Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 159745, 6 pages
Research Article

Robust Stability Criteria of Roesser-Type Discrete-Time Two-Dimensional Systems with Parameter Uncertainties

1School of Renewable Energy, Shenyang Institute of Engineering, Shenyang, Liaoning 110136, China
2School of Engineering and Information Technology, Murdoch University, Perth, WA 6150, Australia

Received 9 January 2014; Accepted 2 February 2014; Published 16 March 2014

Academic Editor: Ming Liu

Copyright © 2014 Yan Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper is concerned with robust stability analysis of uncertain Roesser-type discrete-time two-dimensional (2D) systems. In particular, the underlying parameter uncertainties of system parameter matrices are assumed to belong to a convex bounded uncertain domain, which usually is named as the so-called polytopic uncertainty and appears typically in most practical systems. Robust stability criteria are proposed for verifying the robust asymptotical stability of the related uncertain Roesser-type discrete-time 2D systems in terms of linear matrix inequalities. Indeed, a parameter-dependent Lyapunov function is applied in the proof of our main result and thus the obtained robust stability criteria are less conservative than the existing ones. Finally, the effectiveness and applicability of the proposed approach are demonstrated by means of some numerical experiments.