Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 542154, 15 pages
http://dx.doi.org/10.1155/2014/542154
Research Article

SVEIRS: A New Epidemic Disease Model with Time Delays and Impulsive Effects

1College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
2Shandong University of Science and Technology, Qingdao 266590, China
3Department of Mathematics, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia

Received 5 January 2014; Revised 12 April 2014; Accepted 25 April 2014; Published 26 May 2014

Academic Editor: Zhiming Guo

Copyright © 2014 Tongqian Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Piyawong, E. H. Twizell, and A. B. Gumel, “An unconditionally convergent finite-difference scheme for the SIR model,” Applied Mathematics and Computation, vol. 146, no. 2-3, pp. 611–625, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. A. Korobeinikov and G. C. Wake, “Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models,” Applied Mathematics Letters, vol. 15, no. 8, pp. 955–960, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. E. Beretta and Y. Takeuchi, “Convergence results in SIR epidemic models with varying population sizes,” Nonlinear Analysis: Theory, Methods & Applications, vol. 28, no. 12, pp. 1909–1921, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. E. Beretta and Y. Takeuchi, “Global stability of an SIR epidemic model with time delays,” Journal of Mathematical Biology, vol. 33, no. 3, pp. 250–260, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. W. Ma, M. Song, and Y. Takeuchi, “Global stability of an SIR epidemic model with time delay,” Applied Mathematics Letters, vol. 17, no. 10, pp. 1141–1145, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. Z. Jin and Z. Ma, “The stability of an SIR epidemic model with time delays,” Mathematical Biosciences and Engineering, vol. 3, no. 1, pp. 101–109, 2006. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. J. Hui and L.-S. Chen, “Impulsive vaccination of SIR epidemic models with nonlinear incidence rates,” Discrete and Continuous Dynamical Systems B, vol. 4, no. 3, pp. 595–605, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. X. Meng and L. Chen, “The dynamics of a new SIR epidemic model concerning pulse vaccination strategy,” Applied Mathematics and Computation, vol. 197, no. 2, pp. 582–597, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. G. Z. Zeng, L. S. Chen, and L. H. Sun, “Complexity of an SIR epidemic dynamics model with impulsive vaccination control,” Chaos, Solitons & Fractals, vol. 26, no. 2, pp. 495–505, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. A. D’Onofrio, “Pulse vaccination strategy in SIR epidemic model,” Mathematical and Computer Modelling, vol. 13, pp. 15–26, 2002. View at Google Scholar · View at Zentralblatt MATH
  11. S. L. Yuan, Z. E. Ma, and M. A. Han, “Global stability of an SIS epidemic model with time delays,” Acta Mathematica Scientia A, vol. 25, no. 3, pp. 349–356, 2005. View at Google Scholar · View at MathSciNet
  12. S.-L. Yuan, Z.-E. Ma, and Z. Jin, “Persistence and periodic solution on a nonautonomous SIS model with delays,” Acta Mathematicae Applicatae Sinica, vol. 19, no. 1, pp. 167–176, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  13. D. Kühnert, T. Stadler, T. G. Vaughan, and A. J. Drummond, “Simultaneous reconstruction of evolutionary history and epidemiological dynamics from viral sequences with the birth-death SIR model,” Journal of the Royal Society Interface, vol. 11, no. 94, Article ID 20131106, 2014. View at Publisher · View at Google Scholar
  14. T. K. Kar and P. K. Mondal, “Global dynamics and bifurcation in delayed SIR epidemic model,” Nonlinear Analysis: Real World Applications, vol. 12, no. 4, pp. 2058–2068, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. G. Huang and Y. Takeuchi, “Global analysis on delay epidemiological dynamic models with nonlinear incidence,” Journal of Mathematical Biology, vol. 63, no. 1, pp. 125–139, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. C. Vargas-De-León, “On the global stability of SIS, SIR and SIRS epidemic models with standard incidence,” Chaos, Solitons & Fractals, vol. 44, no. 12, pp. 1106–1110, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  17. T. K. Kar and A. Batabyal, “Stability analysis and optimal control of an SIR epidemic model with vaccination,” BioSystems, vol. 104, no. 2-3, pp. 127–135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Hu, W. Ma, and S. Ruan, “Analysis of SIR epidemic models with nonlinear incidence rate and treatment,” Mathematical Biosciences, vol. 238, no. 1, pp. 12–20, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. X. Song, Y. Jiang, and H. Wei, “Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays,” Applied Mathematics and Computation, vol. 214, no. 2, pp. 381–390, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. T. Zhang and Z. Teng, “Global behavior and permanence of SIRS epidemic model with time delay,” Nonlinear Analysis: Real World Applications, vol. 9, no. 4, pp. 1409–1424, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. M. Y. Li, H. L. Smith, and L. Wang, “Global dynamics an SEIR epidemic model with vertical transmission,” SIAM Journal on Applied Mathematics, vol. 62, no. 1, pp. 58–69, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. W. Wang, “Global behavior of an SEIRS epidemic model with time delays,” Applied Mathematics Letters, vol. 15, no. 4, pp. 423–428, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. J. Zhen, Z. Ma, and M. Han, “Global stability of an SIRS epidemic model with delays,” Acta Mathematica Scientia B, vol. 26, no. 2, pp. 291–306, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. G. Li and Z. Jin, “Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period,” Chaos, Solitons & Fractals, vol. 25, no. 5, pp. 1177–1184, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. K. L. Cooke and P. van den Driessche, “Analysis of an SEIRS epidemic model with two delays,” Journal of Mathematical Biology, vol. 35, no. 2, pp. 240–260, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. S. Gao, Z. Teng, and D. Xie, “The effects of pulse vaccination on SEIR model with two time delays,” Applied Mathematics and Computation, vol. 201, no. 1-2, pp. 282–292, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. S. Gao, L. Chen, and Z. Teng, “Impulsive vaccination of an SEIRS model with time delay and varying total population size,” Bulletin of Mathematical Biology, vol. 69, no. 2, pp. 731–745, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  28. X. Meng, L. Chen, and H. Cheng, “Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination,” Applied Mathematics and Computation, vol. 186, no. 1, pp. 516–529, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. T. Zhang and Z. Teng, “Pulse vaccination delayed SEIRS epidemic model with saturation incidence,” Applied Mathematical Modelling, vol. 32, no. 7, pp. 1403–1416, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. Y. Jiang, L. Mei, and X. Song, “Global analysis of a delayed epidemic dynamical system with pulse vaccination and nonlinear incidence rate,” Applied Mathematical Modelling, vol. 35, no. 10, pp. 4865–4876, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. K. L. Cooke, “Stability analysis for a vector disease model,” The Rocky Mountain Journal of Mathematics, vol. 9, no. 1, pp. 31–42, 1979. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. Y. Takeuchi, W. Ma, and E. Beretta, “Global asymptotic properties of a delay SIR epidemic model with finite incubation times,” Nonlinear Analysis: Theory, Methods & Applications, vol. 42, no. 6, pp. 931–947, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. W.-M. Liu, H. W. Hethcote, and S. A. Levin, “Dynamical behavior of epidemiological models with nonlinear incidence rates,” Journal of Mathematical Biology, vol. 25, no. 4, pp. 359–380, 1987. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  34. W.-M. Liu, S. A. Levin, and Y. Iwasa, “Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models,” Journal of Mathematical Biology, vol. 23, no. 2, pp. 187–240, 1986. View at Publisher · View at Google Scholar
  35. X. Meng, L. Chen, and B. Wu, “A delay SIR epidemic model with pulse vaccination and incubation times,” Nonlinear Analysis: Real World Applications, vol. 11, no. 1, pp. 88–98, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  36. F. N. M. Al-Showaikh and E. H. Twizell, “One-dimensional measles dynamics,” Applied Mathematics and Computation, vol. 152, no. 1, pp. 169–194, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  37. D. Greenhalgh, “Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity,” Mathematical and Computer Modelling, vol. 25, no. 2, pp. 85–107, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  38. A. d'Onofrio, “Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times,” Applied Mathematics and Computation, vol. 151, no. 1, pp. 181–187, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  39. V. Lakshmikantham, D. D. Baĭnov, and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6 of Series in Modern Applied Mathematics, World Scientific, Singapore, 1989. View at MathSciNet
  40. D. Bainov and P. Simeonov, System with Impulsive Effect: Stability, Theory and Applications, John Wiley & Sons, New York, NY, USA, 1989.
  41. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1993. View at MathSciNet
  42. T. Zhang, X. Meng, and Y. Song, “The dynamics of a high-dimensional delayed pest management model with impulsive pesticide input and harvesting prey at different fixed moments,” Nonlinear Dynamics, vol. 64, no. 1-2, pp. 1–12, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet