1)(1)𝑛𝑛!0𝑒𝑥𝑥𝑛+𝛼𝑑𝑥=(𝑛+1)!(1)𝑛ΓΓ(𝛼+𝑛+1)(𝑛+𝛼+1)=(𝑛+1)!(1)𝑛,𝐶𝑛1=𝑛+1Γ(𝛼+𝑛)0𝑑𝑛1𝑑𝑥𝑛1𝑒𝑥𝑥𝑛1+𝛼𝐵𝑛=(𝑥)𝑑𝑥𝑛+1(Γ(𝛼+𝑛)1)𝑛1𝑛!0𝑒𝑥𝑥𝑛1+𝛼𝐵1(=𝑥)𝑑𝑥𝑛+1(Γ(𝛼+𝑛)1)𝑛11𝑛!Γ(𝛼+𝑛+1)2Γ(𝛼+𝑛)=(𝑛+1)!(1)𝑛11𝑛+𝛼2.(2.32) For 0𝑘𝑛2, one has 𝐶𝑘=12Γ(𝛼+𝑘+1)𝑛+2𝑛2𝑙=0𝑙𝐵𝑛+2𝑛𝑙0𝑑𝑘𝑑𝑥𝑘𝑒𝑥𝑥𝑘+𝛼𝐵𝑙(𝑥)𝑑𝑥+(𝑛+1)0𝑑𝑘𝑑𝑥𝑘𝑒𝑥𝑥𝑘+𝛼𝐵𝑛(=1𝑥)𝑑𝑥2Γ(𝛼+𝑘+1)𝑛+2𝑛2𝑙=𝑘𝑙𝐵𝑛+2𝑛𝑙(1)𝑘𝑙(𝑙1)(𝑙𝑘+1)0𝑒𝑥𝑥𝑘+𝛼𝐵𝑙𝑘(𝑥)𝑑𝑥+(𝑛+1)(1)𝑘𝑛(𝑛1)(𝑛𝑘+1)0𝑒𝑥𝑥𝑘+𝛼𝐵𝑛𝑘=1(𝑥)𝑑𝑥2Γ(𝛼+𝑘+1)𝑛+2𝑛2𝑙=𝑘𝑙𝐵𝑛+2𝑛𝑙(1)𝑘𝑙!(𝑙𝑘)!𝑙𝑘𝑗=0𝑗𝐵𝑙𝑘𝑙𝑘𝑗0𝑒𝑥𝑥𝑘+𝛼+𝑗+𝑑𝑥(𝑛+1)(1)𝑘𝑛!(𝑛𝑘)!𝑛𝑘𝑗=0𝑗𝐵𝑛𝑘𝑛𝑘𝑗0𝑒𝑥𝑥𝑘+𝛼+𝑗=1𝑑𝑥2Γ(𝛼+𝑘+1)𝑛+2𝑛2𝑙=𝑘𝑙𝑘𝑗=0𝑙𝐵𝑛+2𝑛𝑙(1)𝑘𝑙!𝑗𝐵(𝑙𝑘)!𝑙𝑘𝑙𝑘𝑗Γ(𝛼+𝑘+𝑗+1)+(𝑛+1)(1)𝑘𝑛!(𝑛𝑘)!𝑛𝑘𝑗=0𝑗𝐵𝑛𝑘𝑛𝑘𝑗=2Γ(𝛼+𝑘+𝑗+1)𝑛+2𝑛2𝑙=𝑘𝑙𝑘𝑗=0𝑙𝐵𝑛+2𝑛𝑙(1)𝑘𝑙!(𝛼+𝑘+𝑗)(𝛼+𝑘+1)𝐵𝑙𝑘𝑗𝑗!(𝑙𝑘𝑗)!+(𝑛+1)(1)𝑘𝑛!𝑛𝑘𝑗=0(𝛼+𝑘+𝑗)(𝛼+𝑘+1)𝐵𝑗!(𝑛𝑘𝑗)!𝑛𝑘𝑗=2𝑛+2𝑛2𝑙=𝑘𝑙𝑘𝑗=0𝑙𝐵𝑛+2𝑛𝑙(1)𝑘𝑗𝐵𝑙!𝛼+𝑘+𝑗𝑙𝑘𝑗(𝑙𝑘𝑗)!+(𝑛+1)(1)𝑘𝑛!𝑛𝑘𝑗=0𝑗𝐵𝛼+𝑘+𝑗𝑛𝑘𝑗.(𝑛𝑘𝑗)!(2.33) Therefore, by (2.29) and (2.32), we obtain the following theorem.

Theorem 2.9. For 𝑛+, 𝛼 with 𝛼>1, one has 𝑛𝑘=0𝐵𝑘(𝑥)𝐵𝑛𝑘=(𝑥)𝑛2𝑘=02𝑛+2𝑛2𝑙=𝑘0𝑗𝑛𝑘(1)𝑘𝑙𝑛+2𝑙!𝐵𝑛𝑙𝑗𝐵𝛼+𝑘+𝑗𝑙𝑘𝑗(𝑙𝑘𝑗)!+(𝑛+1)!0𝑗𝑛𝑘(1)𝑘𝑗𝐵𝛼+𝑘+𝑗𝑛𝑘𝑗𝐿(𝑛𝑘𝑗)!𝛼𝑘(𝑥)+(1)𝑛𝐿(𝑛+1)!𝛼𝑛1(𝑥)𝑛+𝛼2𝐿𝛼𝑛1.(𝑥)(2.34)

Let one takes the polynomial 𝑝(𝑥) in 𝐏𝑛 as follows: 𝑝(𝑥)=𝑖1++𝑖𝑟=𝑛𝐵𝑖1(𝑥)𝐵𝑖2(𝑥)𝐵𝑖𝑟(𝑥)𝐏𝑛.(2.35) From the orthogonality of {𝐿𝛼0(𝑥),,𝐿𝛼𝑛(𝑥)}, one notes that 𝑝(𝑥)=𝑖1++𝑖𝑟=𝑛𝐵𝑖1(𝑥)𝐵𝑖2(𝑥)𝐵𝑖𝑟(𝑥)=𝑛𝑘=0𝐶𝑘𝐿𝛼𝑘(𝑥),(2.36) where 𝐶𝑘=1Γ(𝛼+𝑘+1)0𝑑𝑘𝑑𝑥𝑘𝑒𝑥𝑥𝑘+𝛼𝑝(𝑥)𝑑𝑥.(2.37) It is known in [25] that 𝑖1++𝑖𝑟=𝑛𝐵𝑖1(𝑥)𝐵𝑖𝑟(=1𝑥)2𝑛2𝑘=0𝑘𝑛+𝑟1max{0,𝑘+𝑟𝑛}𝑎𝑟𝑟𝑎𝑖1++𝑖𝑎=𝑛+𝑎𝑘𝑟𝐵𝑖1𝐵𝑖2𝐵𝑖𝑎+𝑖1++𝑖𝑟=𝑛𝑘𝐵𝑖1𝐵𝑖𝑟𝐸𝑘𝑛𝐸(𝑥)+𝑛+𝑟1𝑛(𝑥).(2.38) From (2.35), (2.37), and (2.38), one notes that 𝐶𝑛=𝑛𝑛+𝑟1Γ(𝛼+𝑛+1)0𝑑𝑛𝑑𝑥𝑛𝑒𝑥𝑥𝑛+𝛼𝐸𝑛=(𝑥)𝑑𝑥𝑛𝑛+𝑟1Γ(𝛼+𝑛+1)(1)𝑛𝑛!0𝑥𝑛+𝛼𝑒𝑥=𝑑𝑥𝑛𝑛+𝑟1Γ(𝛼+𝑛+1)(1)𝑛𝑛𝑛!Γ(𝛼+𝑛+1)=𝑛+𝑟1(1)𝑛𝐶𝑛!,𝑛1=𝑛𝑛+𝑟1Γ(𝛼+𝑛)0𝑑𝑛1𝑑𝑥𝑛1𝑒𝑥𝑥𝑛+𝛼1𝐸𝑛=(𝑥)𝑑𝑥𝑛𝑛+𝑟1Γ(𝛼+𝑛)(1)𝑛1𝑛!0𝑒𝑥𝑥𝑛+𝛼1𝐸1=(𝑥)𝑑𝑥𝑛𝑛+𝑟1Γ(𝛼+𝑛)(1)𝑛11𝑛!Γ(𝛼+𝑛+1)2=𝑛(Γ(𝛼+𝑛)𝑛+𝑟11)𝑛11𝑛!𝑛+𝛼2.(2.39) For 0𝑘𝑛2, by (2.37) and (2.38), one gets 𝐶𝑘=11Γ(𝛼+𝑘+1)2𝑛2𝑙=0𝑙𝑛+𝑟1max{0,𝑙+𝑟𝑛}𝑎𝑟𝑟𝑎𝑖1++𝑖𝑎=𝑛+𝑎𝑙𝑟𝐵𝑖1𝐵𝑖2𝐵𝑖𝑎+𝑖1++𝑖𝑟=𝑛𝑙𝐵𝑖1𝐵𝑖𝑟0𝑑𝑘𝑑𝑥𝑘𝑒𝑥𝑥𝑛+𝛼𝐸𝑙+𝑛(𝑥)𝑑𝑥𝑛+𝑟10𝑑𝑘𝑑𝑥𝑘𝑒𝑥𝑥𝑛+𝛼𝐸𝑛=1(𝑥)𝑑𝑥1Γ(𝛼+𝑘+1)2𝑛2𝑙=𝑘𝑙𝑛+𝑟1max{0,𝑙+𝑟𝑛}𝑎𝑟𝑟𝑎𝑖1++𝑖𝑎=𝑛+𝑎𝑙𝑟𝐵𝑖1𝐵𝑖2𝐵𝑖𝑎+𝑖1++𝑖𝑟=𝑛𝑙𝐵𝑖1𝐵𝑖𝑟(1)𝑘𝑙×(𝑙1)(𝑙𝑘+1)0𝑒𝑥𝑥𝑘+𝛼𝐸𝑙𝑘+𝑛(𝑥)𝑑𝑥𝑛+𝑟1(1)𝑘𝑛(𝑛1)(𝑛𝑘+1)0𝑒𝑥𝑥𝑘+𝛼𝐸𝑛𝑘=1(𝑥)𝑑𝑥1Γ(𝛼+𝑘+1)2𝑛2𝑙=𝑘𝑙𝑛+𝑟1max{0,𝑙+𝑟𝑛}𝑎𝑟𝑖1++𝑖𝑎=𝑛+𝑎𝑙𝑟𝐵𝑖1𝐵𝑖𝑎+𝑖1++𝑖𝑟=𝑛𝑙𝐵𝑖1𝐵𝑖𝑟(1)𝑘𝑙!(𝑙𝑘)!𝑙𝑘𝑗=0𝑗𝐸𝑙𝑘𝑙𝑘𝑗×0𝑒𝑥𝑥𝑘+𝛼+𝑗+𝑛𝑑𝑥𝑛+𝑟1(1)𝑘𝑛!(𝑛𝑘)!𝑛𝑘𝑗=0𝑗𝐸𝑛𝑘𝑛𝑘𝑗0𝑒𝑥𝑥𝑘+𝛼+𝑗=1𝑑𝑥2𝑛2𝑙=𝑘𝑙𝑛+𝑟1max{0,𝑙+𝑟𝑛}𝑎𝑟𝑖1++𝑖𝑎=𝑛+𝑎𝑙𝑟𝐵𝑖1𝐵𝑖𝑎+𝑖1++𝑖𝑟=𝑛𝑙𝐵𝑖1𝐵𝑖𝑟×(1)𝑘𝑙!𝑙𝑘𝑗=0𝑗𝐸𝛼+𝑘+𝑗𝑙𝑘𝑗+𝑛(𝑙𝑘𝑗)!𝑛+𝑟1(1)𝑘𝑛!𝑛𝑘𝑗=0𝑗𝐸𝛼+𝑘+𝑗𝑛𝑘𝑗.(𝑛𝑘𝑗)!(2.40) Therefore, by (2.36), (2.39), and (2.40), we obtain the following theorem.

Theorem 2.10. For 𝑛+, 𝑟, and 𝛼 with 𝛼>1, one has 𝑖1++𝑖𝑟=𝑛𝐵𝑖1(𝑥)𝐵𝑖2(𝑥)𝐵𝑖𝑟(=𝑥)𝑛2𝑘=0(1)𝑘2𝑛2𝑙=𝑘𝑙𝑙!𝑛+𝑟1max{0,𝑙+𝑟𝑛}𝑎𝑟𝑟𝑎𝑖1++𝑖𝑎=𝑛+𝑎𝑙𝑟𝐵𝑖1𝐵𝑖𝑎+𝑖1++𝑖𝑟=𝑛𝑙𝐵𝑖1𝐵𝑖𝑟×𝑙𝑘𝑗=0𝑗𝐸𝛼+𝑘+𝑗𝑙𝑘𝑗+𝑛(𝑙𝑘𝑗)!𝑛+𝑟1(1)𝑘×𝑛!𝑛𝑘𝑗=0𝑗𝐸𝛼+𝑘+𝑗𝑛𝑘𝑗𝐿(𝑛𝑘𝑗)!𝛼𝑘𝑛(𝑥)+𝑛+𝑟1(1)𝑛1×1𝑛!𝑛+𝛼2𝐿𝛼𝑛1𝑛(𝑥)+𝑛+𝑟1(1)𝑛𝑛!𝐿𝛼𝑛(𝑥).(2.41)

For 𝑚,𝑠+ with 𝑚+𝑠=𝑛, let one assumes that 𝑝(𝑥)=𝐿𝛼𝑠(𝑥)𝐿𝛼𝑚(𝑥)𝐏𝑛.

By Proposition 2.1, one sees that 𝑝(𝑥) can be written as 𝑝(𝑥)=𝐿𝛼𝑠(𝑥)𝐿𝛼𝑚(𝑥)=𝑛𝑘=0𝐶𝑘𝐿𝛼𝑘(𝑥),𝛼with𝛼>1.(2.42) From the orthogonality of {𝐿𝛼0(𝑥),𝐿𝛼1(𝑥),,𝐿𝛼𝑛(𝑥)}, one has 𝐶𝑘=1Γ(𝛼+𝑘+1)0𝑑𝑘𝑑𝑥𝑘𝑒𝑥𝑥𝑘+𝛼𝑝(𝑥)𝑑𝑥.(2.43) By (1.2), (1.3), and (1.8), one gets 𝐿𝛼𝑠(𝑥)𝐿𝛼𝑚(𝑥)=𝑠𝑟1=0(1)𝑟1𝑟1!𝑠+𝛼𝑠𝑟1𝑥𝑟1𝑚𝑟2=0(1)𝑟2𝑟2!𝑚+𝛼𝑚𝑟2𝑥𝑟2=𝑛𝑟=0𝑟𝑟1=0(1)𝑟𝑟𝑟1𝑠+𝛼𝑠𝑟1𝑛𝑠+𝛼𝛼+𝑟𝑟1𝑥𝑟.𝑟!(2.44) Thus, from (2.44), one has 𝐿𝛼𝑠(𝑥)𝐿𝛼𝑚(𝑥)=𝑛𝑟=0𝑟𝑙=0(1)𝑟𝑟𝑙𝑥𝑠+𝛼𝛼+𝑙𝑛𝑠+𝛼𝛼+𝑟𝑙𝑟𝑟!.(2.45) By (2.44) and (2.45), one gets 𝐶𝑘=1Γ(𝛼+𝑘+1)𝑛𝑟=0(1)𝑟𝑟𝑙=0𝑟𝑙1𝑠+𝛼𝛼+𝑙𝑛𝑠+𝛼𝛼+𝑟𝑙×𝑟!0𝑑𝑘𝑑𝑥𝑘𝑒𝑥𝑥𝑘+𝛼𝑥𝑟=1𝑑𝑥Γ(𝛼+𝑘+1)𝑛𝑟=𝑘(1)𝑟𝑟𝑙=0𝑟𝑙1𝑠+𝛼𝛼+𝑙𝑛𝑠+𝛼𝛼+𝑟𝑙𝑟!×(1)𝑘𝑟(𝑟1)(𝑟𝑘+1)0𝑒𝑥𝑥𝑟+𝛼=1𝑑𝑥Γ(𝛼+𝑘+1)𝑛𝑟=𝑘(1)𝑟𝑟𝑙=0𝑟𝑙1𝑠+𝛼𝛼+𝑙𝑛𝑠+𝛼𝛼+𝑟𝑙×(𝑟!1)𝑘𝑟!=(𝑟𝑘)!Γ(𝛼+𝑟+1)𝑛𝑟=𝑘(1)𝑟+𝑘𝑟𝑙=0𝑟𝑙𝑠+𝛼𝛼+𝑙𝑛𝑠+𝛼𝛼+𝑟𝑙(𝛼+𝑟)(𝛼+𝑟1)(𝛼+𝑘+1)(=𝑟𝑘)!𝑛𝑟=𝑘(1)𝑟+𝑘𝑟𝑙=0𝑟𝑙.𝑠+𝛼𝛼+𝑙𝑛𝑠+𝛼𝛼+𝑟𝑙𝛼+𝑟𝑟𝑘(2.46) Therefore, by (2.42) and (2.46), we obtain the following theorem.

Theorem 2.11. For 𝑠,𝑚+ with 𝑠+𝑚=𝑛, 𝛼 with 𝛼>1, one has 𝐿𝛼𝑠(𝑥)𝐿𝛼𝑚(𝑥)=𝑛𝑛𝑘=0𝑟=𝑘(1)𝑟+𝑘𝑟𝑙=0𝑟𝑙𝐿𝑠+𝛼𝛼+𝑙𝑛𝑠+𝛼𝛼+𝑟𝑙𝛼+𝑟𝑟𝑘𝛼𝑘(𝑥).(2.47)

Acknowledgments

The authors would like to express their sincere gratitude to referee for his/her valuable comments and information. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology 2012R1A1A2003786.