Abstract and Applied Analysis

Abstract and Applied Analysis / 2014 / Article
Special Issue

Recent Results on Fixed Point Approximations and Applications

View this Special Issue

Research Article | Open Access

Volume 2014 |Article ID 595673 | 8 pages | https://doi.org/10.1155/2014/595673

A New Iterative Method for the Set of Solutions of Equilibrium Problems and of Operator Equations with Inverse-Strongly Monotone Mappings

Academic Editor: Kyung Soo Kim
Received25 Apr 2014
Accepted27 May 2014
Published16 Jun 2014

Abstract

The purpose of the paper is to present a new iteration method for finding a common element for the set of solutions of equilibrium problems and of operator equations with a finite family of -inverse-strongly monotone mappings in Hilbert spaces.

1. Introduction

Let be a real Hilbert space with the inner product and the norm , respectively. Let be a nonempty closed convex subset of , and let be a bifunction from into . The equilibrium problem for is to find such that The set of solutions of (1) is denoted by .

Equilibrium problem (1) includes the numerous problems in physics, optimization, economics, transportation, and engineering, as special cases.

Assume that the bifunction satisfies the following standard properties.

Assumption A. Let be a bifunction satisfying the conditions (A1)–(A4):(A1),  ;(A2),  ;(A3)for each , is lower semicontinuous and convex;(A4), .

Let , , be a finite family of -strictly pseudocontractive mappings from into with the set of fixed points ; that is, Assume that

The problem of finding an element is studied intensively in [127].

Recall that a mapping in is said to be a -strictly pseudocontractive mapping in the terminology of Browder and Petryshyn [28] if there exists a constant such that for all , the domain of , where is the identity operator in . Clearly, if , then is nonexpansive; that is,

We know that the class of -strictly pseudocontractive mappings strictly includes the class of nonexpansive mappings.

In the case that , (4) is reduced to the equilibrium problem (1) and shown in [5, 23] to cover monotone inclusion problems, saddle point problems, variational inequality problems, minimization problems, Nash equilibria in noncooperative games, vector equilibrium problems, and certain fixed point problems (see also [29]). For finding approximative solutions of (1) there exist several methods: the regularization approach in [7, 9, 15, 24, 30, 31], the gap-function approach in [8, 15, 16, 18, 19], and the iterative procedure approach in [14, 6, 8, 1114, 1922, 32, 33].

In the case that and , (4) is a problem of finding a fixed point for a -strictly pseudocontractive mapping in and is given by Marino and Xu [17].

Theorem 1 (see [17]). Let be a nonempty closed convex subset of a real Hilbert space . Let be a -strictly pseudocontractive mapping for some , and assume that Let be the sequence generated by the following algorithm: Assume that the control sequence is chosen so that for all . Then converges strongly to , the projection of onto .

For the case that and , (4) is a problem of finding a common fixed point for a finite family of -strictly pseudocontractive mappings in and is studied in [27].

Let and , , and three sequences in satisfying for all , and let be a sequence in . Then the sequence generated by is called the implicit iteration process with mean errors for a finite family of strictly pseudocontractive mappings .

The scheme (9) can be expressed in the compact form as where .

Theorem 2 (see [27]). Let be a nonempty closed convex subset of a real Hilbert space . Let be a finite family of strictly pseudocontractive mappings of into itself such that Let and let be a bounded sequence in ; let , , and be three sequences in satisfying the following conditions:(i), ;(ii)there exist constants such that ,  ;(iii).
Then the implicit iterative sequence defined by (9) converges weakly to a common fixed point of the mappings . Moreover, if there exists such that is demicompact, then converges strongly.

If is an arbitrary bifunction satisfying Assumption A and , then (4) is a problem of finding a common element of the fixed point set for a -strictly pseudocontractive mapping in and of the solution set of equilibrium problem for (see [26]).

Theorem 3 (see [26]). Let be a nonempty closed convex subset of a real Hilbert space . Let be a bifunction from to satisfying Assumption A, and let be a nonexpansive mapping of into such that Let be a contraction of into itself and let and be sequences generated by and for all   N, where and satisfy Then, and converge strongly to , where

Set . Obviously, are -inverse-strongly monotone; that is,

From now on, let be a finite family of -inverse-strongly monotone mappings in with and , . On the other hand, if there exists such that , then is a contraction; that is, with . And hence, has only one solution and, consequently, the stated problem does not have sense. So, without loss of generality, assume that , .

Set where is the solution set of in .

Assume that .

Our problem is to find an element

Since the mapping is -inverse-strongly monotone for each nonexpansive mapping , the problem of finding an element , which is not only a solution of a variational inequality involving an inverse-strongly monotone mapping but also a fixed point of a nonexpansive mapping, is a particular case of (18).

For instance, the case that , where is some inverse-strongly monotone mapping and , is studied in [25].

Theorem 4 (see [25]). Let be a nonempty closed convex subset of a real Hilbert space . Let . Let be a -inverse-strongly monotone mapping of into , and let be a nonexpansive mapping of into itself such that where denotes the solution set of the following variational inequality: find such that Let be a sequence defined by for every , where for some and for some . Then, converges weakly to , where

The following theorem is an improvement of Theorem 4 for the case of nonself-mapping.

Theorem 5 (see [34]). Let be a nonempty closed convex subset of a real Hilbert space . Let be a -inverse-strongly monotone mapping of into , and let be a nonexpansive nonself-mapping of into such that Suppose that and is given by for every , where is a sequence in and is a sequence in . If and are chosen so that for some a, b with , then converges strongly to .

We know that -inverse-strongly monotone mapping is -Lipschitz continuous and monotone. Therefore, for the case that , where is not inverse-strongly monotone, but Lipschitz continuous and monotone, Nadezhkina and Takahashi [35] prove the following theorem.

Theorem 6 (see [35]). Let be a nonempty closed convex subset of a real Hilbert space . Let be a monotone and -Lipschitz continuous mapping of into , and let be a nonexpansive mapping of into itself such that Let , , and be sequences generated by for every , where for some and for some . Then the sequences , , and converge strongly to .

Some similar results are also considered in [36, 37].

Buong [38] introduced two new implicit iteration methods for solving problem (18).

We construct a regularization solution of the following single equilibrium problem: find such that where and is the positive sequence of regularization parameters that converges to , as .

The first one is the following theorem.

Theorem 7 (see [38]). For each , problem (28) has a unique solution such that(i), , ,  ;(ii) where is a positive constant.

Next, we introduce the second result. Let and be some sequences of positive numbers, and let and be two arbitrary elements in . Then, the sequence of iterations is defined by the following equilibrium problem: find such that

Theorem 8 (see [38]). Assume that the parameters , and are chosen such that(i), (ii), ,(iii), (iv).
Then, the sequence defined by (31) converges strongly to the element , as .

In this paper, we consider the new another iteration method: for an arbitrary element in , the sequence of iterations is defined by finding such that where is the metric projection of onto and and are sequences of positive numbers.

The strong convergence of the sequence defined by (32) is proved under some suitable conditions on and in the next section.

2. Main Results

We formulate the following lemmas for the proof of our main theorems.

Lemma 9 (see [9]). Let be a nonempty closed convex subset of a real Hilbert space and let be a bifunction of into satisfying Assumption A. Let and . Then, there exists such that

Lemma 10 (see [9]). Let be a nonempty closed convex subset of a real Hilbert space . Assume that satisfies Assumption A. For and , define a mapping as follows: Then, the following statements hold: (i) is single valued;(ii) is firmly nonexpansive; that is, for any , (iii);(iv) is closed and convex.

Lemma 11 (see [36]). Let , and be the sequences of positive numbers satisfying the following conditions: (i), (ii), , .
Then, .

Lemma 12 (see [38]). Let be any inverse-strongly monotone mapping from into with the solution set , and let be a closed convex subset of such that Then, the solution set of the following variational inequality is coincided with .

From Lemma 9, we can consider the firmly nonexpansive mapping defined by From Lemma 10, we know that is nonexpansive. Consequently, is -inverse-strongly monotone. Let Then, and problem (18) are equivalent to finding

Now, we construct a regularization solution for (40) by solving the following variational inequality problem: find such that where the positive regularization parameter , as .

Now we are in a position to introduce and prove the main results.

Theorem 13. Let be a nonempty closed convex subset of a real Hilbert space . Let be a bifunction from to satisfying Assumption A and let be a finite family of -inverse-strongly monotone mappings in with and , , such that where denotes the set of solutions for (1) and Then, for each , problem (41) has a unique solution such that (i), ,(ii), , (iii) where is some positive constant.

Proof. From Lemma 12, we know that is the set of solutions for the following variational inequality problem: find such that If we define the new bifunction by then problem (41) is the same as (28) with a new , and the proof for the theorem is a complete repetition of the proof for Theorem  2.1 in [38].
Set

Theorem 14. Let be a nonempty closed convex subset of a real Hilbert space . Let be a bifunction from to satisfying Assumption A and let be a finite family of -inverse-strongly monotone mappings in with and , , such that where denotes the set of solutions for (1) and Suppose that satisfy the following conditions: Then, the sequence defined by (32) converges strongly to ; that is,

Proof. Let be the solution of (41). Then, Set . Obviously, From the nonexpansivity of , the monotone and Lipschitz continuous properties of , , (41), (52), and , we have Thus, Therefore,
We note that, for , , , the inequality holds. Thus, applying inequality (57) for , we obtain
Set Then, it is not difficult to check that and satisfy the conditions in Lemma 11 for sufficiently large . Hence, . Since , we have This completes the proof.

Remark 15. The sequences , and with satisfy all the necessary conditions in Theorem 14.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Authors’ Contribution

The main idea of this paper was proposed by Jong Kyu Kim. Jong Kyu Kim and Nguyen Buong prepared the paper initially and performed all the steps of proof in this research. All authors read and approved the final paper.

Acknowledgment

This paper was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A2042138).

References

  1. A. S. Antipin, “Equilibrium programming: gradient methods,” Automation and Remote Control, vol. 58, no. 8, pp. 1337–1347, 1997. View at: Google Scholar
  2. A. S. Antipin, “Equilibrium programming: proximal methods,” Zhurnal Vychislite'noi Matematiki i Matematicheskoi Fiziki, vol. 37, no. 11, pp. 1327–1339, 1997, Computational Mathematics and Mathematical Physics, vol. 37, no. 11, pp. 1285–1296, 1997. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  3. A. S. Antipin, “Solution methods for variational inequalities with coupled constraints,” Computational Mathematics and Mathematical Physics, vol. 40, no. 9, pp. 1239–1254, 2000, Translated from Zhurnal Vychislite'noi Matematiki i Matematicheskoi Fiziki, vol. 40, no. 9, 1291–1307, 2000. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  4. A. S. Antipin, “Solving variational inequalities with coupling constraints with the use of differential equations,” Differential Equations, vol. 36, no. 11, pp. 1587–1596, 2000, Translated from Differentsial'nye Uravnenye, vol. 36, no. 11, 1443–1451, 2000. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  5. E. Blum and W. Oettli, “From optimization and variational inequalities to equilibrium problems,” The Mathematics Student, vol. 63, no. 1–4, pp. 123–145, 1994. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  6. M. Bounkhel and B. R. Al-Senan, “An iterative method for nonconvex equilibrium problems,” Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 2, article 75, 2006. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  7. O. Chadli, S. Schaible, and J. C. Yao, “Regularized equilibrium problems with application to noncoercive hemivariational inequalities,” Journal of Optimization Theory and Applications, vol. 121, no. 3, pp. 571–596, 2004. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  8. O. Chadli, I. V. Konnov, and J. C. Yao, “Descent methods for equilibrium problems in a Banach space,” Computers & Mathematics with Applications, vol. 48, no. 3-4, pp. 609–616, 2004. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  9. P. L. Combettes and S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,” Journal of Nonlinear and Convex Analysis, vol. 6, no. 1, pp. 117–136, 2005. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  10. P. N. Anh and J. K. Kim, “An interior proximal cutting hyperplane method for equilibrium problems,” Journal of Inequalities and Applications, vol. 2012, article 99, 2012. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  11. J. K. Kim, Y. M. Nam, and J. Y. Sim, “Convergence theorems of implicit iterative sequences for a finite family of asymptotically quasi-nonxpansive type mappings,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 12, pp. 2839–2848, 2009. View at: Publisher Site | Google Scholar | MathSciNet
  12. J. K. Kim, S. Y. Cho, and X. Qin, “Some results on generalized equilibrium problems involving strictly pseudocontractive mappings,” Acta Mathematica Scientia. Series B, vol. 31, no. 5, pp. 2041–2057, 2011. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  13. J. K. Kim, “Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi-φ-nonexpansive mappings,” Fixed Point Theory and Applications, vol. 2011, article 10, 2011. View at: Publisher Site | Google Scholar | MathSciNet
  14. J. K. Kim and W. H. Lim, “A new iterative algorithm of pseudomonotone mappings for equilibrium problems in Hilbert spaces,” Journal of Inequalities and Applications, vol. 2013, article 128, 2013. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  15. I. V. Konnov and O. V. Pinyagina, “D-gap functions and descent methods for a class of monotone equilibrium problems,” Lobachevskii Journal of Mathematics, vol. 13, pp. 57–65, 2003. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  16. I. V. Konnov and O. V. Pinyagina, “D-gap functions for a class of equilibrium problems in Banach spaces,” Computational Methods in Applied Mathematics, vol. 3, no. 2, pp. 274–286, 2003. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  17. G. Marino and H.-K. Xu, “Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 329, no. 1, pp. 336–346, 2007. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  18. G. Mastroeni, “Gap functions for equilibrium problems,” Journal of Global Optimization, vol. 27, no. 4, pp. 411–426, 2003. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  19. G. Mastroeni, “On auxiliary principle for equilibrium problems,” Tech. Rep. 3.244.1258, Department of Mathematics of Pisa University, Pisa, Italy, 2000. View at: Google Scholar
  20. A. Moudafi, “Second-order differential proximal methods for equilibrium problems,” Journal of Inequalities in Pure and Applied Mathematics, vol. 4, no. 1, article 18, 2003. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  21. A. Moudafi and M. Théra, “Proximal and dynamical approaches to equilibrium problems,” in Ill-Posed Variational Problems and Regularization Techniques, vol. 477 of Lecture Notes in Economics and Mathematical Systems, pp. 187–201, Springer, Berlin, Germay, 1999. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  22. M. A. Noor and K. I. Noor, “On equilibrium problems,” Applied Mathematics E-Notes, vol. 4, pp. 125–132, 2004. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  23. W. Oettli, “A remark on vector-valued equilibria and generalized monotonicity,” Acta Mathematica Vietnamica, vol. 22, no. 1, pp. 213–221, 1997. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  24. A. S. Stukalov, “A regularized extragradient method for solving equilibrium programming problems in a Hilbert space,” Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, vol. 45, no. 9, pp. 1538–1554, 2005. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  25. W. Takahashi and M. Toyoda, “Weak convergence theorems for nonexpansive mappings and monotone mappings,” Journal of Optimization Theory and Applications, vol. 118, no. 2, pp. 417–428, 2003. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  26. S. Takahashi and W. Takahashi, “Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 331, no. 1, pp. 506–515, 2007. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  27. G. Wang, J. Peng, and H.-W. J. Lee, “Implicit iteration process with mean errors for common fixed points of a finite family of strictly pseudocontrative maps,” International Journal of Mathematical Analysis, vol. 1, no. 1–4, pp. 89–99, 2007. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  28. F. E. Browder and W. V. Petryshyn, “Construction of fixed points of nonlinear mappings in Hilbert space,” Journal of Mathematical Analysis and Applications, vol. 20, pp. 197–228, 1967. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  29. A. Göpfert, H. Riahi, C. Tammer, and C. Zălinescu, Variational Methods in Partially Ordered Spaces, Springer, New York, NY, USA, 2003. View at: MathSciNet
  30. J. K. Kim and T. M. Tuyen, “Regularization proximal point algorithm for finding a common fixed point of a finite family of nonexpansive mappings in Banach spaces,” Fixed Point Theory and Applications, vol. 2011, article 52, 2011. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  31. J. K. Kim and N. Buong, “Regularization inertial proximal point algorithm for monotone hemicontinuous mapping and inverse strongly monotone mappings in Hilbert spaces,” Journal of Inequalities and Applications, vol. 2010, Article ID 451916, 10 pages, 2010. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  32. J. K. Kim and N. Buong, “An iteration method for common solution of a system of equilibrium problems in Hilbert spaces,” Fixed Point Theory and Applications, vol. 2011, Article ID 780764, 15 pages, 2011. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  33. J. K. Kim, P. N. Anh, and Y. M. Nam, “Strong convergence of an extended extragradient method for equilibrium problems and fixed point problems,” Journal of the Korean Mathematical Society, vol. 49, no. 1, pp. 187–200, 2012. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  34. H. Iiduka and W. Takahashi, “Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings,” Nonlinear Analysis: Theory, Methods & Applications, vol. 61, no. 3, pp. 341–350, 2005. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  35. N. Nadezhkina and W. Takahashi, “Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings,” SIAM Journal on Optimization, vol. 16, no. 4, pp. 1230–1241, 2006. View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNet
  36. M. A. Noor, Y. Yao, R. Chen, and Y.-C. Liou, “An iterative method for fixed point problems and variational inequality problems,” Mathematical Communications, vol. 12, no. 1, pp. 121–132, 2007. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  37. L.-C. Zeng and J.-C. Yao, “Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems,” Taiwanese Journal of Mathematics, vol. 10, no. 5, pp. 1293–1303, 2006. View at: Google Scholar | Zentralblatt MATH | MathSciNet
  38. N. Buong, “Approximation methods for equilibrium problems and common solution for a finite family of inverse strongly-monotone problems in Hilbert spaces,” Applied Mathematical Sciences, vol. 2, no. 13–16, pp. 735–746, 2008. View at: Google Scholar | Zentralblatt MATH | MathSciNet

Copyright © 2014 Jong Kyu Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

598 Views | 484 Downloads | 1 Citation
 PDF  Download Citation  Citation
 Download other formatsMore
 Order printed copiesOrder

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19.