Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 350479, 8 pages
http://dx.doi.org/10.1155/2014/350479
Research Article

A Strong Convergence Algorithm for the Two-Operator Split Common Fixed Point Problem in Hilbert Spaces

1Department of Industrial Management, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
2Department of Accounting Information, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan

Received 27 February 2014; Accepted 13 June 2014; Published 6 July 2014

Academic Editor: Qing-bang Zhang

Copyright © 2014 Chung-Chien Hong and Young-Ye Huang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Martinet, “Régularisation d'inéquations variationnelles par approximations successives,” Revue Franćaise d'Informatique et de Recherche Opérationnelle, vol. 4, pp. 154–158, 1970. View at Google Scholar · View at MathSciNet
  2. R. T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM Journal on Control and Optimization, vol. 14, no. 5, pp. 877–898, 1976. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  3. O. A. Boikanyo and G. Moroşanu, “Inexact Halpern-type proximal point algorithm,” Journal of Global Optimization, vol. 51, no. 1, pp. 11–26, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. O. A. Boikanyo and G. Moroşanu, “Four parameter proximal point algorithms,” Nonlinear Analysis. Theory, Methods & Applications, vol. 74, no. 2, pp. 544–555, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  5. O. A. Boikanyo and G. Moroşanu, “A proximal point algorithm converging strongly for general errors,” Optimization Letters, vol. 4, no. 4, pp. 635–641, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  6. S. Kamimura and W. Takahashi, “Approximating solutions of maximal monotone operators in Hilbert spaces,” Journal of Approximation Theory, vol. 106, no. 2, pp. 226–240, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  7. G. Marino and H. K. Xu, “Convergence of generalized proximal point algorithms,” Communications on Pure and Applied Analysis, vol. 3, no. 4, pp. 791–808, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  8. M. V. Solodov and B. F. Svaiter, “Forcing strong convergence of proximal point iterations in a Hilbert space,” Mathematical Programming, vol. 87, no. 1, pp. 189–202, 2000. View at Google Scholar · View at MathSciNet · View at Scopus
  9. S. Takahashi, W. Takahashi, and M. Toyoda, “Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces,” Journal of Optimization Theory and Applications, vol. 147, no. 1, pp. 27–41, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  10. F. Wang and H. Cui, “On the contraction-proximal point algorithms with multi-parameters,” Journal of Global Optimization, vol. 54, no. 3, pp. 485–491, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  11. H. K. Xu, “A regularization method for the proximal point algorithm,” Journal of Global Optimization, vol. 36, no. 1, pp. 115–125, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  12. H. K. Xu, “Iterative algorithms for nonlinear operators,” Journal of the London Mathematical Society, vol. 66, no. 1, pp. 240–256, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  13. Y. Censor and T. Elfving, “A multiprojection algorithm using Bregman projections in a product space,” Numerical Algorithms, vol. 8, no. 2–4, pp. 221–239, 1994. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. C. Byrne, “Iterative oblique projection onto convex sets and the split feasibility problem,” Inverse Problems, vol. 18, no. 2, pp. 441–453, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. C. Byrne, “A unified treatment of some iterative algorithms in signal processing and image reconstruction,” Inverse Problems, vol. 20, no. 1, pp. 103–120, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  16. H. K. Xu, “Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces,” Inverse Problems, vol. 26, no. 10, Article ID 105018, 17 pages, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  17. Y. Y. Huang and C. C. Hong, “A unified iterative treatment for solutions of problems of split feasibility and equilibrium in Hilbert spaces,” Abstract and Applied Analysis, vol. 2013, Article ID 613928, 13 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  18. Y. Y. Huang and C. C. Hong, “Approximating common fixed points of averaged self-mappings with applications to split feasibility problem and maximal monotone operators in Hilbert spaces,” Fixed Point Theory and Applications, vol. 2013, article 190, 2013. View at Publisher · View at Google Scholar
  19. E. Masad and S. Reich, “A note on the multiple-set split convex feasibility problem in Hilbert space,” Journal of Nonlinear and Convex Analysis, vol. 8, no. 3, pp. 367–371, 2007. View at Google Scholar · View at MathSciNet
  20. J. Quan, S. S. Chang, and X. Zhang, “Multiple-set split feasibility problems for κ-strictly pseudononspreading mapping in Hilbert spaces,” Abstract and Applied Analysis, vol. 2013, Article ID 342545, 5 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  21. F. Wang and H. Xu, “Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem,” Journal of Inequalities and Applications, Article ID 102085, 13 pages, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  22. Y. Yao, J. Wu, and Y. C. Liou, “Regularized methods for the split feasibility problem,” Abstract and Applied Analysis, vol. 2012, Article ID 140679, 13 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  23. Y. Yao, Y. C. Liou, and N. Shahzad, “A strongly convergent method for the split feasibility problem,” Abstract and Applied Analysis, vol. 2012, Article ID 125046, 15 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  24. Y. Censor and A. Segal, “The split common fixed point problem for directed operators,” Journal of Convex Analysis, vol. 16, no. 2, pp. 587–600, 2009. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  25. A. Moudafi, “The split common fixed-point problem for demicontractive mappings,” Inverse Problems, vol. 26, no. 5, Article ID 055007, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  26. H. Cui, M. Su, and F. Wang, “Damped projection method for split common fixed point problems,” Journal of Inequalities and Applications, vol. 20113, article 123, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  27. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, vol. 28 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, 1990. View at Publisher · View at Google Scholar · View at MathSciNet
  28. B. Halpern, “Fixed points of nonexpanding maps,” Bulletin of the American Mathematical Society, vol. 73, pp. 957–961, 1967. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. R. Wittmann, “Approximation of fixed points of nonexpansive mappings,” Archiv der Mathematik, vol. 58, no. 5, pp. 486–491, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  30. P. E. Maingé, “Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization,” Set-Valued Analysis, vol. 16, no. 7-8, pp. 899–912, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus