Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2013, Article ID 517604, 11 pages
http://dx.doi.org/10.1155/2013/517604
Research Article

Stability Analysis for Uncertain Neural Networks of Neutral Type with Time-Varying Delay in the Leakage Term and Distributed Delay

1College of Information Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
2School of Mathematics and Physics, Bohai University, Jinzhou, Liaoning 121013, China
3Department of Engineering, Faculty of Engineering and Science, University of Agder, N-4898 Grimstad, Norway

Received 19 November 2013; Accepted 4 December 2013

Academic Editor: Ming Liu

Copyright © 2013 Qi Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. N. Michel, J. A. Farrell, and H.-F. Sun, “Analysis and synthesis techniques for Hopfield type synchronous discrete time neural networks with application to associative memory,” IEEE Transactions on Circuits and Systems, vol. 37, no. 11, pp. 1356–1366, 1990. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  2. M. Galicki, H. Witte, J. Dörschel, M. Eiselt, and G. Griessbach, “Common optimization of adaptive preprocessing units and a neural network during the learning period. Application in EEG pattern recognition,” Neural Networks, vol. 10, no. 6, pp. 1153–1163, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Hayakawa, A. Marumoto, and Y. Sawada, “Effects of the chaotic noise on the performance of a neural network model for optimization problems,” Physical Review E, vol. 51, no. 4, pp. R2693–R2696, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Peterson and B. S. Söderberg, “A new method for mapping optimization problems onto neural networks,” International Journal of Neural Systems, vol. 1, no. 01, pp. 3–22, 1989. View at Google Scholar
  5. Y.-J. Liu, C. L. P. Chen, G.-X. Wen, and S. Tong, “Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems,” IEEE Transactions on Neural Networks, vol. 22, no. 7, pp. 1162–1167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Cao, D.-S. Huang, and Y. Qu, “Global robust stability of delayed recurrent neural networks,” Chaos, Solitons & Fractals, vol. 23, no. 1, pp. 221–229, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  7. X. Liao, G. Chen, and E. N. Sanchez, “Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach,” Neural Networks, vol. 15, no. 7, pp. 855–866, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Li, H. Gao, and P. Shi, “New passivity analysis for neural networks with discrete and distributed delays,” IEEE Transactions on Neural Networks, vol. 21, no. 11, pp. 1842–1847, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Li, B. Chen, Q. Zhou, and W. Qian, “Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 39, no. 1, pp. 94–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Zhang, S. Xu, G. Zong, and Y. Zou, “Delay-dependent exponential stability for uncertain stochastic hopfield neural networks with time-varying delays,” IEEE Transactions on Circuits and Systems I, vol. 56, no. 6, pp. 1241–1247, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  11. T. Li, W. X. Zheng, and C. Lin, “Delay-slope-dependent stability results of recurrent neural networks,” IEEE Transactions on Neural Networks, vol. 22, no. 12, pp. 2138–2143, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Wu, P. Shi, and H. Gao, “State estimation and sliding-mode control of markovian jump singular systems,” IEEE Transactions on Automatic Control, vol. 55, no. 5, pp. 1213–1219, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  13. H. R. Karimi and P. Maass, “Delay-range-dependent exponential H synchronization of a class of delayed neural networks,” Chaos, Solitons & Fractals, vol. 41, no. 3, pp. 1125–1135, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  14. Z. Feng and J. Lam, “Stability and dissipativity analysis of distributed delay cellular neural networks,” IEEE Transactions on Neural Networks, vol. 22, no. 6, pp. 976–981, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. C. Tong, Y. M. Li, and H.-G. Zhang, “Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays,” IEEE Transactions on Neural Networks, vol. 22, no. 7, pp. 1073–1086, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Chen, X. Liu, and S. Tong, “New delay-dependent stabilization conditions of T-S fuzzy systems with constant delay,” Fuzzy Sets and Systems, vol. 158, no. 20, pp. 2209–2224, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  17. L. Zhang and H. Gao, “Asynchronously switched control of switched linear systems with average dwell time,” Automatica, vol. 46, no. 5, pp. 953–958, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  18. H. Gao and T. Chen, “Network-based H output tracking control,” IEEE Transactions on Automatic Control, vol. 53, no. 3, pp. 655–667, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  19. H. Gao, X. Meng, and T. Chen, “Stabilization of networked control systems with a new delay characterization,” IEEE Transactions on Automatic Control, vol. 53, no. 9, pp. 2142–2148, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  20. H. Li, X. Jing, and H. R. Karimi, “Output-feedback based H control for active suspension systems with control delay,” IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 436–446, 2014. View at Google Scholar
  21. H. Li, H. Liu, H. Gao, and P. Shi, “Reliable fuzzy control for active suspension systems with actuator delay and fault,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 2, pp. 342–357, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Gao, T. Chen, and J. Lam, “A new delay system approach to network-based control,” Automatica, vol. 44, no. 1, pp. 39–52, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  23. B. Zhang, S. Xu, and Y. Zou, “Improved stability criterion and its applications in delayed controller design for discrete-time systems,” Automatica, vol. 44, no. 11, pp. 2963–2967, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  24. J. Cao and J. Wang, “Global asymptotic and robust stability of recurrent neural networks with time delays,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 2, pp. 417–426, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  25. Z. Wang, Y. Liu, M. Li, and X. Liu, “Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays,” IEEE Transactions on Neural Networks, vol. 17, no. 3, pp. 814–820, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Xu, J. Lam, D. W. C. Ho, and Y. Zou, “Delay-dependent exponential stability for a class of neural networks with time delays,” Journal of Computational and Applied Mathematics, vol. 183, no. 1, pp. 16–28, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  27. C. Hua, C. Long, and X. Guan, “New results on stability analysis of neural networks with time-varying delays,” Physics Letters A, vol. 352, no. 4-5, pp. 335–340, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. He, G. P. Liu, D. Rees, and M. Wu, “Stability analysis for neural networks with time-varying interval delay,” IEEE Transactions on Neural Networks, vol. 18, no. 6, pp. 1850–1854, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Xu and J. Lam, “A new approach to exponential stability analysis of neural networks with time-varying delays,” Neural Networks, vol. 19, no. 1, pp. 76–83, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. H. R. Karimi and H. Gao, “New delay-dependent exponential H synchronization for uncertain neural networks with mixed time delays,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 40, no. 1, pp. 173–185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. He, G. Liu, and D. Rees, “New delay-dependent stability criteria for neural networks with yime-varying delay,” IEEE Transactions on Neural Networks, vol. 18, no. 1, pp. 310–314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Wang, H. Shu, Y. Liu, D. W. C. Ho, and X. Liu, “Robust stability analysis of generalized neural networks with discrete and distributed time delays,” Chaos, Solitons & Fractals, vol. 30, no. 4, pp. 886–896, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  33. Y. Liu, Z. Wang, and X. Liu, “Global exponential stability of generalized recurrent neural networks with discrete and distributed delays,” Neural Networks, vol. 19, no. 5, pp. 667–675, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Wang, Y. Liu, K. Fraser, and X. Liu, “Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays,” Physics Letters A, vol. 354, no. 4, pp. 288–297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Cao, K. Yuan, and H.-X. Li, “Global asymptotical stability of recurrent neural networks with multiple discrete delays and distributed delays,” IEEE Transactions on Neural Networks, vol. 17, no. 6, pp. 1646–1651, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. J. H. Park and O. M. Kwon, “Analysis on global stability of stochastic neural networks of neutral type,” Modern Physics Letters B, vol. 22, no. 32, pp. 3159–3170, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  37. J. H. Park, O. M. Kwon, and S. M. Lee, “LMI optimization approach on stability for delayed neural networks of neutral-type,” Applied Mathematics and Computation, vol. 196, no. 1, pp. 236–244, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  38. X. Li, X. Fu, P. Balasubramaniam, and R. Rakkiyappan, “Existence, uniqueness and stability analysis of recurrent neural networks with time delay in the leakage term under impulsive perturbations,” Nonlinear Analysis: Real World Applications, vol. 11, no. 5, pp. 4092–4108, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  39. X. Li, R. Rakkiyappan, and P. Balasubramaniam, “Existence and global stability analysis of equilibrium of fuzzy cellular neural networks with time delay in the leakage term under impulsive perturbations,” Journal of the Franklin Institute, vol. 348, no. 2, pp. 135–155, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  40. K. Gopalsamy, “Leakage delays in BAM,” Journal of Mathematical Analysis and Applications, vol. 325, no. 2, pp. 1117–1132, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  41. X. Li and J. Cao, “Delay-dependent stability of neural networks of neutral type with time delay in the leakage term,” Nonlinearity, vol. 23, no. 7, pp. 1709–1726, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  42. P. Balasubramaniam, M. Kalpana, and R. Rakkiyappan, “Global asymptotic stability of BAM fuzzy cellular neural networks with time delay in the leakage term, discrete and unbounded distributed delays,” Mathematical and Computer Modelling, vol. 53, no. 5-6, pp. 839–853, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  43. K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Springer, New York, NY, USA, 1992.
  44. C. Li and T. Huang, “On the stability of nonlinear systems with leakage delay,” Journal of the Franklin Institute, vol. 346, no. 4, pp. 366–377, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  45. J. Sun, G. P. Liu, and J. Chen, “Delay-dependent stability and stabilization of neutral time-delay systems,” International Journal of Robust and Nonlinear Control, vol. 19, no. 12, pp. 1364–1375, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  46. S. P. Boyd, Linear Matrix Inequalities in System and Control Theory, vol. 15, SIAM, Philadelphia, Pa, USA, 1994.
  47. S. Yin, H. Luo, and S. X. Ding, “Real-time implementation of fault-tolerant control systems with performance optimization,” IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp. 2402–2411, 2013. View at Google Scholar
  48. S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark tennessee eastman process,” Journal of Process Control, vol. 22, no. 9, pp. 1567–1581, 2012. View at Google Scholar