Table of Contents Author Guidelines Submit a Manuscript
Abstract and Applied Analysis
Volume 2014, Article ID 735327, 7 pages
http://dx.doi.org/10.1155/2014/735327
Research Article

Global Stability of a Computer Virus Propagation Model with Two Kinds of Generic Nonlinear Probabilities

1School of Software Engineering, Chongqing University, Chongqing 400044, China
2College of Computer Science, Chongqing University, Chongqing 400044, China

Received 1 April 2014; Accepted 4 June 2014; Published 26 June 2014

Academic Editor: Tonghua Zhang

Copyright © 2014 Chenquan Gan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Cohen, “Computer viruses: theory and experiments,” Computers & Security, vol. 6, no. 1, pp. 22–35, 1987. View at Publisher · View at Google Scholar · View at Scopus
  2. W. H. Murray, “The application of epidemiology to computer viruses,” Computers and Security, vol. 7, no. 2, pp. 139–145, 1988. View at Publisher · View at Google Scholar · View at Scopus
  3. J. O. Kephart and S. R. White, “Directed-graph epidemiological models of computer viruses,” in Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy, pp. 343–359, Oakland, Calif, USA, May 1991. View at Scopus
  4. L. Billings, W. M. Spears, and I. B. Schwartz, “A unified prediction of computer virus spread in connected networks,” Physics Letters A, vol. 297, no. 3-4, pp. 261–266, 2002. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  5. J. C. Wierman and D. J. Marchette, “Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction,” Computational Statistics & Data Analysis, vol. 45, no. 1, pp. 3–23, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  6. M. Youssef and C. Scoglio, “An individual-based approach to SIR epidemics in contact networks,” Journal of Theoretical Biology, vol. 283, pp. 136–144, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  7. J. Ren, Y. Xu, Y. Zhang, Y. Dong, and G. Hao, “Dynamics of a delay-varying computer virus propagation model,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 371792, 12 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  8. L. Feng, X. Liao, H. Li, and Q. Han, “Hopf bifurcation analysis of a delayed viral infection model in computer networks,” Mathematical and Computer Modelling, vol. 56, no. 7-8, pp. 167–179, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  9. C. Gan, X. Yang, W. Liu, Q. Zhu, and X. Zhang, “Propagation of computer virus under human intervention: a dynamical model,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 106950, 8 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  10. C. Gan, X. Yang, W. Liu, Q. Zhu, and X. Zhang, “An epidemic model of computer viruses with vaccination and generalized nonlinear incidence rate,” Applied Mathematics and Computation, vol. 222, pp. 265–274, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  11. C. Gan, X. Yang, W. Liu, and Q. Zhu, “A propagation model of computer virus with nonlinear vaccination probability,” Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 1, pp. 92–100, 2014. View at Publisher · View at Google Scholar · View at MathSciNet
  12. X. Han and Q. Tan, “Dynamical behavior of computer virus on Internet,” Applied Mathematics and Computation, vol. 217, no. 6, pp. 2520–2526, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  13. C. Zhang, Y. Zhao, and Y. Wu, “An impulse model for computer viruses,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 260962, 13 pages, 2012. View at Publisher · View at Google Scholar
  14. B. K. Mishra and S. K. Pandey, “Dynamic model of worm s with vertical transmission in computer network,” Applied Mathematics and Computation, vol. 217, no. 21, pp. 8438–8446, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. T. Dong, X. Liao, and H. Li, “Stability and Hopf bifurcation in a computer virus model with multistate antivirus,” Abstract and Applied Analysis, vol. 2012, Article ID 841987, 16 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  16. B. K. Mishra and N. Jha, “SEIQRS model for the transmission of malicious objects in computer network,” Applied Mathematical Modelling, vol. 34, no. 3, pp. 710–715, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  17. J. R. C. Piqueira, A. A. de Vasconcelos, C. E. C. J. Gabriel, and V. O. Araujo, “Dynamic models for computer viruses,” Computers and Security, vol. 27, no. 7-8, pp. 355–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. R. C. Piqueira and V. O. Araujo, “A modified epidemiological model for computer viruses,” Applied Mathematics and Computation, vol. 213, no. 2, pp. 355–360, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  19. L.-X. Yang, X. Yang, L. Wen, and J. Liu, “A novel computer virus propagation model and its dynamics,” International Journal of Computer Mathematics, vol. 89, no. 17, pp. 2307–2314, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  20. C. Zhang, W. Liu, J. Xiao, and Y. Zhao, “Hopf bifurcation of an improved SLBS model under the influence of latent period,” Mathematical Problems in Engineering, vol. 2013, Article ID 196214, 10 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  21. M. Yang, Z. Zhang, Q. Li, and G. Zhang, “An SLBRS model with vertical transmission of computer virus over the internet,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 925648, 17 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  22. Q. Zhu, X. Yang, L. Yang, and X. Zhang, “A mixing propagation model of computer viruses and countermeasures,” Nonlinear Dynamics: An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, vol. 73, no. 3, pp. 1433–1441, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  23. C. Gan, X. Yang, Q. Zhu, J. Jin, and L. He, “The spread of computer virus under the effect of external computers,” Nonlinear Dynamics, vol. 73, no. 3, pp. 1615–1620, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  24. C. Gan, X. Yang, W. Liu, Q. Zhu, J. Jin, and L. He, “Propagation of computer virus both across the Internet and external computers: a complex-network approach,” Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 8, pp. 2785–2792, 2014. View at Publisher · View at Google Scholar · View at MathSciNet
  25. C. Gan, X. Yang, Q. Zhu, and J. Jin, “The combined impact of external computers and network topology on the spread of computer viruses,” International Journal of Computer Mathematics, 2014. View at Publisher · View at Google Scholar
  26. J. M. Heffernan, R. J. Smith, and L. M. Wahl, “Perspectives on the basic reproductive ratio,” Journal of the Royal Society Interface, vol. 2, no. 4, pp. 281–293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. C. Robinson, An Introduction to Dynamical System: Continuous and Discrete, Prentice Hall, 2004.