Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 176730, 10 pages
Research Article

Approximate Solutions of Fisher's Type Equations with Variable Coefficients

1Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt

Received 6 September 2013; Accepted 20 September 2013

Academic Editor: Dumitru Baleanu

Copyright © 2013 A. H. Bhrawy and M. A. Alghamdi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The spectral collocation approximations based on Legendre polynomials are used to compute the numerical solution of time-dependent Fisher’s type problems. The spatial derivatives are collocated at a Legendre-Gauss-Lobatto interpolation nodes. The proposed method has the advantage of reducing the problem to a system of ordinary differential equations in time. The four-stage A-stable implicit Runge-Kutta scheme is applied to solve the resulted system of first order in time. Numerical results show that the Legendre-Gauss-Lobatto collocation method is of high accuracy and is efficient for solving the Fisher’s type equations. Also the results demonstrate that the proposed method is powerful algorithm for solving the nonlinear partial differential equations.