Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 159609, 13 pages
http://dx.doi.org/10.1155/2014/159609
Research Article

Consensus of Multiagent Systems with Packet Losses and Communication Delays Using a Novel Control Protocol

College of Automation, Harbin Engineering University, Heilongjiang 150001, China

Received 16 January 2014; Revised 23 February 2014; Accepted 24 February 2014; Published 7 April 2014

Academic Editor: Peng Shi

Copyright © 2014 Zheping Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Nagatani, Y. Okada, N. Tokunaga et al., “Multirobot exploration for search and rescue missions: a report on map building in RoboCupRescue 2009,” Journal of Field Robotics, vol. 28, no. 3, pp. 373–387, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Zhang, J. Yu, A. Zhang, L. Yang, and Y. Shu, “Marine vehicle sensor network architecture and protocol designs for ocean observation,” Sensors, vol. 12, no. 1, pp. 373–390, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Iyengar and R. Brooks, Distributed Sensor Networks: Sensor Networking and Applications, CRC Press, 2012.
  4. R. Cui, S. S. Ge, B. Voon Ee How, and Y. Sang Choo, “Leader-follower formation control of underactuated autonomous underwater vehicles,” Ocean Engineering, vol. 37, no. 17-18, pp. 1491–1502, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Zhang and Y.-P. Tian, “Consensus of data-sampled multi-agent systems with random communication delay and packet loss,” IEEE Transactions on Automatic Control, vol. 55, no. 4, pp. 939–943, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Ni and D. Cheng, “Leader-following consensus of multi-agent systems under fixed and switching topologies,” Systems and Control Letters, vol. 59, no. 3-4, pp. 209–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Cao and W. Ren, “Sampled-data discrete-time coordination algorithms for double-integrator dynamics under dynamic directed interaction,” International Journal of Control, vol. 83, no. 3, pp. 506–515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under dynamically changing interaction topologies,” IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Gao and L. Wang, “Consensus of multiple double-integrator agents with intermittent measurement,” International Journal of Robust and Nonlinear Control, vol. 20, no. 10, pp. 1140–1155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Lin, Z. Li, Y. Jia, and M. Sun, “High-order multi-agent consensus with dynamically changing topologies and time-delays,” IET Control Theory and Applications, vol. 5, no. 8, pp. 976–981, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Lin and Y. Jia, “Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies,” Automatica, vol. 45, no. 9, pp. 2154–2158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Liu, H. Min, S. Wang, Z. Liu, and S. Liao, “Distributed adaptive consensus for multiple mechanical systems with switching topologies and time-varying delay,” Systems & Control Letters, vol. 64, pp. 119–126, 2014. View at Google Scholar
  14. Y. Gao, J. Ma, M. Zuo, T. Jiang, and J. Duc, “Consensus of discrete-time second-order agents with time-varying topology and time-varying delays,” Journal of the Franklin Institute, vol. 349, no. 8, pp. 2598–2608, 2012. View at Google Scholar
  15. J. Zhu and L. Yuan, “Consensus of high-order multi-agent systems with switching topologies,” Linear Algebra and Its Applications, vol. 443, pp. 105–119, 2014. View at Google Scholar
  16. J. Almeida, C. Silverstre, and A. M. Pascoal, “Continuous time consensus with discrete time communications,” Systems & Control Letters, vol. 61, no. 7, pp. 788–796, 2012. View at Google Scholar
  17. J. Qin, H. Gao, and W. X. Zheng, “Consensus strategy for a class of multi-agents with discrete second-order dynamics,” International Journal of Robust and Nonlinear Control, vol. 22, no. 4, pp. 437–452, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Goldin and J. Raisch, “Consensus for agents with double integrator dynamics in heterogeneous networks,” Asian Journal of Control, vol. 15, no. 4, pp. 1–10, 2013. View at Google Scholar
  19. G. Parlangeli, “Collaborative diagnosis and compensation of misbehaving nodes in acyclic consensus networks: analysis and algorithms,” International Journal of Innovative Computing Information and Control, vol. 9, no. 3, pp. 915–938, 2009. View at Google Scholar
  20. X. Su, L. Wu, Shi, and P. :, “Sensor networks with random link failures: distributed filtering for T-S fuzzy systems’,” IEEE Transactions on Industrial Informatics, vol. 9, no. 3, pp. 1739–1750, 2013. View at Google Scholar
  21. X. Su, X. Yang, P. Shi, and L. Wu, “Fuzzy control of nonlinear electromagnetic suspension systems,” Mechatronics, 2013. View at Publisher · View at Google Scholar
  22. X. Su, P. Shi, L. Wu, and Y.-D. Song, “A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 4, pp. 655–671, 2013. View at Google Scholar
  23. J. Yu and L. Wang, “Group consensus in multi-agent systems with switching topologies and communication delays,” Systems and Control Letters, vol. 59, no. 6, pp. 340–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Iantovics and C. B. Zamfirescu, “ERMS: an evolutionary reorganizing multiagent system,” International Journal of Innovative Computing Information and Control, vol. 9, no. 3, pp. 1171–1188, 2013. View at Google Scholar
  25. L. Wu, X. Su, and P. Shi, “Sliding mode control with bounded L2 gain performance of Markovian jump singular time-delay systems,” Automatica, vol. 48, no. 8, pp. 1929–1933, 2012. View at Google Scholar
  26. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 2012.
  27. J. Wolfowitz, “Products of indecomposable, aperiodic, stochastic matrices,” Proceedings of the American Mathematical Society, vol. 14, no. 5, pp. 733–736, 1963. View at Google Scholar
  28. F. Lewis, Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches, Springer, Berlin, Germany, 2013.
  29. A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Wang, A. N. Michel, and D. Liu, “Necessary and sufficient conditions for the Hurwitz and Schur stability of interval matrices,” IEEE Transactions on Automatic Control, vol. 39, no. 6, pp. 1251–1255, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Liao, Q. Luo, Z. Mei, and W. Hu, “Notes on necessary and sufficient conditions of stability, observability and controllability for interval matrices,” Acta Automatica Sinica, vol. 24, no. 6, pp. 829–833, 1998. View at Google Scholar · View at Scopus
  32. D.-Q. Zhang, Q.-L. Zhang, and Y.-P. Chen, “Controllability and quadratic stability quadratic stabilization of discrete-time interval systems—an LMI approach,” IMA Journal of Mathematical Control and Information, vol. 23, no. 4, pp. 413–431, 2006. View at Publisher · View at Google Scholar · View at Scopus