Advances in Nonlinear Complexity Analysis forĀ Partial Differential Equations
View this Special IssueResearch Article | Open Access
Da-Quan Xian, "Saddle-Node Heteroclinic Orbit and Exact Nontraveling Wave Solutions for (2+1)D KdV-Burgers Equation", Abstract and Applied Analysis, vol. 2013, Article ID 696074, 7 pages, 2013. https://doi.org/10.1155/2013/696074
Saddle-Node Heteroclinic Orbit and Exact Nontraveling Wave Solutions for (2+1)D KdV-Burgers Equation
Abstract
We have undertaken the fact that the periodic solution of (2+1)D KdV-Burgers equation does not exist. The Saddle-node heteroclinic orbit has been obtained. Using the Lie group method, we get two-(1+1)-dimensional PDE, through symmetric reduction; and by the direct integral method, spread F-expansion method, and -expansion method, we obtain exact nontraveling wave solutions, for the (2+1)D KdV Burgers equation, and find out some new strange phenomenons of sympathetic vibration to evolution of nontraveling wave.
1. Introduction
We consider the (2+1)-dimensional Korteweg-de Vries Burgers ((2+1)D KdV Burgers) equation where , , , and are real parameters. Equation (1) is model equation for wide class of nonlinear wave models in an elastic tube, liquid with small bubbles, and turbulence [1ā3]. Much attention has been put on the study of their exact solutions by some methods [4], such as, a complex line soliton by extended tanh method with symbolic computation [5], exact traveling wave solutions including solitary wave solutions, periodic wave and shock wave solutions by extended mapping method, and homotopy perturbation method [6, 7].
It is well known that the investigation of exact solutions of nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. Many effective methods have been presented [7ā22], such as functional variable separation method [8, 9], homotopy perturbation method [12], F-expansion method [7, 13], Lie group method [14, 15], variational iteration method [16], homoclinic test method [17ā19], Exp-function method [20, 21], and homogeneous balance method [22]. Practically, there is no unified method that can be used to handle all types of nonlinearity.
In this paper, we will discuss the existence of periodic traveling wave solution and seek the Saddle-Node heteroclinic orbit, and further use the Lie group method with the aid of the symbolic computation system Maple to construct the non-traveling wave solutions for (1).
2. Existence of Periodic Traveling Wave Solution of (1)
Introducing traveling wave transformation in this form permits us to convert (1) into an ODE for where , Integrating (3) with respect to twice and taking integration constant to yields Letting , thus nonlinear ordinary differential equation (4) is equivalent to the autonomous dynamic system as follows: The dynamic system (5) has two balance points: The Jacobi matrixes at the balance points for the right-hand side of (5) are obtained as follows, respectively: Their latent equations are expressed, respectively, as, Relevant latent roots are as follows respectively: Obviously, if , then are two positive real roots, therefore is a nonsteady node point. If , then are conjugate complex roots and real part is positive, so is a nonsteady focus point. And is a positive and minus real root, thus is a saddle point. From (5), we know the phase trajectory on the phase plane satisfies Integrating (11), we can obtain where is a total energy or Hamiliton function of system (4). Apparently Consequently, the system expressed in (12) is not a conservative one, then periodic traveling wave solution of (1) does not exist.
We conclude the above analysis in the following theorem.
Theorem 1. Under the traveling wave transformation, the periodic solution of (2+1)-dimensional KdV-Burgers equation does not exist.
But, saddle-node heteroclinic orbits and nontraveling periodic solution do exist, which will be discussed later in this paper.
3. Saddle-Node Heteroclinic Orbits of KdV-Burgers Equation
First, we assume the solutions of (4) in the form Substituting (14) into (4) yields Then we get Solving the system (16) gets Substituting (17) into (14) obtains Evidently, , . Thus (18) is a saddle-node heteroclinic orbit through nonsteady node point and saddle point [23].
Ecumenic, taking the Hamiliton function , we obtain where is an arbitrary constant. Integrating (19) with respect to we have where is an arbitrary constant. We can see that (4) has the general solution (20) and all partial cases as include above result can be found from the general solution of (20). Example, take , , in (20), we find a solution of (4) as follows: It is a heteroclinic orbit too.
4. Li Symmetry of (1)
This section devotes to Li symmetry of (1) [14, 15]. Let be the Li symmetry of (1). From Lie group theory, satisfies the following equation We take the function in the form where āā() are functions to be determined later. Substituting (3) into (2) yields where āā() are arbitrary functions of , is an arbitrary constant. Substituting (25) into (24), we obtain the Li symmetries of (1) as follows:
5. Symmetry Reduction and Solutions of (1)
Based on the integrability of reduced equation of symmetry (26), we are to consider the following three cases.
Case 1. Taking and in (26) yields
The solution of the differential equation is
Substituting (28) into (1) yields the function which satisfies the following linear PDE:
By integrating both sides, we find out the following result:
where , are new arbitrary functions of . Substituting (30) into (28), we can get the solutions of (1) as follows:
(1) Given āā(), , in (31), the local structure of is obtained (Figure 1). Where is an Jacobian elliptic cosine function.
(2) Given , , , , in (31), the local structure of is obtained (Figure 2).


Case 2. Take , and in (26), then
Solving the differential equation , we can get
Substituting (33) into (1) and integrating once with respect to yield
Again, further using the transformation of dependent variable to (34),
Substituting (35) into (34) and integrating once with respect to yield
where is an integration constant, . We assume that the solution of (36) can be expressed in the form
where āā() are constants to be determined later, satisfies the following auxiliary equation
Substituting (37) and (38) into (36) and equating the coefficients of all powers of to zero yield a set of algebra equations for , , , and as follows.
Solving the system of function equations with the aid of Maple, we obtain
when , , , where .
It is known that solutions of (38) are as follows [24]:
Substituting (41), (40), (37), and (35) into (33), we obtain solutions of (1) as follows:
(see Figures 3 and 4).


Remark 2. If we direct assume that the solution of (34) can be expressed in the form where , , and are continuous functions of to be determined later. satisfies the auxiliary equation (38). Substituting (43) and (38) into (34), equating the coefficients of all powers of to zero yields a set of function equations for , , , , and as follows: Solving the system of function equations, we obtain This result indicate the idea is equivalent to idea of Case 2 above.
Case 3. Take and in (26), then Solving the differential equation , we obtain Substituting (47) into (1) yield Using the transformation and integrating the resulting equation with respect to we have where is an arbitrary constant, . Suppose that the solution of ODE (49) can be expressed by a polynomial in as follows: where satisfies the second-order LODE in the form [25] Balancing with in (49) gives . So that where āā() and are constants to be determined later. Substituting (52) and (51) into (49). Setting these coefficients of the to zero, yields a set of algebraic equations as follows: Solving the algebraic equations above yields when and . Consequently, we obtain the following solution of (1) for : where .
6. Conclusions
Based on the fact that the periodic solution of (2+1)D KdV-Burgers equation does not exist, we have obtained Saddle-node Heteroclinic Orbits. By applying the Lie group method, we reduce the (2+1)D KdV Burgers equation to (1+1)-dimensional equations including the (1+1)-dimensional linear partial differential equation with constants coefficients (29), (48) and (1+1)-dimensional nonlinear partial differential equation with variable coefficients (34). By solving the equations (29), (34), and (48), we obtain some new exact solutions and discover the strange phenomenon of sympathetic vibration to evolution of nontraveling wave soliton for the (2+1)D KdV Burgers equation. Our results show that the unite of Lie group method with others is effective to search simultaneously exact solutions for nonlinear evolution equations. Other structures of solutions with symmetry (26) are to be further studied.
Acknowledgments
The authors would like to thank professor S. Y. Lou for the helpful discussions. This work was supported by key research projects of Sichuan Provincial Educational Administration no. 10ZA021 and Chinese Natural Science Foundation Grant no. 10971169.
References
- R. S. Johnson, āA non-linear equation incorporating damping and dispersion,ā Journal of Fluid Mechanics, vol. 42, pp. 49ā60, 1970. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- L. van Wijngaarden, āOne-dimensional flow of liquids containing small gas bubbles,ā Annual Review of Fluid Mechanics, vol. 4, pp. 369ā396, 1972. View at: Publisher Site | Google Scholar
- G. Gao, āA theory of interaction between dissipation and dispersion of turbulence,ā Scientia Sinica A, vol. 28, no. 6, pp. 616ā627, 1985. View at: Google Scholar | Zentralblatt MATH | MathSciNet
- W. X. Ma, āAn exact solution to two-dimensional Korteweg-de Vries-Burgers equation,ā Journal of Physics A, vol. 26, no. 1, pp. L17āL20, 1993. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- Z. B. Li and M. L. Wang, āTravelling wave solutions to the two-dimensional KdV-Burgers equation,ā Journal of Physics A, vol. 26, no. 21, pp. 6027ā6031, 1993. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- J. Zhang, āSoliton-like solutions for the -dimensional nonlinear evolution equation,ā Communications in Theoretical Physics, vol. 32, no. 2, pp. 315ā318, 1999. View at: Google Scholar | MathSciNet
- E. G. Fan and H. Q. Zhang, āA note on the homogeneous balance method,ā Physics Letters A, vol. 246, pp. 403ā406, 1998. View at: Publisher Site | Google Scholar
- S. Y. Lou and G. J. Ni, āThe relations among a special type of solutions in some -dimensional nonlinear equations,ā Journal of Mathematical Physics, vol. 30, no. 7, pp. 1614ā1620, 1989. View at: Publisher Site | Google Scholar | MathSciNet
- X.-Y. Tang and S.-Y. Lou, āFolded solitary waves and foldons in dimensions,ā Communications in Theoretical Physics, vol. 40, no. 1, pp. 62ā66, 2003. View at: Google Scholar | MathSciNet
- E. J. Parkes and B. R. Duffy, āTravelling solitary wave solutions to a compound KdV-Burgers equation,ā Physics Letters A, vol. 229, no. 4, pp. 217ā220, 1997. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- A. Elgarayhi and A. Elhanbaly, āNew exact traveling wave solutions for the two-dimensional KdV-Burgers and Boussinesq equations,ā Physics Letters A, vol. 343, no. 1–3, pp. 85ā89, 2005. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- A. Molabahrami, F. Khani, and S. Hamedi-Nezhad, āSoliton solutions of the two-dimensional KdV-Burgers equation by homotopy perturbation method,ā Physics Letters A, vol. 370, no. 5-6, pp. 433ā436, 2007. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- H. L. Chen and D. Q. Xian, āPeriodic wave solutions for the Klein-Gordon-Zakharov equations,ā Acta Mathematicae Applicatae Sinica. Yingyong Shuxue Xuebao, vol. 29, no. 6, pp. 1139ā1144, 2006. View at: Google Scholar | MathSciNet
- D. Q. Xian, āNew exact solutions to a class of nonlinear wave equations,ā Journal of University of Electronic Science and Technology of China, vol. 35, no. 6, pp. 977ā980, 2006. View at: Google Scholar | MathSciNet
- D.-Q. Xian and H.-L. Chen, āSymmetry reduced and new exact non-traveling wave solutions of potential Kadomtsev-Petviashvili equation with p-power,ā Applied Mathematics and Computation, vol. 217, no. 4, pp. 1340ā1349, 2010. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- J.-H. He, āPeriodic solutions and bifurcations of delay-differential equations,ā Physics Letters A, vol. 347, no. 4–6, pp. 228ā230, 2005. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- Z. Dai and D. Xian, āHomoclinic breather-wave solutions for Sine-Gordon equation,ā Communications in Nonlinear Science and Numerical Simulation, vol. 14, pp. 3292ā3295, 2009. View at: Google Scholar
- Z. Dai, D. Xian, and D. Li, āHomoclinic breather-wave with convective effect for the - dimensional boussinesq equation,ā Chinese Physics Letters, vol. 26, no. 4, Article ID 040203, 2009. View at: Google Scholar
- Z. Dai, Z. Li, Z. Liu, and D. Li, āExact homoclinic wave and soliton solutions for the 2D Ginzburg-Landau equation,ā Physics Letters A, vol. 372, no. 17, pp. 3010ā3014, 2008. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- D. Xian and Z. Dai, āApplication of exp-function method to potential kadomtsev-petviashvili equation,ā Chaos, Solitons and Fractals, vol. 42, pp. 2653ā2659, 2009. View at: Google Scholar
- G.-C. Xiao, D.-Q. Xian, and X.-Q. Liu, āApplication of exp-function method to Dullin-Gottwald-Holm equation,ā Applied Mathematics and Computation, vol. 210, no. 2, pp. 536ā541, 2009. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
- X.-Q. Liu and S. Jiang, āThe --method and its applications,ā Physics Letters A, vol. 298, no. 4, pp. 253ā258, 2002. View at: Publisher Site | Google Scholar | MathSciNet
- S. K. Liu and S. D. Liu, Solitary wave and turbulence, Shanghai Scientifc and Technological Education, Shanghai, China, 1994.
- S. K. Liu and S. D. Liu, Nonliner Equations in Physics, Peking University, Beijing, China, 2000.
- M. Wang, X. Li, and J. Zhang, āThe -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics,ā Physics Letters A, vol. 372, no. 4, pp. 417ā423, 2008. View at: Publisher Site | Google Scholar | MathSciNet
Copyright
Copyright © 2013 Da-Quan Xian. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.