Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014 (2014), Article ID 574547, 6 pages
http://dx.doi.org/10.1155/2014/574547
Research Article

Research on Amplifier Performance Evaluation Based on δ-Support Vector Regression

1College of Engineering, Bohai University, Jinzhou 121013, China
2Department of Engineering, Faculty of Engineering and Science, The University of Agder, Grimstad 4898, Norway

Received 1 January 2014; Accepted 18 January 2014; Published 3 March 2014

Academic Editor: Ming Liu

Copyright © 2014 Xing Huo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Kabisatpathy, A. Barua, and S. Sinha, Fault Diagnosis of Analog Integrated Circuits, vol. 30, Springer, Berlin, Germany, 2005.
  2. J. R. Koza, F. H. Bennett III, D. Andre, M. A. Keane, and F. Dunlap, “Automated synthesis of analog electrical circuits by means of genetic programming,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 2, pp. 109–128, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Alippi, M. Catelani, A. Fort, and M. Mugnaini, “SBT soft fault diagnosis in analog electronic circuits: a sensitivity-based approach by randomized algorithms,” IEEE Transactions on Instrumentation and Measurement, vol. 51, no. 5, pp. 1116–1125, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Czaja and R. Zielonko, “On fault diagnosis of analogue electronic circuits based on transformations in multi-dimensional spaces,” Measurement, vol. 35, no. 3, pp. 293–301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Cui and Y. Wang, “A novel approach of analog circuit fault diagnosis using support vector machines classifier,” Measurement, vol. 44, no. 1, pp. 281–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Lin, L. Zhang, D. Ren, H. Kang, and G. Gu, “Fault diagnosis in nonlinear analog circuit based on Wiener kernel and BP neural network,” Chinese Journal of Scientific Instrument, vol. 30, no. 9, pp. 1946–1949, 2009. View at Google Scholar · View at Scopus
  7. S. Yin, S. X. Ding, A. H. A. Sari, and H. Hao, “Data-driven monitoring for stochastic systems and its application on batch process,” International Journal of Systems Science. Principles and Applications of Systems and Integration, vol. 44, no. 7, pp. 1366–1376, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process,” Journal of Process Control, pp. 1567–1581, 2012. View at Publisher · View at Google Scholar
  9. S. Yin, X. Yang, and H. R. Karimi, “Data-driven adaptive observer for fault diagnosis,” Mathematical Problems in Engineering, vol. 2012, Article ID 832836, 21 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. S. Yin, H. Luo, and S. Ding, “Real-time implementation of fault-tolerant control systems with performance optimization,” IEEE Transactions on Industrial Electronics, pp. 2402–2411, 2013. View at Publisher · View at Google Scholar
  11. X. Zhao, X. Liu, S. Yin, and H. Li, “Improved results on stability of continuous-time switched positive linear systems,” Automatica, 2013. View at Publisher · View at Google Scholar
  12. X. Zhao, P. Shi, and L. Zhang, “Asynchronously switched control of a class of slowly switched linear systems,” Systems and Control Letters, vol. 61, no. 12, pp. 1151–1156, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. X. Zhao, L. Zhang, and P. Shi, “Stability of a class of switched positive linear time-delay systems,” International Journal of Robust and Nonlinear Control, vol. 23, no. 5, pp. 578–589, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  14. X. Zhao, L. Zhang, P. Shi, and H. Karimi, “Novel stability criteria for TS fuzzy systems,” IEEE Transactions on Fuzzy Systems, 2013. View at Publisher · View at Google Scholar
  15. X. Zhao, L. Zhang, P. Shi, and H. Karimi, “Robust control of continuous-time systems with state-dependent uncertainties and its application to electronic circuits,” IEEE Transactions on Industrial Electronics, 2013. View at Publisher · View at Google Scholar
  16. X. Zhao, L. Zhang, P. Shi, and M. Liu, “Stability and stabilization of switched linear systems with mode-dependent average dwell time,” IEEE Transactions on Transactions on Automatic Control, vol. 57, no. 7, pp. 1809–1815, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  17. X. Zhao, L. Zhang, P. Shi, and M. Liu, “Stability of switched positive linear systems with average dwell time switching,” Automatica, vol. 48, no. 6, pp. 1132–1137, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. D. Sánchez, P. Melin, O. Castillo, and F. Valdez, “Modular neural networks optimization with hierarchical genetic algorithms with fuzzy response integration for pattern recognition,” in Advances in Computational Intelligence, pp. 247–258, Springer, Berlin, Germany, 2013. View at Google Scholar
  19. S. Abdulla and M. Tokhi, “Fuzzy logic based FES driven cycling by stimulating single muscle group,” in Converging Clinical and Engineering Research on Neurorehabilitation, pp. 173–182, Springer, Berlin, Germany, 2013. View at Google Scholar
  20. C. W. Chen, P. C. Chen, and W. L. Chiang, “Modified intelligent genetic algorithm-based adaptive neural network control for uncertain structural systems,” Journal of Vibration and Control, vol. 19, no. 9, pp. 1333–1347, 2013. View at Google Scholar
  21. A. Zhang and Z. Yu, “Research on amplifier performance evaluation based on support vector regression machine,” Chinese Journal of Scientific Instrument, vol. 29, no. 3, pp. 618–622, 2008. View at Google Scholar · View at Scopus
  22. A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  23. S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to the SMO algorithm for SVM regression,” IEEE Transactions on Neural Networks, vol. 11, no. 5, pp. 1188–1193, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Orchel, “Support vector regression based on data shifting,” Neurocomputing, vol. 96, pp. 2–11, 2012. View at Google Scholar
  25. K. Ucak and G. Oke, “An improved adaptive PID controller based on online LSSVR with multi RBF kernel tuning,” in Adaptive and Intelligent Systems, pp. 40–51, Springer, Berlin, Germany, 2011. View at Google Scholar · View at MathSciNet
  26. J. A. K. Suykens, J. de Brabanter, L. Lukas, and J. Vandewalle, “Weighted least squares support vector machines: robustness and sparce approximation,” Neurocomputing, vol. 48, pp. 85–105, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, Berlin, Germany, 2000. View at MathSciNet
  28. S. Rüping, “Incremental learning with support vector machines,” in Proceedings of the 1st IEEE International Conference on Data Mining (ICDM '01), pp. 641–642, December 2001. View at Scopus
  29. M. Orchel, “Regression based on support vector classification,” in Adaptive and Natural Computing Algorithms, pp. 353–362, Springer, Berlin, Germany, 2011. View at Google Scholar
  30. V. Cherkassky and F. M. Mulier, Learning from data: Concepts, Theory, and Methods, John Wiley & Sons, New York, NY, USA, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  31. V. Cherkassky and Y. Ma, “Practical selection of SVM parameters and noise estimation for SVM regression,” Neural Networks, vol. 17, no. 1, pp. 113–126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. P. S. Yu, S. T. Chen, and I. F. Chang, “Support vector regression for real-time flood stage forecasting,” Journal of Hydrology, vol. 328, no. 3-4, pp. 704–716, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Aminian and F. Aminian, “Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor,” IEEE Transactions on Circuits and Systems II, vol. 47, no. 2, pp. 151–156, 2000. View at Publisher · View at Google Scholar · View at Scopus